
Quality Attributes Optimization of Software
Architecture: Research Challenges and Directions

Daniele Di Pompeo
University of L’Aquila

L’Aquila, Italy
daniele.dipompeo@univaq.it

Michele Tucci
Charles University

Prague, Czech Republic
tucci@d3s.mff.cuni.cz

Abstract—The estimation and improvement of quality at-
tributes in software architectures is a challenging and time-
consuming activity. On modern software applications, a model-
based representation is crucial to face the complexity of such
activity. One main challenge is that the improvement of distinctive
quality attributes may require contrasting refactoring actions
on the architecture, for instance when looking for trade-off
between performance and reliability (or other non-functional
quality attributes). In such cases, multi-objective optimization can
provide the designer with a more complete view on these trade-
offs and, consequently, can lead to identify suitable refactoring
actions that take into account independent or even competing
objectives.

In this paper, we present open challenges and research direc-
tions to fill current gaps in the context of multi-objective software
architecture optimization.

Index Terms—refactoring, multi-objective optimization, soft-
ware architecture, performance

I. INTRODUCTION

Different factors, such as the addition of new requirements,
the adaption to new execution contexts, or the deterioration
of non-functional attributes, can lead to software refactoring.
Identifying the best refactoring operations is challenging be-
cause there is a wide range of potential solutions and no
automated assistance is currently available. In this situation,
search-based approaches have been widely used [1, 2, 3, 4, 5].

Multi-objective optimization approaches, which are search-
based, have lately been used to solve model refactoring
optimization issues [6, 7]. Searching among design alternatives
(for example, through architectural tactics) is a typical feature
of multi-objective optimization methodologies used to solve
model-based software restructuring challenges [8, 7].

The automated refactoring of software models plays an
important role in optimizing software architectures, as it
allows generating design alternatives while preserving the
external behavior of its functionalities. While being beneficial
in finding such alternatives, the automated refactoring pro-
cess can generate a considerable number of new solutions
that are difficult for the designer to navigate. As a result,
choosing the best refactoring methods from such a huge set
of options requires significant effort, which can be reduced
by multi-objective algorithms. However, in order to explore
the solution space and produce an (almost) optimal Pareto
frontier, multi-objective algorithms may require a significant
amount of hardware resources (such as time and memory

allocation). Even when automated, finding and creating Pareto
boundaries can frequently take many hours or even days.
Therefore, assessing and understanding the performance of
multi-objective algorithms in software model refactoring is
of paramount importance, especially when the goal is to
integrate them into the design and evolution phases of software
development.

In this paper, we present open challenges that, to the best of
our knowledge, hinder the exploitation of search-based tech-
niques within the context of quality attribute optimization of
software architectures. We also describe the plan to overcome
some of the listed open challenges.

II. STATE OF THE ART

In the past ten years, approaches on software architecture
multi-objective optimization have been developed to optimize
various quality attributes (such as reliability and energy) [9, 10,
11, 12, 6]; with various degrees of freedom in the modification
of architectures (such as service selection [13].

Recent research analyzes the capacity of two distinct multi-
objective optimization algorithms to enhance non-functional
features inside a particular architecture notation (i.e., Palladio
Component Model) [7, 14, 15]. The authors use architectural
approaches to find the best solutions, which primarily include
changing system parameters (such as hardware settings or
operation requirements).

Menasce et al. have provided a framework for architectural
design and quality optimization, [16]. This framework makes
use of architectural patterns to help the search process (such
as load balancing and fault tolerance). The approach has two
drawbacks: performance indices are computed using equation-
based analytical models, which may be too simple to capture
architectural details and resource contention; the architecture
must be designed in a tool-specific notation rather than in a
standard modeling language (as we do in this paper).

A method for modeling and analyzing AADL architectures
has been given by Aleti et al. [17]. A tool that may be
used to optimize various quality attributes while adjusting
architecture deployment and component redundancy has also
been introduced.

Cortellessa and Di Pompeo [6] have presented a multi-
objective framework aimed at improving the quality of archi-
tectural models specified by Æmilia [18]. Cortellessa and Di

ar
X

iv
:2

30
1.

