
Continuous API Evolution in Heterogenous
Enterprise Software Systems
Holger Knoche

Software Engineering Group
Kiel University
Kiel, Germany

hkn@informatik.uni-kiel.de

Wilhelm Hasselbring
Software Engineering Group

Kiel University
Kiel, Germany

wha@informatik.uni-kiel.de

Abstract—The ability to independently deploy parts of a
software system is one of the cornerstones of modern software
development, and allows for these parts to evolve independently
and at different speeds.

A major challenge of such independent deployment, however,
is to ensure that despite their individual evolution, the interfaces
between interacting parts remain compatible. This is especially
important for enterprise software systems, which are often highly
integrated and based on heterogenous IT infrastructures.

Although several approaches for interface evolution have been
proposed, many of these rely on the developer to adhere to certain
rules, but provide little guidance for doing so. In this paper, we
present an approach for interface evolution that is easy to use for
developers, and also addresses typical challenges of heterogenous
enterprise software, especially legacy system integration.

I. INTRODUCTION

Many modern approaches to software engineering and delivery
rely on the ability to deploy parts of a software system inde-
pendently of each other. For instance, Newman [1] highlights
independent deployability as one of the key advantages of
microservices. Practices like Continous Delivery [2], which
aim at fast feedback from production to development, would
be impossible to implement without this ability.

In recent years, we have observed that also more conser-
vative companies, such as banks and insurance companies,
have begun to embrace such practices for their internal soft-
ware systems [3], in particular for migrating legacy systems
towards microservices [4]. There are several reasons for this
development; in our case study from the insurance domain,
which we will present later on in further detail, the key drivers
are the desire to shorten the time-to-market, implement agile
practices, and allow applications to evolve at different speeds.

However, said applications are often highly integrated, and
interact with each other in complex ways. One of the key
challenges is therefore to ensure that the applications remain
compatible with each other at all times, even when they are
independently deployed. Furthermore, some of these applica-
tions are several decades old and based on aged technologies
or platforms. For such applications, libraries and utilities that
are commonplace on modern platforms may not be available.
Therefore, approaches are needed that can be implemented
even on dated implementation platforms with acceptable effort.

In this paper, we present an approach that allows to
continuously evolve the interfaces of a software application
while ensuring the compatiblity with dependent applications.
In particular, we aim to address the following goals:

1) The approach should be easy to use for the developers,
and help to avoid common mistakes

2) The approach should have as little impact as possible on
the developer’s day-to-day work

3) The approach must also support aged implementation
technologies and platforms

4) The runtime performance impact of the approach must
be acceptable

The remainder of this paper is structured as follows. In
Section II, we introduce the case study that motivated this
work. An evolution example is given in Section III. Existing
approaches to API evolution are discussed in Section IV.
Our approach, which constitutes the main contribution of
this paper, is presented in Section V, and a short evaluation
is described in Section VI. Related work is discussed in
Section VII, and Section VIII concludes the paper.

II. CASE STUDY

The underlying case study for this work is the core insurance
software system of a German insurance company. The soft-
ware system has in large parts been developed by the company
itself, and consists of more than 30 individual, but highly
integrated applications. Development of the first applications
started in the 1970s in COBOL on mainframe computers, and
even today, the vast majority of the codebase (about 14 million
lines of code) is COBOL code. In the early 2000s, Java EE
was adopted as a new implementation platform, and newer
applications have been developed solely in Java. As of today,
these applications amount to about 2 million lines of code.

In order to establish cross-platform standards, the company
adopted Model-Driven Software Development (MDSD) [5] in
the 2000s. A considerable amount of code is generated for
both Java and COBOL, which is not included in the previous
figures. In particular, code for invoking COBOL services from
Java and vice-versa is fully generated. Modeling is currently
performed with a graphical, UML-based modeling tool.

The majority of the COBOL programs is still run on
mainframe computers, both in traditional batch processing

ar
X

iv
:2

10
3.

11
39

7v
1

 [
cs

.S
E

]
 2

1
M

ar
 2

02
1

as well as interactive applications. The remaining COBOL
programs run on Linux servers. Java EE applications are run
on traditional Java application servers; some components are
also deployed within an OSGi container on the mainframe.

