
HAL Id: hal-03980518
https://hal.science/hal-03980518

Submitted on 9 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Monolithic Architecture Style to Microservice one
Based on a Semi-Automatic Approach

Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Rahina
Oumarou Mahamane, Pascal Zaragoza, Christophe Dony

To cite this version:
Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Rahina Oumarou Mahamane, Pascal
Zaragoza, et al.. From Monolithic Architecture Style to Microservice one Based on a Semi-Automatic
Approach. ICSA 2020 - IEEE 17th International Conference on Software Architecture, Mar 2020,
Salvador, Brazil. pp.157-168, �10.1109/ICSA47634.2020.00023�. �hal-03980518�

https://hal.science/hal-03980518
https://hal.archives-ouvertes.fr


From Monolithic Architecture Style to Microservice
one Based on a Semi-automatic Approach

Anfel Selmadji∗†, Abdelhak-Djamel Seriai∗, Hinde Lilia Bouziane∗, Rahina Oumarou Mahamane∗,
Pascal Zaragoza∗, and Christophe Dony∗
∗ LIRMM, University of Montpellier, CNRS

Montpellier, France
† MISC Laboratory, Abdelhamid Mehri University

Constantine, Algeria
{selmadji, seriai, bouziane, zaragoza, dony}@lirmm.fr

om.rahina@gmail.com

Abstract—Due to its tremendous advantages, microservice ar-
chitectural style has become an essential element for the develop-
ment of applications deployed on the cloud and for those adopting
the DevOps practices. Nevertheless, while microservices can be
used to develop new applications, there are monolithic ones,
that are not well adapted neither to the cloud nor to DevOps.
Migrating these applications towards microservices appears as
a solution to adapt them to both. In this context, we propose
an approach aiming to achieve this objective by focusing on the
step of microservices identification. The proposed identification,
in this paper, is based on an analysis of the relationships between
source code elements, their relationships with the persistent data
manipulated in this code and finally the knowledge, often partial,
of the architect concerning the system to migrate. A function
that measures the quality of a microservice based on its ability
to provide consistent service and its interdependence with others
microservice in the resulting architecture was defined. Moreover,
the architect recommendations are used, when available, to guide
the identification process. The conducted experiment shows the
relevance of the obtained microservices by our approach.

Index Terms—Object-Oriented, microservices, software migra-
tion, identification, architect recommendations, software architec-
ture, quality.

I. INTRODUCTION

Recently, microservices [21, 23] have emerged as a technol-
ogy and architectural style, in which an application consists
of a set of small services that are independently deployable
and scalable. Each microservice manages its own data and
communicates with others relying on lightweight mechanisms.

Due to their characteristics (e.g., independently deployable,
autonomous, etc.), microservices can allow efficient develop-
ment, deployment, and maintenance. Indeed, since they are
autonomous they can be developed, maintained, and tested
independently, which facilitates continuous integration and
continuous testing (i.e., DevOps practices). Moreover, mi-
croservices are typically packed and deployed using contain-
ers, which eases their deployment in different platforms such
as the cloud.

While microservices can be used to develop new applica-
tions, there are monolithic ones (i.e., monoliths) [13, 27] built
as a single unit, which hardens their development, deployment,
and maintenance. For instance, maintaining a part of a mono-

lith requires testing the entire application, and since we do not
know the impact of the change on the rest of the application,
there is the chance that parts that have not been updated will
fail to start correctly.

Some existing monolithic applications have high business
value. Therefore, to overcome their limitations, they can be
migrated towards recent architectural styles, such as microser-
vices. The migration process consists mainly of two steps: 1)
microservice identification where available software artifacts
(e.g., source code, documentation, execution traces, etc.) of
the monolithic application are analyzed to determine the
corresponding microservices, and 2) microservice packaging
where the necessary transformations are performed on the
source code of the identified microservices in order that they
become executable entities.

Several approaches have been proposed to address the first
step of the migration process [5, 7, 12, 14, 15, 16, 19, 20,
22]. Nevertheless, they suffer from three main limitations.
Firstly, they are based on ad-hoc and limited heuristics, that
are not specifically adapted to the concept ”microservice”
[5, 7, 12, 15, 16, 22]. Secondly, they do not consider all
the characteristics of microservices, especially data autonomy
[5, 12, 14, 20]. Therefore, the extracted microservices by
these approaches are not the most relevant, and do not reflect
all the semantics of the concept ”microservice”. Finally, the
approaches that rely on experts suffer fro certain limitations: 1)
they cannot be applied unless an expert is available, 2) they
require a profound knowledge of the monolith, and 3) they
require intensive expert intervention to perform some steps of
the approach, if not all of them.

In this paper, we propose an approach that tackles these
limitations. Our approach identifies microservices from mono-
lithic Object-Oriented (OO) applications based on a quality
function that, unlike existing approaches, have been defined
after an analysis of microservice characteristics to ensure that
the produced results are relevant, and reflect the semantics of
the concept microservices. It is noteworthy that this function
takes into account data autonomy of microservices (Section
III). Furthermore, our approach uses architect recommenda-
tions to guide the identification process. Nevertheless, these



recommendations are not necessary, they are used when they
are available. Moreover, they are related to the use of the
application. Thus, they do not require a profound knowledge of
the monolithic OO application’s source code. Furthermore, the
role of the architect is limited to providing recommendations
at the beginning of the identification.

To validate our approach, we experimented on several OO
applications of different sizes (i.e., from small to relatively
large). The obtained results showed the relevance of our
choices. On the one hand, the relevance of the microservice-
based architectures that have been identified is higher than the
results of our automatic approach. On the other hand, taking
into account the data autonomy of microservices considerably
improves the obtained results.

The remainder of this paper is organized as follows. Section
II outlines related works. Section III presents our well-defined
quality measurement of microservices. Section IV shows how
our approach identifies microservices using a clustering algo-
rithm, and how does it inject software architect recommen-
dations, when available, in the identification process. Section
V presents the conducted experimentations to evaluates our
proposal. Finally, section VI concludes the paper and provides
future directions.

II. RELATED WORKS

In literature, several approaches have been proposed to iden-
tify microservices from monolithic applications. Nevertheless,
they suffer from four main limitations.

Firstly, some approaches [7, 15, 16, 22] require software
artifacts, which unlike source code, may be unavailable or
not up-to-date, limiting their applicability. For instance, the
proposed approach in [15] analyzes and clusters execution
traces to identify classes cooperating to perform the same
functionality. Whereas, in [22], the authors rely on the change
history of the monolith.