07
51

6v
1 

 [
cs

.S
E

] 
 1

8 
Ja

n 
20

23



[are the stopping criteria 
met?]

Initial Architecture

Architecture Alternatives

Refactoring Actions

Bio-Inspired Actions 

Objectives

...

Fig. 1. A typical framework for quality attributes optimization of software
architecture.

Pompeo analyzed the sensibility of genetic algorithms when
changing the configuration parameters.

Cortellessa et al. [19] have instead studied the impact
of specific non-functional quality metric (i.e., performance
antipatterns [20]) on the overall quality of Pareto frontiers. In
order to evaluate the overall quality of Pareto frontiers in this
study, Cortellessa et al. exploited established quality indicators
within the search-based theory.

Di Pompeo and Tucci [21] have investigated the effect of in-
troducing a time budget to multi-objective optimization driven
by non-functional quality attributes (such as performance and
reliability) on the overall Pareto frontiers quality. The idea
beyond the approach is to introduce concepts of search-based
techniques already investigated within different domains to the
software model optimization context.

III. QUALITY ATTRIBUTE OPTIMIZATION FRAMEWORK

Figure 1 depicts a classic search-based framework based
on genetic algorithms. The framework starts from an Initial
Architecture and a set of Refactoring Actions. The initial
architecture is the subject architecture to be optimized, while
the refactoring actions are the set of all available actions that
are combined by the Bio-Inspired Actions, which are selection,
mutation, and crossover.
The crossover operator mates solutions to evolve the species.
Several crossover policies, such as the single point crossover,
can be employed in this step. In this case, the chromosome
will be split in two halves, and they will be alternatively
combined. While the crossover operation is performed, the
mutation operator randomly selects an element belonging to
the chromosome and change it with a new one, as a genetic
mutation would do in nature. The selection operator is in
charge of discarding the worst elements in the offspring (i.e.,
the architecture alternatives). Once the offspring is made,
elements belonging to the offspring are sorted with respect
to the objectives (i.e., through the sorting operator). When
there are more than one objective, we are in a multi-objective

optimization process. Often, when the objectives are more than
3, we are in a many-objective optimization process. Finally,
when a stopping criterion is met, the optimization process ends
and the final offspring will form the Pareto frontier.

IV. OPEN CHALLENGES

Lack of automation: As introduced before, when search-
based techniques are put in place they require to generate a
higher number of alternatives, even thousands. Therefore, the
automation to form alternatives is a must-have functionality
in every model-based optimization framework. Introducing
automation in such a context would be a step ahead towards
the adoption of search-based techniques within model-based
optimization processes. Furthermore, the automation is strictly
related to the modelling notation and its expressiveness. To
the best of our knowledge, we introduced the first refactor-
ing engine for UML [20]. Our refactoring engine exploits
the Epsilon suite 1, and provides some facilities to refactor
three different UML views, i.e., Component, Sequence, and
Deployment diagrams. Then, we exploited the refactoring
engine in a search-based optimization framework, where we
sought optimal solutions with respect to four competitive
objectives [19, 21].

Problem formalization: One of the relevant aspects for
applying search-based techniques is the formalization of the
problem. Often, search-based approaches exploit evolutionary
algorithms and, in the majority of the cases, genetic algorithms
are used to search the solution space. Furthermore, a genetic
algorithm is a bio-inspired algorithm that requires a chromo-
some to be manipulated for the evolution of the species.

To the best of our knowledge, there not exist guidelines
in literature to represent specific problems as chromosomes.
Positional structures are exploited to draw problems in model-
based optimization studies [8, 7]. Thus, each position of the
chromosome have a fixed meaning. One of the advantages
of using positional chromosomes is their fastest execution of
bio-inspired actions on them. However, the positional structure
has the drawback to be too inexpressive within the context
of model-based software refactoring. To overcome the above
limitation, there exists a chromosome representation that re-
ports a refactoring action into a chromosome position [20].
Nevertheless, it is slower than the positional structure due
to the complexity of compatibility checking among elements
within chromosomes.