The current release process mostly follows a traditional
waterfall model with one major release every three months.
As a consequence, it usually takes several months to ship a
new feature into production. It should be noted that most of
these applications are only used by professional users, who
strongly prefer a stable environment to work in. Therefore, a
high rate of change is not necessarily desirable in this setting.

However, the current process is particularly cumbersome
for changes that need to be implemented at a specific point
in time, such as legal requirements. Such changes are quite
common in the financial services industry. Obviously, such a
change needs to be part of the last release before the target
date, and is therefore usually subject to a considerably higher
delay. This can be challenging with requirements that come at
short notice.

Furthermore, it has been observed that the applications
evolve at different speeds. On the one hand, there are very
mature applications that change seldomly, but irregularly, e.g.,
to keep up with changes in regulations. Other applications,
on the other hand, need to evolve frequently. The fixed
release schedule does not really match the needs of both these
application types, and frequently causes friction.

In order to address these issues, it was decided to move
towards a more flexible release model, and, in particular, to
enable the individual applications to be deployed indepen-
dently. However, while the underlying technology platforms
provide facilities for dynamic re-deployment, the applications
themselves are currently too tightly coupled to allow for
independent evolution.

There are two major reasons for this tight coupling. The
first is due to the fact that COBOL programs operate on
“bare” memory, and therefore require all data to conform to
an exact memory layout to function properly. Although this
largely also applies to other languages such as C, COBOL
lacks language features (such as user-defined functions) to
properly abstract from this layout. Furthermore, all data fields
(including character strings and tables) have static sizes in
COBOL.1 As a consequence, even changing the length of a
string field breaks the memory layout and thus requires to
recompile and redeploy all affected programs.

The second reason results from the way code generation
is currently handled. As previously mentioned, client access
code is generated automatically. This code generation is part
of the provider build, and the resulting artifacts are published
as libraries for use by the clients. While this approach is
convenient for the developers, it leads to a significant sharing
of code between applications. Such sharing can (and, often
enough, does) cause problems, especially when two embedded
libraries rely on incompatible versions of a third library.

1There are some exceptions, such as unbounded tables. However, to our
knowledge, these features are seldomly used in practice.

III. A SIMPLE EVOLUTION EXAMPLE

In order to better illustrate our context of evolution, consider
a simple example. Note that, for the sake of brevity, we omit
common attributes like IDs.

An application that manages customer data provides an
API consisting of two types, as depicted in Figure 1a: The
Customer type consists of the customer’s first and last name,
its gender, and its postal address. The latter is modeled by the
second type, Address, that represents a typical street address
(street name, number, city name, and postal code). As the API
was inspired by an old (i.e., pre-Java 5) Java class structure,
the customer’s gender is modeled as an integer instead of an
enumeration. The API provides two service operations. One
inserts or updates a customer with given data (“upsert”), and
the other formats an address according to the rules prescribed
by the local postage service.

Due to requests from client applications, the following
changes are made to the API:

1) Field Addition: The customer’s date of birth, which is
already present in the existing data, is added to the
Customer type.

2) Field Renaming: As customers may have secondary
addresses, a new list field secondaryAddresses is
added to the Customer type. As part of this change,
the address field is renamed to primaryAddress.

3) Type Change: A Gender enumeration is created, and
the type of the field gender is changed accordingly.

4) New Enum Constant: A third gender is added to the
Gender enumeration.

5) New Specialization: Support for P.O. box addresses
is added. These consist of a box number, a postal
code, and a city name. Therefore, the former Address
type is renamed to StreetAddress, a new type
POBoxAddress is created, and the common fields are
moved to a common a supertype Address.

The resulting API is shown in Figure 1b. In the following sec-
tion, we will investigate how these changes could be realized
using the state of the art, and highlight the shortcomings we
intend to address.

IV. API EVOLUTION

A. API Evolution Concepts and Patterns

The main goal of API evolution is to apply changes to
APIs without breaking the clients, i.e., the clients can remain
unchanged and will still work as intended. A fundamental
pattern to allow for such changes is the tolerant reader pattern
[6]. The core idea of this pattern is that an application (reader)
that receives data from another application (writer) does not
require the data to exactly match its expectation, but tolerates
certain deviations. For example, additional data fields can
usually be simply and safely ignored by the reader.