Secondly, when microservices are automatically identified
from source code, existing approaches do not consider all the
semantics of microservices, especially data autonomy [22].
Therefore, the produced results by these approaches may not
match those that can be manually identified by an expert.
To the best of our knowledge, only two approaches identify
microservices from the source code while considering data
autonomy [20, 24]. The first one [20] is manual. It identifies
microservices from enterprise applications relying on depen-
dencies between their facades and database tables connected
by business functionalities. Facades represent the entry points
of the system, that invoke business functionalities. The second
approach is our previous one [24] in which even though data
autonomy is considered, the frequency of data manipulation
and the access mode to data have not been taken into account,
despite their importance (Section III-B3).

Thirdly, existing approaches either do not benefit from ex-
pert knowledge [5, 7, 15, 16, 22] or require expert intervention
to perform some of their steps [12, 14, 19], if not all of
them [20], which is tedious, error-prone, and time-consuming.
Moreover, it limits their applicability. For instance, in the first

step of the proposed approach in [12], a purified and detailed
DFD is constructed manually from the business logic of the
system to be decomposed. The build DFD is the base of the
following steps.

It is noteworthy that, to the best of our knowledge, none
of the investigated approaches rely on a well-specified set of
recommendations that can be easily provided by an expert
and allows to enhance the identification results. Furthermore,
none of them combine expert recommendations with source
code information.

Finally, some approaches [20] rely on a restrictive hypoth-
esis about the architecture of the monolith to be decomposed.
For example, in [20], the authors suppose that the application
has three main parts: a client side user interfaces, a server side,
and a database. Moreover, they consider that a large system
consists of smaller subsystems and each one has a well-defined
set of business functionalities. In addition, they assume that
each subsystem has a separate data store.

III. MEASUREMENT OF THE QUALITY OF MICROSERVICES

Our identification process partitions into clusters the classes
of the original monolithic software architecture to identify the
microservices of the targeted one. To determine from all the
possible partitions, those that reflect a relevant microservice-
based architecture, it is necessary to measure the ”relevance”
of this architecture. Note that the term quality of architecture
or microservice is used to refer to their relevance.

To quantitatively measure the quality of a candidate mi-
croservice, similarly to the proposed approach in [2], we
were inspired by the ISO/IEC 25010:2011 [1] model, which
links the quality characteristics of a software product to the
corresponding metrics for measuring each one. Therefore, the
characteristics that reflect the quality of a microservice were
identified and then refined to obtain the metrics that allow
measuring them.

The identification of microservice characteristics is based
on an analysis of their most commonly used definitions. In
literature, several ones have been proposed [21, 23, 25]. Based
on these definitions and others [26], the main characteristics
of a microservice are the following:

• Small and focused on one functionality: even if small
is not a sufficient measure to describe microservices, it
is used as an attempt to imply their granularity [21, 23,
26]. However, a question that is often asked is how small
is small? A microservice is typically responsible for a
granular unit of work (i.e., encapsulates a simple business
functionality). Therefore, it must be small enough so that
its whole design and implementation can be understood.
Moreover, it can be maintained or rewritten easily.

• Autonomous: microservices are separate entities that can
be developed, tested, upgraded, replaced, deployed, and
scaled independently from each other. All communi-
cations between the microservices themselves are via
network calls, to enforce separation between them and
ensure that they are loosely coupled (i.e., structural and



behavioral autonomy) [21, 23, 25]. Moreover, each one
manages its own database (i.e., data autonomy) [21, 23].

• Technology-neutral: with a system composed of a set of
collaborating microservices, it is possible to use different
technologies inside each one. This allows picking the
right tool for each job [21, 23].

• Automatically deployed: with a system consisting of a
small number of microservices, it might be acceptable to
manually provision machines to deploy them. Neverthe-
less, if this number increases, at some point, the use of a
manual approach might not be possible. Hence, automatic
deployment is required.

These characteristics can be classified into two categories:
1) those related to the structure and behavior of microservices,
and 2) others related to the implementation technologies
and deployment platform of microservices. The first category
concerns characteristics that are independent of the microser-
vices implementation technologies and deployment platforms.
They are related to design (resp., identification) phase of
the microservice development (resp., migration) process. It
includes ”small and focused on one functionality and ”au-
tonomous” characteristics. The second category depends on
implementation technologies and development platforms. It
includes ”technology-neutral” and ”automatically deployed”
characteristics, which are related to the packaging phase of
the development/migration process.

In order to evaluate the quality of candidate microservices,
from the above-mentioned characteristics, only the ones that
define microservice structure and behavior are selected: ”small
and focused on one functionality” and ”autonomous”. Note
that the autonomy of a microservice includes its structural and
behavioral autonomy as well as its data autonomy.

To measure these characteristics, a set of metrics were
chosen and used to define a quality function. It is a weighted
aggregation of two sub-functions. The first one evaluates the
strength of all the structural relationships between source code
elements, that will constitute the implementation of a potential
microservice. The second sub-function measures the degree of
dependence of microservice classes on persistent data. The
goal of our approach is to identify microservices with the
maximized quality function values.

A. Measuring the Quality of a Microservice Based on Struc-
tural and Behavioral Dependencies

Regarding their structural and behavioral dependencies, the
quality of microservices is measured based on two elements.
The first one consists in determining the characteristics that
a microservice should have and how they can be evaluated
based on metrics. The second element consists in identifying
among all the existing implementations of the used metrics,
those that best reflect the characteristics to be assessed.

1) Quality Function based on the Assessment of Appropri-
ate Characteristics:
1.1) Measuring Focused on One Functionality Characteristic
of a Microservice: in our approach, a microservice is viewed as
a set of classes collaborating to provide a given function. This

collaboration can be determined from source code through
the internal coupling measure, which represents the degree
of direct and indirect dependencies between the set of classes,
representing a candidate microservice. The more two classes
of a candidate microservice use each other’s methods, the more
they are internally coupled. Furthermore, the collaboration can
be determined by measuring the number of volatile data (i.e.,
not persistent data) such as attributes whose use is shared by
these classes. It reflects the internal cohesion measure.