For the above issues, we see an interesting research direction
of the problem formalization within model-based software
optimization that should fill the gap with more established
search-based optimization problems.

Time and resources requirements: Improving quality at-
tributes by means of optimization techniques often requires
a considerable amount of time and resources, as the search
for better solutions relies on the manipulation of modelling
artifacts. Usually, the process of generating a new design alter-
native also involves a number of transformations from software

1https://www.eclipse.org/epsilon

https://www.eclipse.org/epsilon


design models (e.g., UML) to non-functional models (e.g.,
Queueing Networks, Markov Chains). These target models
are then used to quantify quality attributes like performance
and reliability, either analytically or through simulation. Given
their inherent complexity and the toolchain employed in these
contexts, it is generally challenging to make these activities
more efficient. As a consequence, they tend to extend the
overall time needed for the optimization process. Moreover,
when this process is performed on models that are not just
toy examples but realistic in size and complexity, it can last
several days [19]. This clearly poses a challenge in adopting
search-based optimization techniques in practical software
engineering scenarios. Finally, given the random nature of the
algorithms that are usually employed in this context, it is very
difficult to predict how long it will take for the process to
complete. This issue is exacerbated by the fact that, in most
cases, the solution space is unknown to the designer at the
beginning of the optimization.

Architectural quality metrics: When considering the
multi-objective optimization in general, there is no lack of
metrics (e.g., quality indicators) that can be used to quan-
tify the performance, and consequently the outcome, of the
optimization process. Nonetheless, such metrics only provide
feedback that is based on the numerical values achieved by the
solutions in the Pareto front for each objective. This viewpoint
is useful to quantify the improvement realized by the solutions
in terms of quality attributes and with respect to the initial
model. However, the designer would not gain any feedback on
how the architectural model itself changed during the process.
This makes it difficult to compare the solutions in the Pareto
front with the initial architecture and among themselves. Such
a comparison is crucial because it guides the decision-making
process of adopting a new design. In this regard, quality
metrics that represent architectural aspects like the change in
the number of communication paths, in their length, in the
complexity of components, or in the number of exchanged
messages, could make this comparison practical, and avoid
inspecting every solution to obtain enough knowledge to make
an informed decision.

Explainability: As it is the case for many other opti-
mization techniques, the solutions that are obtained through
multi-objective optimization do not carry information about
the specific causes that led to the generation and selection
of such solutions. For instance, at the end of an automated
refactoring process guided by a genetic algorithm, while we
can, of course, inspect the solutions to learn what refactoring
actions were applied to obtain the best results, we have no
knowledge about the circumstances that made those choices
preferable to all the others. In other words, we cannot explain
why some modifications should be applied to our architecture
other than for the quality attributes they seem to improve.
In order to understand the modifications, we would have to
know why they are beneficial. Unfortunately, in this kind of
optimization processes, this is left for the designer to figure
out. In this sense, the lack of explainability of results makes
it difficult for the designer to justify the new modifications

that she is proposing on the basis of a completely automated
process.

Reproducibility: Reproducing results of optimization ex-
periments has been an important concern in recent years,
both for researchers and practitioners. Of course, the main
obstacle in this regard is represented by the random nature of
many optimization techniques when it comes to the generation
of new solutions and the exploration of the solution space.
On top of this, when optimizing architectures, the solution
space is difficult or impossible to define beforehand. More
often than not, the solution space is not represented by just
all the possible combinations of feasible modifications to the
initial architecture, but it is built as the process goes on and
the set of architectural elements that are possible targets of
modifications changes. This uncertainty in the definition of
the solution space and, consequently, in the obtained results
is usually tackled by performing multiple runs of the same
experiments, and by trying to reach conclusions on the basis
of the information gathered in all the runs. While this is
reasonable and practical in most cases, it can be very expensive
when optimizing architectures, and less effective on large
solution spaces. Therefore, achieving perfect reproducibility
is still a challenge in architectural optimization, and one that
is rarely addressed by the relevant literature.