In order to identify such additional fields, however, the
reader requires knowledge about the underlying schema of
the data, such as field names. Therefore, data formats with
embedded field names are commonly used, e.g., XML or

«service»
ExampleService

upsert(customer: Customer): Customer
formatAddress(Address address): string

Address
street: string
number: integer
postalCode: integer
city: string

Customer
firstName: string
lastName: string
gender: integer

address

(a) Initial API model

POBoxAddress
boxNo: integer

StreetAddress
street: string
number: integer

«enum»
Gender

MALE
FEMALE
THIRD

«abstract»
Address

postalCode: integer
city: String

Customer
firstName: string
lastName: string
dateOfBirth: string
gender: Gender

secondaryAddresses
0..n

primaryAddress

(b) Evolved API model

Fig. 1: UML model of the evolution example

JSON. And dynamic query facilities like XPath provide conve-
nient options for creating tolerant readers. However, the field
names make these data formats quite verbose. This has led to
more optimized formats like Apache Avro, which is described
below.

While tolerant readers allow for the safe addition of new
fields by a writer, additional measures are required to support
other changes, such as renaming a field. In such cases, the
tolerant reader can be complemented by a magnanimous
writer, i.e., a writer that provides more data than necessary. For
instance, a renamed field can be written both under its new and
its old name, and since the readers ignore unexpected fields,
neither old nor new readers break.

Deletions of fields or type changes are more difficult.
Mandatory fields cannot be deleted as long as there are
still readers that expect them. Type changes would require
to write two different values under the same name. As a
consequence, these changes cannot be addressed by tolerant
readers and magnanimous writers alone, but require more
elaborate evolution patterns. A selection of common patterns
is described in [7]. In the following paragraphs, we refer to
these unless noted otherwise.

A common strategy to address potentially breaking changes
like field deletions is to introduce version identifiers, often
based on semantic versioning.2 Semantic versioning expects
that a version number is of the form major.minor.patch, where
the major version number is incremented if and only if an
incompatible (i.e., breaking) change is made.

To make use of versioning, each client must provide the
identifier of the desired API version when initiating an in-
teraction with a provider. Different approaches for accessing
specific API versions are employed in practice, e.g., specific
URLs or custom HTTP headers [8]. It is then the provider’s
responsibility to proceed according to the given version, or
to refuse the interaction if it is unable to do so. Obviously,
a provider must support at least two, sometimes even more
(Pattern Two in Production or N in Production, respectively),

2https://semver.org

versions concurrently for a certain amount of time to avoid
breaking clients.

Supporting multiple versions concurrently can be tedious.
Therefore, providers try to keep the number of such versions
low. A common pattern is to give a Limited Lifetime Guaran-
tee, which means that already upon publication, the provider
announces until when this particular version will be supported.
A slightly different approach is Aggressive Obsolescence.
Here, the provider declares an API as deprecated at a time
of his own choosing (e.g., when a new version becomes
available), and gives the clients a sufficient grace time to
migrate to a supported version.

Such processes cannot be reliably managed without tool
support. Registries keep track of published APIs and manage
their life cycles [9]. Furthermore, such registries may provide
additional functionality like usage monitoring for operations
as well as monetarization.

B. Evolvability in Existing RPC Implementations

After establishing the basic patterns for API evolution, we
now proceed to investigate how evolution is supported in
two common RPC implementations. We chose Apache Thrift
because its evolution capabilities are well documented, and
Avro due to its dynamic schema matching, which was a major
inspiration for our approach.

1) Apache Thrift: Originally created at Facebook, Apache
Thrift3 is a cross-platform RPC framework that supports
numerous target languages. Thrift APIs are built from five
major elements:

• Base types, such as binary integers or character strings,
• Structures composed of fields with types defined within

the API,
• Containers, such as lists or sets,
• Services, which describe the operations provided by the

API in terms of the defined types, and
• Exception types, which are effectively structures repre-

senting an error

3https://thrift.apache.org/

https://semver.org
https://thrift.apache.org/

Thrift provides an own interface definition language (IDL)
to specify APIs. From such an API specification, a code
generator produces the required source code artifacts for
serializing and deserializing data.