To evaluate the characteristic ”Focused on One Function”
of a set of classes representing a candidate microservice M,
the function FOne was defined as follows:

FOne(M) =
1

2
(InterCoup(M) + InterCoh(M)) (1)

1.2) Measuring the Structural and Behavioral Autonomy of
a Microservice: as explained earlier, microservices are separate
entities that can be developed, tested, upgraded, replaced, de-
ployed, and scaled independently from each other. Therefore,
in order that a set of classes represents a microservices, they
should be self-sufficient. In other words, their dependencies
on external classes should be minimal. This can be measured
using external coupling, which evaluates the degree of direct
and indirect dependencies between the classes belonging to
the microservices and the external classes.

To evaluate the structural and behavioral autonomy of a can-
didate microservice M, the function FAutonomy was defined
as follows:

FAutonomy(M) = ExterCoup(M) (2)

1.3) Quality Measurement Relying on Structural and Be-
havioral Dependencies: the two functions that measure the
quality of a microservice based on structural and behavioral
dependencies were aggregated in one FStructBeh as follows:

FStructBeh(M) =
1

n
(αFOne(M)− βFAutonomy(M))

(3)
Where α and β are coefficient weights specified by a

software architect and n = α + β. The default value of each
term is 1.

2) Measuring Microservice Characteristics Based on Ap-
propriate Metrics: earlier in this section, two microservice
characteristics have been evaluated using some metrics. The
rest of this section presents how these metrics are computed
to reflect the semantics of the corresponding measures.

2.1) Internal coupling: the internal coupling measures the
degree of direct and indirect dependencies between the classes
of a microservice. These dependencies correspond to method
calls. The more two classes use each other’s methods, the
more they are internally coupled (i.e., higher internal coupling
values). This can be evaluated by measuring the frequency of
internal calls between classes. Hence, the internal coupling is
computed as follows:

InterCoup(M) =

∑
CoupP (P )

NbPossiblePairs
(4)

Where P= (C1, C2) is a pair of classes of the microservice
M, NbPossiblePairs is the number of possible pairs of classes
in M, while CoupP is computed as follows:



CoupP (C1, C2) =
NbCalls(C1, C2) +NbCalls(C2, C1)

TotalNbCalls
(5)

Where NbCalls(C1, C2) is the number of calls of the meth-
ods of C1 by the methods of C2 and TotalNbCalls represents
the total number of method calls in the OO application.

In fact, computing internal coupling using Equation 4 con-
siders the frequency of calls between methods. Nevertheless, it
does not promote clusters in which the values of the Coupling-
Pair are close (i.e., all the classes are coupled). To tackle this
problem, the standard deviation between the coupling values
was introduced in the computing of the internal coupling as
follows:

InterCoup(M) =

∑
CoupP (P )−

∑
PV ∈PairsV σ(PV al)

NbPossiblePairs
(6)

Where σ(PV ) is the standard deviation between the CoupP
values of the pair PV belonging to all the possible pairs of
values PairsV .

Note that introducing the standard deviation in the com-
puting of the internal coupling ensures that very big or very
small coupling values between a small sub-set of microservice
classes do not impact the overall evaluation of the internal
coupling.

2.2) External coupling: external coupling measures the
degree of direct and indirect dependencies of the classes
belonging to a candidate microservice on external classes. It is
computed as shown in Equation 7. Where P is a pair of classes
such that only one class belongs to the microservice M, but
not both, CoupP is measured using Equation 5, σ(PV ) is
the standard deviation between the CoupP values of the pair
PV belonging to all the possible pairs of values PairsV .
Whereas, NbPossibleExternalPairs is the number of pairs of
classes in which only one class belongs to the microservice
M. It is noteworthy that the main difference in the evaluation
of internal and external coupling is the used pairs of classes.

ExterCoup(M) =

∑
CoupP (P )−

∑
PV ∈PairsV σ(PV )

NbPossibleExternalPairs
(7)

2.3) Internal cohesion: internal cohesion evaluates the
strength of interactions between classes. Generally, if the
methods of two classes manipulate the same attributes, these
classes are more interactive. Hence, internal cohesion is com-
puted as follows:

InterCoh(M) =
NbDirectConnections

NbPossibleConnections
(8)

Where NbPossibleConnections is the number of possible
connections between the methods of the classes belonging to
the microservice M, while NbDirectConnections is the number
of connections between these methods. Two methods method1
and method2 are directly connected if they both access the
same attribute or the call trees starting at method1 and method2
access the same attributes.

Note that when measuring the internal cohesion using Equa-
tion 8, the connections between the methods of the same class

are taken into account. However, our goal is to evaluate the
cohesion between the classes of the candidate microservices.
To solve this problem, the connections between the methods
of the same class are not considered. It is noteworthy that the
proposed internal cohesion evaluation metric is a variation of
the metric TCC (Tight Class Cohesion) [9].

B. Measuring the Quality of a Microservice Based on Data
Autonomy

One of the main characteristics of a microservice is its data
autonomy [21, 23]. A microservice can be completely data
autonomous if it does not require any data from others. In
order that a microservice needs less data, the internal data
manipulations (i.e., reading and writing operations) between
its classes should be maximized, while the accesses to external
data should be minimized.

To identify such microservices, FData is defined as shown
in Equation 9. It is based on measuring data dependencies
between the classes of the microservice (FIntra), as well as
their dependencies with external classes (FInter). Note that
the microservices having high accesses to data manipulated
by external classes (i.e., high values of FInter) are penalized.
Indeed, the greater FInter is, the lower FData will be.
n = α+ β, while α and β are coefficient weights specified

by a software architect based on his/her knowledge of the
system to be migrated and the aims of the migration. For
instance, if partitioning the database is one of the aims, to
facilitate it, he/she can give more weight to FIntra, which
allows maximizing the shared data between the classes of a
microservice. The default value of each term is 1.

FData(M) =
1

n
(αFIntra(M)− βFInter(M)) (9)

1) Computing FIntra: FIntra function applied on a mi-
croservice M represents the average of data dependencies
measurement between all the possible pairs of classes belong-
ing to M (Equation 10). We chose the average of the data
manipulations measurement instead of the sum because the
latter promotes large microservices (i.e., consisting of a high
number of classes) even if their classes do not manipulate the
same data.

FIntra(M) =

∑
ci,cj∈M DataDepend(ci, cj)

NbPossiblePairsInMicroservice
(10)

To better understand, Fig. 1 shows an example, in which
the microservice M2 contains four classes (C4, C5, C6, and
C7) manipulating the same data (D2 and D3). Whereas, M1
has only two classes (C1 and C2) accessing to D1. Therefore,
the sum of data manipulations measurement for M2 will be
higher than M1. This indicates that M2 is better, while it is
not the case, since all the classes of M1 manipulate the same
data, whereas merely a one-third of M2’s classes do that.