V. CONCLUSION

In this paper, we reported open challenges of quality at-
tributes optimization of software architectures. To the best of
our knowledge, these open challenges hinder the utilization of
search-based techniques in software architecture optimization.

Furthermore, our agenda foster new research activities in the
field of software architecture optimization, especially for the
optimization of non-functional properties, such as performance
and reliability.

As short-term future work, we will try to tackle the chal-
lenge about the lack of automation. We already presented
approaches targeted at this challenge [19, 18]. However, we
plan on extending the introduced automation by supporting
more refactoring actions, for example by implementing the
Fowler’s refactoring portfolio [22].

As mid-term future work, we will attempt to address the
challenge about the architectural quality metrics. We plan to
exploit quality estimation techniques well-recognized in the
search-based community [23].

As long-term future work, we will attempt to address the
challenge about the problem formalization. To empirically
address this challenge, a profound analysis of several software
architectures is probably required, and each one will generate
a specific optimization problem.

ACKNOWLEDGMENT

Daniele Di Pompeo is supported by the Centre of EXcel-
lence on Connected, Geo-Localized and Cybersecure Vehicle
(EX-Emerge), funded by the Italian Government under CIPE
resolution n. 70/2017 (Aug. 7, 2017).



Michele Tucci is supported by the OP RDE project No.
CZ.02.2.69/0.0/0.0/18 053/0016976 “International mobility of
research, technical and administrative staff at the Charles
University”.

REFERENCES

[1] T. Mariani and S. R. Vergilio, “A systematic review on
search-based refactoring,” InfSoft, vol. 83, pp. 14–34,
Mar. 2017.

[2] A. Ouni, M. Kessentini, K. Inoue, and M. Ó Cinnéide,
“Search-Based Web Service Antipatterns Detection,”
TSC, vol. 10, no. 4, pp. 603–617, 2017.

[3] A. Ramı́rez, J. R. Romero, and S. Ventura, “A survey
of many-objective optimisation in search-based software
engineering,” JSS, vol. 149, pp. 382–395, 2019.

[4] M. Ray and D. P. Mohapatra, “Multi-objective test
prioritization via a genetic algorithm,” Innov. Syst. Softw.
Eng., vol. 10, no. 4, pp. 261–270, 2014. [Online].
Available: https://doi.org/10.1007/s11334-014-0234-2

[5] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek,
and I. Meedeniya, “Software architecture optimization
methods: A systematic literature review,” IEEE Trans.
Software Eng., vol. 39, no. 5, pp. 658–683, 2013.
[Online]. Available: https://doi.org/10.1109/TSE.2012.64

[6] V. Cortellessa and D. Di Pompeo, “Analyzing the sensi-
tivity of multi-objective software architecture refactoring
to configuration characteristics,” InfSoft, vol. 135, p.
106568, 2021.

[7] Y. Ni, X. Du, P. Ye, L. L. Minku, X. Yao, M. Harman, and
R. Xiao, “Multi-objective software performance optimi-
sation at the architecture level using randomised search
rules,” InfSoft, vol. 135, p. 106565, 2021.

[8] A. Koziolek, H. Koziolek, and R. H. Reussner,
“Peropteryx: automated application of tactics in multi-
objective software architecture optimization,” in 7th
International Conference on the Quality of Software
Architectures, QoSA 2011, I. Crnkovic, J. A. Stafford,
D. C. Petriu, J. Happe, and P. Inverardi, Eds.
ACM, 2011, pp. 33–42. [Online]. Available: https:
//doi.org/10.1145/2000259.2000267

[9] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner,
“Automatically improve software architecture models for
performance, reliability, and cost using evolutionary al-
gorithms,” in ICPE. New York, New York, USA: ACM
Press, 2010, pp. 105–116.

[10] R. Li, R. Etemaadi, M. T. M. Emmerich, and M. R. V.
Chaudron, “An evolutionary multiobjective optimization
approach to component-based software architecture de-
sign,” in CEC. IEEE, 2011, pp. 432–439.