Thrift’s evolution capabilities are discussed in [10]. They
are based on field identifiers and type specifiers: At code
generation time, each field receives a unique numeric id that is
encoded along with its according type specifier and the actual
value. Although field identifiers can be assigned automatically,
it is considered good practice to specify them explicitly.

The use of field identifiers makes Thrift definitions resilient
to name changes and field reordering. The type specifier
ensures that the type of each encoded value is always known,
even (and especially) for unexpected fields. This, together with
the fact that all types in Thrift are encoded in a self-delimiting
way, allows to skip unexpected fields without error.

With respect to our evolution example, Thrift supports the
field addition (Change 1) and the renaming (Change 2) very
well. This includes a non-obvious detail of the field addition
due to the request-response communication. As the field is
added to a type that is used as an input parameter, the provider
must not expect this field to be supplied, as older clients are
not aware of it. To account for this, Thrift fields are, by default,
optional for input (opt-in), i.e., they are optional for the client,
but mandatory for the provider.

The type change (Change 3) must be implemented by
adding a new field with a different name. Additional enum
members can be freely added; readers treat unknown values
as if no value had been provided at all.

Thrift provides no immediate support for inheritance, but
it can be emulated by means of unions. Unions in Thrift are
special records with multiple fields, only one of which has a
value. As the entire construct needs to be manually emulated,
there is no particular support for Change 5.

2) Apache Avro: Apache Avro4 is a data serialization
system that was originally developed in the context of Apache
Hadoop, a platform for large-volume batch data processing.
Although primary a serialization system, Avro also specifies
an RPC protocol.

Avro is particularly interesting for evolution as it employs
dynamic schema resolution. Unlike Thrift (and many other
such frameworks), Avro does not rely on generating code from
a common IDL definition; it only requires that both reader
and writer have compatible schemas. The Avro RPC protocol
contains a handshake mechanism so that client and provider
can agree on schemas before invoking a procedure.

Serializing and deserializing in Avro roughly works as
follows. The writer serializes the input using its own schema,
and supplies the schema definition (or a reference to it) along
with the serialized output. The reader then resolves its own
schema against the writer’s schema, identifying potentially
matching elements by name. Schema evolution is enabled by
allowing certain deviations between the two schemas [11]. For
instance, a reader may specify alias names for writer fields,

4http://avro.apache.org

and certain types can be promoted (e.g., int can be promoted
to long).

The result of the schema resolution is essentially a partial
mapping from the writer’s schema to the reader’s schema.
This mapping is then applied to transform the data, which is
deserialized using the writer’s schema, to match the reader’s
expectations.

This schema resolution has three important consequences.
First, it removes the need to embed field identifiers in the
actual payload data (“untagged data”) and can therefore be
applied to a wider variety of data formats. Second, it allows
for provider and client schemas to be specified independently,
as long as they are sufficiently compatible. Third, the explicit
client schema enables the provider to deliver the data accord-
ing to the needs of the client. This is crucial for contexts
where rigid and predefined data formats must be used, such
as COBOL programs. Therefore, our approach uses a very
similar mechanism that only provides additional features to
account for the static nature of COBOL.

It is apparent from the aforementioned examples that Avro’s
evolution capabilities primarily facilitate backwards compat-
ibility, i.e., enable a newer reader to read data written by
an older writer. To actually achieve backward or forward
compatibility, certain rules must be actively followed by the
developer, such as not adding or removing fields without
default values [12].

As for our evolution example, Avro supports the field
addition (Change 1) in a way similar to Thrift. However, the
new field needs to be explicitly specified as optional, since
Avro does not provide an equivalent concept to Thrift’s opt-in.
The name change (Change 2) is partially supported by aliases.
But as these are only applied when reading, the (unchanged)
client may not have an appropriate alias when reading the
response. The type change (Change 3) also needs a new field
in Avro; but Change 4 requires the new enum to specify an
explicit default value that is used in case of an unexpected
value. Similar to Thrift, there is no inheritance mechanism in
Avro, but again, it can be emulated with union types.

Avro is extensively used in stream processing platforms
such as Confluent or Apache Pulsar.5 As such platforms
distribute immutable data, they match Avro’s reader-writer
model very well. In order to keep readers and writers com-
patible, both Confluent and Pulsar provide a schema registry,
which manages the life cycle of the schemas and is capable
of detecting (and possibly rejecting) changes that break the
desired level of compatibility.67

C. Summary

In conclusion, several of the changes of our example are
already quite well supported by existing implementations.
But especially more complex operations like type changes
must be performed manually, which is potentially error-prone.