2) Computing FInter: FInter represents the average of
measuring data dependencies between all the pairs of classes in
which only one class belongs to the microservice M (Equation
11). Note that the main difference between FIntra and FInter
is the used pairs of classes.

FInter(M) =

∑
ci,cj∈ClassesDataDepend(ci, cj)

NbPossibleExternalPairs
(11)



Fig. 1. Example motivating the use of the average to compute FIntra

3) Computing DataDepend: Both FIntra and FInter rely
on DataDepend. This function measures data dependencies
between two classes based on their read and written data.
Considering the access mode to data (i.e., read and/or write)
while measuring the data autonomy of a microservice is
important. Based on the data ownership pattern proposed to
decompose a monolith into microservices [6], data can be
modified or created just through its owner (i.e., corresponding
microservice). Other microservices are allowed to have a copy
of the data that they do not own, but they should be careful
about its staleness.

DataDepend is measured as follows:

DataDepend(ci, cj) =

∑
k∈DataD(ci, cj , k)

NbDataManipulatedInMicro
(12)

Where Data is the set of data manipulated in the
microservice M and NbDataManipulatedInMicro is its size.
D is defined, inspired by the proposed approach in [5], as
follows:

D(ci, cj , k) =


- 1 if ci and cj write k.
- 0.5 if a class writes k and the other
one reads it.
- 0.25 if ci and cj read k.
- 0 otherwise.

In fact, DataDepend is the average of data manipulation
measurement for a given pair of classes. We chose the average
instead of the sum to promote microservices manipulating data
more strongly (i.e., microservices having higher values of D).
Note that if a class reads and writes the same data only the
writing (major) operation is considered.

Measuring DataDepend using Equation 12 does not take
into account the frequency of data manipulations. This fre-
quency has a substantial impact on the autonomy of the
identified microservices. For instance, if a class of a candidate
microservice M1 frequently manipulates a data D1 associated
to another microservice M2 (i.e., D1 was associated to M2
because this microservice contains more classes manipulating
it less often (Fig. 2)). Once the microservice identification and
packaging are done, each manipulation will be interpreted as a

Fig. 2. Example of the frequency of data manipulations

communication between M1 and M2. Frequent manipulations
produce frequent communications, which reduce the autonomy
of the identified microservices.

Hence, to identify autonomous microservices, the frequency
was introduced in the DataDepend measurement, as shown in
Equation 13.

DataDepend(ci, cj) =

∑
k∈Data(D(ci, cj , k) ∗ Freq(ci, cj , k))
NbDataManipulatedInMicro

(13)
Where Freq(ci, cj , k) is the number of times the classes ci

and cj manipulate k. It is defined as follows:
Freq(ci, cj , k) = FreqCl(ci, k) + FreqCl(cj , k) (14)

Measuring the frequency using Equation 14 does not pro-
mote clusters in which the data manipulation frequency of k
for the two classes ci and cj is close. To tackle this prob-
lem, the standard deviation was introduced in the frequency
measurement, as shown in Equation 15.

C. Global Measurement of the Quality of a Microservice

The global evaluation of the quality of a microservice
depends on the measurement of its quality based on structural
and behavioral dependencies, as well its quality relying on its
data autonomy. To measure this quality, the function FMicro
was defined as follows:

FMicro(M) =
1

n
(αFStructBeh(M) + βFData(M))

(16)
Where α and β are coefficient weights specified by a

software architect and n = α + β. The default value of each
term is 1.

Note that the coefficient weights show the importance of the
relationships between code entities (FStructureBehavior) and
their relationships with persistent data (FData). A software
architect, according to his/her knowledge of the system to
migrate, can decide to give more or less importance either
to FStructBeh or FData.

For example, if the source code was developed respecting
the rules of separation of responsibility, modularity, and so on,
the architect can give a high coefficient weight to FStructure-
Behavior. Otherwise, he/she can lower it.



Freq(ci, cj , k) = FreqCl(ci, k) + FreqCl(cj , k)− σ(FreqCl(ci, k), F reqCl(cj , k)) (15)

IV. IDENTIFICATION OF MICROSERVICES BASED ON
SOFTWARE ARCHITECT RECOMMENDATIONS

A. Identification Guided by Architect Recommendations

It is clear that nothing is worth the human expert to
understand software applications. However, companies aiming
to migrate their applications are often confronted with the
problem of turnover and the absence of these experts. Further-
more, when they are present, their cost makes the migration
process extremely expensive. This cost depends on the time
spent by the experts to realize/control the migration process.
Hence, clear evidences emerge regarding this process: 1) the
more automated this process is, the better it is, 2) the migration
process should use the knowledge of the experts, when they
are available and 3) specifying the recommendations should
not require neither a profound knowledge of the source code
nor an intensive intervention of the architect. Regarding the
last point, the required knowledge should be related, mainly,
to the use of the application.

While respecting these evidences, we defined a set of
recommendations (Fig. 3). The list of these recommendations
is specified to lighten the expert task as much as possible,
allowing to use its knowledge to enhance the quality of the
identified microservices while reducing its cost. Depending
on the availability of these recommendations, several types of
identification can be carried out.

In our approach, we decided to exploit the recommendations
presented in Fig. 3. There are two main ones: gravity centers
and number of microservices.

Fig. 3. The used recommendations of software architect

Why relying on gravity centers? in many cases, a microser-
vice is built around a class that constitutes its ”gravity center”.
It represents the functional core of the microservice (i.e., the
main class). Other classes revolve around this ”core” class to
constitute the complete implementation of the microservice.
This information, when available, is exploited to build mi-
croservices, where each center of gravity will be the starting
point to group the classes.

Why relying on the number of microservices? the granularity
of the microservices constituting the target architecture is
a determinant element of their relevance. Nevertheless, this
element is very dependent on the architect’s style (i.e., coarse
grains versus fine grains). For this reason, the granularity
can be very variable in the approaches based only on the

source code. Two pieces of information from the architect can
be indicators of this granularity: the number of classes per
microservice and the number of microservices in the target ar-
chitecture. We believe that defining the same number of classes
for all microservices goes against a partitioning that depends
on their quality (i.e., in the same architecture, it is not excluded
that some microservices can be relatively larger than others).
Giving the exact number of classes for each microservice
amounts to manually identifying them (i.e., against a semi-
automatic approach). Hence, the retained recommendation as
an indicator of the granularity of microservices is their number
in the target architecture.