[11] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske,
“Architecture-Driven Reliability and Energy Optimiza-
tion for Complex Embedded Systems,” in QoSA.
Springer, 2010, pp. 52–67.

[12] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and
R. H. Reussner, “A Hybrid Approach for Multi-attribute
QoS Optimisation in Component Based Software Sys-

tems,” in Research into Practice – Reality and Gaps,
2010, pp. 84–101.

[13] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti,
and R. Mirandola, “QoS-driven Runtime Adaptation of
Service Oriented Architectures,” in ESEC/FSE, 2009, pp.
131–140.

[14] A. Rago, S. A. Vidal, J. A. Diaz-Pace, S. Frank, and
A. van Hoorn, “Distributed quality-attribute optimization
of software architectures,” in SBCARS 2017. ACM,
2017, pp. 7:1–7:10. [Online]. Available: https://doi.org/
10.1145/3132498.3132509

[15] S. Becker, H. Koziolek, and R. H. Reussner, “The
Palladio component model for model-driven performance
prediction,” JSS, vol. 82, no. 1, pp. 3–22, Jan. 2009.

[16] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek,
and J. P. Sousa, “A framework for utility-based service
oriented design in SASSY,” in WOSP/SIPEW, 2010, pp.
27–36.

[17] P. H. Feiler and D. P. Gluch, Model-Based Engineering
with AADL - An Introduction to the SAE Architecture
Analysis and Design Language, ser. SEI series in soft-
ware engineering. Addison-Wesley, 2012.

[18] D. Arcelli, V. Cortellessa, M. D’Emidio, and D. Di
Pompeo, “EASIER: an Evolutionary Approach for multi-
objective Software archItecturE Refactoring,” in ICSA,
2018, pp. 1–10.

[19] V. Cortellessa, D. Di Pompeo, V. Stoico, and M. Tucci,
“On the impact of performance antipatterns in multi-
objective software model refactoring optimization,”
in 2021 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE,
2021, p. 224–233. [Online]. Available: https://ieeexplore.
ieee.org/document/9582578/

[20] D. Arcelli, V. Cortellessa, and D. Di Pompeo,
“Performance-driven software model refactoring,”
InfSoft, vol. 95, pp. 366–397, 2018. [Online]. Available:
https://doi.org/10.1016/j.infsof.2017.09.006

[21] D. Di Pompeo and M. Tucci, “Search budget in multi-
objective refactoring optimization: a model-based empir-
ical study,” in 48th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2022.
IEEE, 2022, pp. 406–413, to appear. [Online]. Available:
https://doi.org/10.1109/SEAA56994.2022.00070

[22] M. Fowler, “Refactoring: Improving the design of
existing code,” in Extreme Programming and Agile
Methods Conference, ser. Lecture Notes in Computer
Science, vol. 2418. Springer, 2002, p. 256. [Online].
Available: https://doi.org/10.1007/3-540-45672-4 31

[23] M. Li, T. Chen, and X. Yao, “How to evaluate solutions
in pareto-based search-based software engineering: A
critical review and methodological guidance,” IEEE
Trans. Software Eng., vol. 48, no. 5, pp. 1771–1799,
2022. [Online]. Available: https://doi.org/10.1109/TSE.
2020.3036108

https://doi.org/10.1007/s11334-014-0234-2
https://doi.org/10.1109/TSE.2012.64
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1145/3132498.3132509
https://doi.org/10.1145/3132498.3132509
https://ieeexplore.ieee.org/document/9582578/
https://ieeexplore.ieee.org/document/9582578/
https://doi.org/10.1016/j.infsof.2017.09.006
https://doi.org/10.1109/SEAA56994.2022.00070
https://doi.org/10.1007/3-540-45672-4_31
https://doi.org/10.1109/TSE.2020.3036108
https://doi.org/10.1109/TSE.2020.3036108

	I Introduction
	II State of the art
	III Quality Attribute Optimization framework
	IV Open Challenges
	V Conclusion