5http://pulsar.apache.org/
6https://docs.confluent.io/platform/current/schema-registry/avro.html
7https://pulsar.apache.org/docs/en/schema-evolution-compatibility/

http://avro.apache.org
http://pulsar.apache.org/
https://docs.confluent.io/platform/current/schema-registry/avro.html

record Customer {
string firstName
string lastName
string dateOfBirth
Address primaryAddress replaces address
Address* secondaryAddresses
Gender gender as genderNew

}

Fig. 2: Example provider API definition with evolution

Furthermore, when using semantic versioning, it is the de-
veloper’s responsibility to manually identify breaking changes
and adjust the version number accordingly. This is, however,
far from trivial, especially in complex APIs. In practice, while
semantic versioning is more and more adopted, it has been
found that breaking changes are commonly introduced also in
minor and patch revisions [13].

V. OUR APPROACH TO API EVOLUTION

A. Overview

The central idea of our approach is not to have schemas
explicitly modeled by the developer (or API designer), but
to derive these as well as the internal representations from a
set of supported API definitions. These definitions always exist
as part of a revision history. Thus, we always have access to
adjacent revisions (provided that they exist), and are able to
specify evolution steps from the previous revision directly in
the API definition. This way, we can – at least to a large extent
– automatically ensure that the required rules are followed, and
do not need to burden the developer with them.

To illustrate the general approach, consider the example
shown in Figure 2; the definition language is described in
more detail later on. In the example, we see an excerpt from
an API definition representing the first three changes to the
Customer type in our running evolution example.

First, recall that in its initial state, the Customer type
had four fields, namely firstName, lastName, address,
and gender. The latter was modelled as an integer. The
first two fields still exist with the same name and the same
type, and are therefore considered to be the same fields. The
dateOfBirth field is identified as a new field, since no
matching field exists in the previous revision (Change 1). Sim-
ilarly, the primaryAddress and secondaryAddress
fields do not have a match; however, the replaces clause
reveals primaryAddress to be the same field as address
from the previous revision (Change 2). The gender field does
exist in the previous revision, but with a different type (note
that due to the same name, no explicit replaces clause is
required). Therefore, it is considered a type change, resulting
in an implicit deletion of the previous field and the creation
of a new one, but with the same name (Change 3).

The type change requires special treatment by the provider
code. As long as not all clients have updated to the respective

record Customer as Person {
string firstName
string lastName as familyName
integer gender
}

Fig. 3: Example client API definition

revision, the provider must be able to handle the old field
as well as the new field. Therefore, the provider-internal
representation of the type, e.g., the corresponding Java class,
must contain both fields, although only one of them will be
provided by or returned to a given client. To avoid name
clashes in the internal representation, the as clause allows
us to provide an internal name of our choice. This internal
name is, of course, not part of the external API. By always
assigning new internal names to new fields, we can minimize
the required changes to existing code. In the given example,
the old gender field will remain almost unchanged in the
internal representation. It will, however, become optional, as
newer clients will no longer provide it.

On the client side, we also use an explicit API definition,
albeit more simple. Client API definitions are not revisioned;
instead, they always refer to a specific provider API revision.
Therefore, they cannot contain replaces clauses. Mapping
public to internal names, however, is also possible in client
definitions. This way, we can prevent name changes from
trickling into the client code. An excerpt of an example client
API definition is shown in Figure 3.

The process of invoking a service can be summarized as
follows. First, the client encodes the request data according to
a schema derived from its local API definition. The definition
itself, or at least a reference to it, is passed along with the
data. The provider then matches the client definition against
the referenced revision; a process similar to Avro’s schema
resolution. It then proceeds to decode the given data using the
schema derived from the client’s definition, and transforms
it into the appropriate internal representation. After returning
from the service operation, this process is done in reverse
order. By using the client’s definition to encode the result, we
ensure that the response can be processed by the client.