B. Examples of Identification Based on Architect Recommen-
dations

In our approach, depending on the available recommenda-
tions, several identifications can be carried out. Due to space
limitations, only two examples will be presented.

1) Identification Based on the Entire Set of Gravity Centers:
to identify microservices based on the entire set of gravity
centers, the idea is to consider each gravity center as a
cluster. Then, the remaining classes of the OO application are
partitioned iteratively on these clusters based on their quality
evaluation. At each iteration, a remaining class is associated
to the cluster for which adding this class produces the highest
value of the quality function. In the end, the OO application
classes are partitioned into clusters. Each one of them contains
one gravity center. Algorithm 1 shows the presented clustering.

Algorithm 1: Clustering based on the entire set of gravity
centers

input : A set of gravity centers SGcenters

A set of remaining OO classes SRclasses

output: A set of clusters SClusters

1 for each class ∈ SGcenters do
2 let class be a cluster;
3 add cluster to SClusters;
4 end
5 for each class ∈ SRclasses do
6 for each cluster ∈ SClusters do
7 let tempCluster be a cluster containing all the classes

of cluster;
8 add class to tempCluster;
9 let quality be the quality function value of

tempCluster;
10 save the pair (quality,cluster);
11 end
12 let bestcluster be the cluster of the pair (quality,cluster)

such that quality is the highest value in all pairs;
13 add class to bestcluster;
14 end
15 return SClusters;

2) Identification Based on the Exact Number of Microser-
vices: to make use of the availability of the exact number
of microservices, our idea is to firstly identify microservices,
and then compose/decompose the identified ones to obtain



the exact number, while taking into account the quality of
the identified microservices. Thus, there are two steps: 1)
microservices identification, and 2) microservice composi-
tion/decomposition (Algorithm 2).

Algorithm 2: Clustering based on the exact number of
microservices

input : A number of microservices Nb
A set of OO classes SClasses

A dendrogram dendrogram
output: A set SClusters consisting of Nb cluster

1 let initialclusters be the identified clusters using the hierarchical
clustering algorithm;

2 if sizeOf(initialclusters) = Nb then
3 SClusters ← initialclusters;
4 else
5 if sizeOf(initialclusters) < Nb then
6 SClusters ←

decomposeMicro(Nb,initialclusters,dendrogram);
7 else
8 SClusters ←

composeMicro(Nb,initialclusters,dendrogram);
9 end

10 end
11 return SClusters;

Step 1: Microservices identification: to identify microservices,
a hierarchical clustering algorithm [17] is used.
Step 2: Microservices composition/decomposition: once the
microservices are identified, their number is compared to the
exact one:
• If they are equal, the identification is completed.
• If the number of identified microservice is lower than

the exact number, these microservices are decomposed.
The question is which ones should be decomposed? An
adequate answer to this question should take into account
the quality of the produced decomposition. Therefore,
our idea is to decompose a microservice at a time and
compute the sum of the quality function values for
the new set of microservices. The decomposition which
produces the best result is chosen. This step is repeated
as long as the number of microservices is lower then the
requested one.

• If the number of identified microservice is higher than
the requested one, instead of decomposing them, they are
composed until the exact number is obtained.

Composing/decomposing microservices this way allows us,
on the one hand, to obtain the exact number of microservices,
and on the other hand, produce a decomposition with the
highest quality function values.

V. EXPERIMENTATION AND VALIDATION

This section presents the conducted experiments on case
studies to validate qualitatively our identification approach of
microservices from OO applications. We start by presenting
the research questions that we have attempted to answer
empirically. We also present the experimental protocol of
the experiments carried out to answer the research questions.
Finally, we discuss the internal and external threats to validity
with respect to the conducted experiments.

A. Research Questions
To validate our proposal, we conducted two experiments to

answer the following research questions:
• RQ1: does the proposed quality function produce an

adequate decomposition of an OO application into mi-
croservices? Our approach partitions an OO application
into microservices based on the proposed quality function
and software architect recommendations, when available.
This question aims to check whether the defined function
enables obtaining relevant microservices without consid-
ering the recommendations of a software architect.

• RQ2: is the definition of the quality function, without
considering data autonomy, adequate? The goal behind
this research question is to check whether the assessment
of the characteristics ”focused on one function” and
”structural and behavioral autonomy” produce appropri-
ate microservices.

• RQ3: does the evaluation of data autonomy characteristic
enhance the quality of microservices? This question aims
to check whether the function FData related to the evalua-
tion of data autonomy characteristic allows improving the
quality of the identified microservices compared to those
identified only based on the assessment of ”focused on
one function” and ”structural and behavioral autonomy”
characteristics.

• RQ4: does the use of software architect recommendations
enhance the identification results? The goal behind this
research question is to check whether software architect
recommendations guide our approach to produce better
results.

• RQ5: what are the software architect recommendations
that generate the best decomposition of an OO application
into microservices? Since our approach uses several rec-
ommendations, this question aims to determine the ones
that produce the best results.

B. Experimental Protocol
Our experiments conducted to answer the previous research

questions are based on a prototype plug-in that we developed
in Java. It carries out the identification process defined in
our approach. This section presents the experimental protocols
followed to answer these questions based on a qualitative
evaluation of the identified microservices using our plug-in.

In order to answer the RQ1, we used our plug-in to partition
three Java applications, that will be presented in Section V-C1.
Since the goal of the RQ1 is to evaluate the correctness of
the proposed quality function, we set the plug-in to apply the
clustering algorithm that does not take as inputs any software
architect recommendations (i.e., fully automatic). Then, we
compared the produced microservices with those identified
manually. To carry out the manual identification, we analyzed
the source of these applications and thoroughly understood
their known features. Thus, we can be considered as their
experts. It is noteworthy that to avoid biasing the results,
we firstly partitioned these applications manually. Then, we
carried out the identification using our plug-in.



The protocol for answering the RQ2 is similar to the one
used to answer the RQ1 with only one difference: we set our
plug-in to identify microservices based on the sub-function
FStructureBehavior related only to the characteristics ”focused
on one function” and ”structural and behavioral autonomy”.

To answer the RQ3, we simply compare the recall values
obtained respectively from the experiment related to answering
the RQ1 and the RQ2.

The protocol for answering the RQ4 is based on comparing
the results generated by our identification approach using
the software architect recommendations (i.e., semi-automatic)
with those obtained without using them (i.e., fully automatic).
The results of the manual identification remain of course the
reference of confidence to calculate the distance between the
two modes of identification (i.e., fully automatic or semi-
automatic).

To answer the RQ5, we simply compare the identification
results using the different software architect recommendations
(i.e., entire set of gravity centers, sub-set of them, exact
number of microservices, interval of numbers, as well as a
combination of the exact number and a sub-set of gravity
centers). The recommendations that produce the most relevant
microservices are the best ones to guide the identification
process.

As explained earlier, to evaluate the produced microservices,
we compare them with those identified manually. Thus, we
classify the microservices obtained manually in three cate-
gories:
• Category 1: Excellent microservices: this category

includes the microservices that exactly match the ones
identified by our approach.

• Category 2: Good microservices: the microservices
that can be obtained by at most three composi-
tion/decomposition operations of the ones identified by
our approach are considered as good microservices.

• Category 3: Bad microservices: they are the ones that
are neither in the first nor the second categories.

C. Qualitative Evaluation

In this section, we firstly outline the Java applications used
to validate our approach qualitatively. After that, we present
the microservice identification results from these applications.
Finally, we interpret the obtained results.

1) Data Collection: to have a codebase for partitioning
OO applications into microservices, we collected several Java
projects from GitHub. These projects have different sizes:
small (FindSportMates1), average (SpringBlog2), and rela-
tively large (InventoryManagementSystem3). The source code
of these applications used in our experiment, as well as their
libraries, have been gathered in https://seafile.lirmm.fr/d/2bb
141de92c9420092b9/. Table I provides some metrics on these
applications.

1https://github.com/chihweil5/FindSportMates
2https://github.com/Raysmond/SpringBlog
3https://github.com/gtiwari333/java-inventory-management-system-swing

-hibernate-nepal

TABLE I
APPLICATIONS METRICS

Application
No of

classes/
interfaces

No of classes
representing

database tables

Code size
(LOC)

FindSportMates 17 2 895
SpringBlog 43 5 1617

InventoryManagement
System 104 19 13449

FindSportMates is an application which allows users to find
groups of people with whom they can play certain sports.
SpringBlog is a clean-design blog system implemented with
Spring Boot. InventoryManagementSystem is an application
that supports the main inventory management operations.

2) Microservices Identification Results: the source code of
each of the previous applications was partitioned into a set of
clusters. The results of classifying the identified microservices
based on our protocol are described in Table II and expressed
in term of recall in Table III. Recall assesses the ratio between
the number of excellent and good microservices to the number
of the manually identified ones.

3) Interpreting Results: firstly, the recall values related to
the results obtained based only on the quality function FMicro
(i.e., without architect recommendations) are equals to or
greater than 80% (80% and 100%). This shows that a large part
of the produced microservices are those identified manually.
However, for InventoryManagementSystem, the number of bad
microservices is relatively high (i.e., 4 bad microservices).
When analyzing results, we found out that usually, the bad
microservices are the ones containing utility classes. Manually,
we identified them as microservices because they participate
in the realization of several functionalities of InventoryMan-
agementSystem application. The utility classes generally do
not use each other’s methods or attributes. Moreover, they do
not manipulate any data. Therefore, our approach could not
identify them as microservices.

Secondly, the recall values obtained relying on the sub-
function FStructBeh are between 65% and 100% (65%, 70%,
and 100%). They are equal to or less than those obtained
based on the entire quality function FMicro. Nevertheless, they
remain high. An analysis of Table I allows us to understand
that the same values are related to FindSpotMates that does
not have many persistent data.

Thirdly, the recall values obtained using software architect
recommendations are higher than 80%. These values are
equal to or higher than those obtained without using software
architect recommendations. Furthermore, for SpringBlog and
InventoryManagementSystem, the highest values are produced
relying on software architect recommendations (100%). For
FindSportMates, the highest value is 100%. Nevertheless,
since this application is small, it was partitioned correctly with
and without software architect recommendations. Additionally,
by analyzing the results of Table III, we can see that precise
(i.e., exact number) and complete (i.e., entire set of gravity
centers) produce better results (i.e., higher recall values or
more excellent microservices). For instance, the recall values



TABLE II
MICROSERVICE CLASSIFICATION RESULTS

ApplicationsMicroservice identification findSportMates SpringBlog InventoryManagementSystem

Number of excellent
microservices 1 0 1

Number of good
microservices 2 8 15Based on FMicro

Number of bad
microservices 0 2 4

Number of excellent
microservices 0 0 0

Number of good
microservices 3 7 13

Automatic
identification

Based on FStructure
Bahavior

Number of bad
microservices 0 3 7

Number of excellent
microservices 1 2 5

Number of good
microservices 2 8 15Entire set

Number of bad
microservices 0 0 0

Number of excellent
microservices 0 1 5

Number of good
microservices 3 8 14

Gravity centers

Sub-set

Number of bad
microservices 0 1 1

Number of excellent
microservices 1 1 2

Number of good
microservices 2 7 15Exact

number

Number of bad
microservices 0 2 3

Number of excellent
microservices 0 0 1

Number of good
microservices 3 8 16

Number of
microservices

Interval of
number

Number of bad
microservices 0 2 3

Number of excellent
microservices 1 3 5

Number of good
microservices 2 6 14

Semi-automatic
identification

Exact number and a sub-set of
gravity centers

Number of bad
microservices 0 1 1

TABLE III
RECALL MEASUREMENT

Microservice identification
Recall

Find
Sport
Mates

Spring
Blog

Inventory
Mana-
gement
System

Automatic
identification

FMicro 100% 80% 80%
FStructureBehavior 100% 70% 65%

Semi-
automatic

identification

Gravity centers Entire set 100% 100% 100%
Sub-set 100% 90% 95%

Number of
microservices

Exact number 100% 80% 85%
Interval of

number 100% 80% 85%

Exact number and a sub-set
of gravity centers 100% 90% 95%

related to the results obtained from SpringBlog relying on
the exact number and interval of numbers are the same
(80%). However, the identification guided by the exact number
produced 1 excellent microservices and 7 good ones, whereas
the one guided by an interval of numbers produced 8 good
microservices.

Finally, the recall values obtained based on more recom-
mendations (i.e., entire-set of gravity centers, which imply
the availability of the number of microservices, or the exact
number and a sub-set of gravity centers) are equal or higher
than those obtained based on one recommendation (i.e., sub-
set of gravity center, exact number or interval of numbers).
Usually, when the values are the same, more recommenda-
tions produce a higher number of excellent microservices.
For instance, the identification results related to SpringBlog
application based on software architect recommendations can
be ordered as follows: 1) entire set of gravity centers (100%),
2) exact number and a sub-set of gravity centers (90% and
3 excellent microservices), 3) sub-set of gravity centers (90%
and 1 excellent microservices), 4) exact number (80% and 1
excellent microservice) and 5) interval of numbers (80% and
no excellent microservice). It is noteworthy that the identifi-
cation guided by the entire set of gravity centers produce the
best results for the three applications (100%).



D. Answers Based on the Qualitative Evaluation

based on the qualitative evaluation of the obtained results
by our approach, the research questions can be answered as
follows:

1) Since a large part of the identified microservices without
using the architect recommendations are those identified
manually, we answer the RQ1 as follows: the proposed
quality function produces an adequate decomposition of
an OO application into microservices.

2) Even though the obtained recall values based on FStruct-
Beh are equal to or lower than those produced by
FMicro, they still high. Therefore, we answer the RQ2
as follows: the definition of the quality function, without
considering data autonomy, is adequate.

3) The obtained recall values based on FMicro are equal
to or higher than those obtained relying on FStructBeh.
Moreover, the same values are related to the application
that does not have many persistent data. Hence, we
answer RQ3 as follows: the evaluation of data autonomy
characteristic enhance the quality of microservices.

4) The recall values obtained using software architect rec-
ommendations are equal to or higher than those obtained
without using them. Furthermore, the best results are
always produced relying on these recommendations.
Therefore, the answer to RQ4 is the following: the
use of software architect recommendations enhances the
identification results.

5) Since the best identification results are produced based
on the entire set of gravity centers, we answer RQ5
as follows: the software architect recommendations that
generate the best decomposition of an OO application
into microservices is the entire set of gravity centers.

E. Threats to Validity

1) Threats to Internal Validity: the proposed approach may
be affected by the following internal threats:
• Our decomposition of an OO application into microser-

vices realizes a partition of the classes. Therefore, each
class belongs to one and only one cluster. This may
not reflect the reality of some applications where some
classes may participate in the realization of several func-
tionalities. In this case, the results of the identification
could be negatively impacted. Nevertheless, this threat is
limited because it generally concerns only certain classes
that the architect can duplicate.

• We rely on a hierarchical clustering algorithm to partition
the classes of an OO application. This algorithm does not
allow to obtain optimal values of the quality function.
Indeed, some grouping choices may not be the best
considering the whole process of grouping and not just
the one at a given moment. Nevertheless, it makes it
possible to obtain values close to optimal ones because
it performs optimization at each clustering step.

2) Threats to External Validity: our approach could be
concerned with the following main external threats:

• The quality of the OO source code can impact the results
of the microservice identification. However, since our
quality function is a weighted aggregation of two sub-
functions (FStructBeh and FData), in the case of poor
quality code, the impact of this factor can be reduced by
lowering the coefficient weight of FStructBeh.

• To validate our approach, we manually identified refer-
ence microservices from the three applications presented
above, instead of relying on their experts due to their
unavailability. Nevertheless, since we carried out the
identification after analyzing the source code of these
applications, and understanding their main features, we
can be considered as their experts.

• The matching between the microservices that can be
obtained by our approach and those obtained manually
can vary according to the granularity of microservices
obtained by a manual identification.

• Our approach was experimented only on Java applica-
tions. To apply it on the ones implemented using other
languages, we have to adapt it to take into consideration
the specificities of these languages.

VI. CONCLUSION

The main contribution of this paper is the proposal of
an approach for the identification of microservices from OO
source code. The proposed approach is based mainly on two
types of information: the source code information and the
knowledge, often partial, of the architect concerning the sys-
tem to migrate. On the one hand, the source code information
includes relationships between its elements as well as their
relationships with the persistent data manipulated in this code.
In fact, source code information is used by a quality function
to evaluate the relevance of a candidate microservice. This
function was defined based on an analysis of microservice
characteristics. On the other hand, architect recommendations
are related, mainly, to the use of the applications. Our approach
proposes to identify microservices using a hierarchical cluster-
ing algorithm and architect recommendations when available.
The conducted experimentation shows the relevance of the
identified microservices by our approach. Nevertheless, these
results need to be consolidated by experimentations on other
applications, especially those of considerable size. To further
strengthen our validation, we intend to compare our approach
with state-of-the-art approaches. We plan also, inspired by
exiting works such as [11], to use a search-based algorithm
instead of a clustering one. A search-based algorithm could
treat microservice identification as a multi-objective problem,
where more than one objective (i.e., metric) can be simulta-
neously optimized. Moreover, to benefit from both clustering
and search-based algorithm, we intend to combine them [18].
Furthermore, we intend to use documentation, when available
and up-to-date, to guide the identification process [10]. Finally,
inspired by existing works [3, 4, 8], we want to propose an
approach to package the identified microservices and deploy
them in the cloud while taking into account the dynamic
reconfiguration.



REFERENCES

[1] ISO/IEC 25010:2011, systems and software engineering
- systems and software quality requirements and evalu-
ation (SQuaRE) - system and software quality models.
Technical report, British Standards Institution, 2013.

[2] Seza Adjoyan, Abdelhak-Djamel Seriai, and Anas Shat-
nawi. Service identification based on quality metrics -
object-oriented legacy system migration towards SOA. In
Marek Reformat, editor, The 26th International Confer-
ence on Software Engineering and Knowledge Engineer-
ing, Hyatt Regency, Vancouver, BC, Canada, July 1-3,
2013, pages 1–6. Knowledge Systems Institute Graduate
School, 2014.

[3] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tiber-
macine, Hinde-Lilia Bouziane, Christophe Dony, and
Anas Shatnawi. Migrating large object-oriented ap-
plications into component-based ones: instantiation and
inheritance transformation. In Christian Kästner and
Aniruddha S. Gokhale, editors, Proceedings of the 2015
ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE 2015,
Pittsburgh, PA, USA, October 26-27, 2015, pages 55–64.
ACM, 2015.

[4] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tiber-
macine, Hinde-Lilia Bouziane, Christophe Dony, and
Anas Shatnawi. Materializing architecture recovered
from object-oriented source code in component-based
languages. In Bedir Tekinerdogan, Uwe Zdun, and
Muhammad Ali Babar, editors, Software Architecture -
10th European Conference, ECSA 2016, Copenhagen,
Denmark, November 28 - December 2, 2016, Proceed-
ings, volume 9839 of Lecture Notes in Computer Science,
pages 309–325, 2016.

[5] Mohammad Javad Amiri. Object-aware identification of
microservices. In 2018 IEEE International Conference
on Services Computing, SCC 2018, San Francisco, CA,
USA, July 2-7, 2018, pages 253–256, 2018.

[6] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi,
Damian A. Tamburri, and Theo Lynn. Microservices
migration patterns. Softw., Pract. Exper., 48(11):2019–
2042, 2018.

[7] Luciano Baresi, Martin Garriga, and Alan De Renzis.
Microservices identification through interface analysis.
In Service-Oriented and Cloud Computing - 6th IFIP WG
2.14 European Conference, ESOCC 2017, Oslo, Norway,
September 27-29, 2017, Proceedings, pages 19–33, 2017.

[8] Gautier Bastide, Abdelhak Seriai, and Mourad Oussalah.
Adapting software components by structure fragmenta-
tion. In Proceedings of the 2006 ACM symposium on
Applied computing, pages 1751–1758. ACM, 2006.

[9] James M. Bieman and Byung-Kyoo Kang. Cohesion and
reuse in an object-oriented system. In ACM SIGSOFT
Symposium on Software Reusability (SSR), pages 259–
262, 1995.

[10] Sylvain Chardigny and Abdelhak Seriai. Software archi-

tecture recovery process based on object-oriented source
code and documentation. In Muhammad Ali Babar and
Ian Gorton, editors, Software Architecture, 4th European
Conference, ECSA 2010, Copenhagen, Denmark, August
23-26, 2010. Proceedings, volume 6285 of Lecture Notes
in Computer Science, pages 409–416. Springer, 2010.

[11] Sylvain Chardigny, Abdelhak Seriai, Mourad Ous-
salah, and Dalila Tamzalit. Search-based extraction
of component-based architecture from object-oriented
systems. In Ronald Morrison, Dharini Balasubrama-
niam, and Katrina E. Falkner, editors, Software Architec-
ture, Second European Conference, ECSA 2008, Paphos,
Cyprus, September 29 - October 1, 2008, Proceedings,
volume 5292 of Lecture Notes in Computer Science,
pages 322–325. Springer, 2008.

[12] Rui Chen, Shanshan Li, and Zheng Li. From monolith to
microservices: A dataflow-driven approach. In 24th Asia-
Pacific Software Engineering Conference, APSEC 2017,
Nanjing, China, December 4-8, 2017, pages 466–475.

[13] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-
Lafuente, Manuel Mazzara, Fabrizio Montesi, Ruslan
Mustafin, and Larisa Safina. Microservices: Yesterday,
today, and tomorrow. In Present and Ulterior Software
Engineering, pages 195–216. Springer, 2017.

[14] Michael Gysel, Lukas Kölbener, Wolfgang Giersche,
and Olaf Zimmermann. Service cutter: A systematic
approach to service decomposition. In Service-Oriented
and Cloud Computing - 5th IFIP WG 2.14 European
Conference, ESOCC 2016, Vienna, Austria, September
5-7, 2016, Proceedings, pages 185–200, 2016.

[15] Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui, and Yuan-
fang Cai. Functionality-oriented microservice extraction
based on execution trace clustering. In 2018 IEEE
International Conference on Web Services (ICWS 2018),
San Francisco, CA, USA, July 2-7, 2018, pages 211–218.

[16] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran
Mo, and Qinghua Zheng. Service candidate identification
from monolithic systems based on execution traces. IEEE
Transactions on Software Engineering, 2019.

[17] Stephen C Johnson. Hierarchical clustering schemes.
Psychometrika, 32(3):241–254, 1967.

[18] Selim Kebir, Abdelhak-Djamel Seriai, Allaoua Chaoui,
and Sylvain Chardigny. Comparing and combining
genetic and clustering algorithms for software component
identification from object-oriented code. In Bipin C. De-
sai, Emil Vassev, and Sudhir P. Mudur, editors, Fifth In-
ternational C* Conference on Computer Science & Soft-
ware Engineering, C3S2E ’12, Montreal, QC, Canada,
June 27-29, 2012, pages 1–8. ACM, 2012.

[19] Gabor Kecskemeti, Attila Csaba Marosi, and Attila
Kertész. The ENTICE approach to decompose mono-
lithic services into microservices. In International Con-
ference on High Performance Computing & Simulation
(HPCS 2016), Innsbruck, Austria, July 18-22, 2016,
pages 591–596, 2016.

[20] Alessandra Levcovitz, Ricardo Terra, and Marco Tulio



Valente. Towards a technique for extracting microser-
vices from monolithic enterprise systems. CoRR,
abs/1605.03175, 2016.

[21] James Lewis and Martin Fowler. Microservices: a
definition of this new architectural term, 2014. URL
https://martinfowler.com/articles/microservices.html.
Accessed: May 2019.

[22] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Ex-
traction of microservices from monolithic software ar-
chitectures. In IEEE International Conference on Web
Services (ICWS 2017), Honolulu, HI, USA, June 25-30,
2017, pages 524–531, 2017.

[23] Sam Newman. Building microservices: Designing fine-
grained systems, 1st Edition. O’Reilly, 2015. ISBN
9781491950357.

[24] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde-Lilia
Bouziane, Christophe Dony, and Rahina Oumarou Ma-
hamane. Re-architecting OO software into microservices
- A quality-centred approach. In Kyriakos Kritikos,
Pierluigi Plebani, and Flavio De Paoli, editors, Service-
Oriented and Cloud Computing - 7th IFIP WG 2.14 Eu-
ropean Conference, ESOCC 2018, Como, Italy, Septem-
ber 12-14, 2018, Proceedings, volume 11116 of Lecture
Notes in Computer Science, pages 65–73. Springer, 2018.

[25] Sourabh Sharma. Mastering Microservices with Java.
Packt Publishing Limited, 2016. ISBN 978-1785285172.

[26] Sourabh Sharma, Rajech RV, and David Gonzalez. Mi-
croservices: Building scalable software. Packt Publish-
ing, 2017. ISBN 1787280985.

[27] Rod Stephens. Beginning software engineering. Wrox,
2015. ISBN 978-1118969144.

View publication stats

https://www.researchgate.net/publication/341696485