Before looking into the details of the approach, we take a
quick glance at Changes 4 and 5 of our running example. We
support both adding new enum members and sibling types, but
these changes cannot be handled fully transparently. Because
both introduce new, valid values that cannot be represented in
earlier API revisions, but at existing locations. For instance, a
new member in an existing enumeration (Change 4) can occur
at any existing field of this type. The addition of the new
address type (Change 5) is similar: Although the provider still
supports the old primaryAddress field, it may be unable
to determine a valid value, since a customer may now choose a
POBoxAddress as its primary address. Therefore, an explicit
treatment of unrepresentable values is required.

Fig. 4: Revision history with supported revisions

As discussed in the previous section, explicit API versioning
is usually employed for breaking changes such as the removal
of a field. We take a different approach: Each change (set) to an
API definition leads to a new revision, whether breaking or not.
The revisions are stored in an API registry. The provider then
selects a set of supported revisions from the revision history,
and our approach derives the necessary structures to support
these revisions. As a consequence, removing a field in a new
revision does not mean that the field is removed immediately,
but represents the intent to remove this field. While clients
aware of the new revision will never receive it, the provider
is still required to support the field until the last revision
containing it is removed from the supported revision set. To
support this process, the registry also keeps track of client
definitions. The supported set approach allows to combine
the previously presented lifecycle patterns in various ways.
Consider, for instance, the situation depicted in Figure 4. In
this example, the provider supports all new revisions for six
months (revisions r4 to r6), and additionally provides long-
term support for revision r2.

The central elements of this approach and their connections
are summarized in Figure 5. Selected elements of the approach
are described in detail in the following paragraphs.

B. The API Description Language

The first aspect of our approach that we will describe in more
detail is the specification of API definitions. Similar to Thrift
definitions and Avro protocols, an API definition consists of
a number of service operations, together with a description of
their input and output types.

An overview of the grammar of our API definition language,
which we already used in the previous examples, is given in
Figure 6. Note that for the sake of brevity, we do not give
definitions for some non-terminals that are obvious or will
become obvious by the examples below. An API definition
consists of a number of user-defined types (i.e., record types
and enumeration types) and services.

Enumeration types consist only of named values; unlike, for
instance, Java enumerations, we do not support fields on mem-
bers of an enumeration. Record types comprise named fields
of arbitrary types, as described below. In order to facilitate
modeling records with common fields, such as the addresses
in the running example, a simple inheritance mechanism exists
on record types. However, no overloading is supported. Record
types can be declared abstract or given an optionality

modifier, which serves as the default for the fields declared
within the type. The optionality modifier is inherited to the
record’s subtypes, but can be overridden by them.

Fields of a record can be of a user-defined type, a basic
type (currently 32-bit binary integers, numeric strings and
regular character strings), or an ordered list type. To account
for languages like COBOL, all types are either bounded by
construction (e.g., int32, records, or enums), or can be
given explicit bounds, such as string(5) for a string of
at most length 5 or string(5)[10] for a list of at most 10
strings of at most length 5.8 An optionality modifier can be
defined for each field, which can be either optional (the
field is optional for both in- and output), optin (the field is
optional for input, but mandatory for output) or mandatory.
If no optionality is specified, the containing type’s default
optionality is used.

Services essentially serve as named containers for service
operations. Each service operation has one record type as its
input type, and one record type as its output type. It may
furthermore throw exceptions, where an exception type is a
record type that is restricted to be used only at this location.

Public and Internal Names: Every user-defined type,
field, service, and service operation must have a public name,
which is used for schema generation and matching. An addi-
tion, each such element can be assigned an internal name by
means of an as clause, which is only used for the internal
representation. While the public name must only be unique
within the respective scope of the current API definition, the
internal name must be unique in all supported revisions. If no
explicit internal name is specified, the public name is used.

Replacement Clauses: All of the previously described
elements can be used in both client and provider API defi-
nitions. An element exclusive to provider API definitions is
the replaces clause. Such a clause may be added to any
element with a public name, and denotes the element in the
previous revision that should be considered as the predecessor
of the given element. In most cases, this element is identified
only by its name; in the case of fields, this name may be
further qualified by a type name. If no explicit replacement
is given, but a matching element of the same name exists
in the previous revision, it is implicitly assumed to be the
predecessor. This can be suppressed by the specifying that
the given element replaces nothing. The semantics of
replacement are discussed in detail in the following section.

C. API Evolution

The fundamental means for evolving APIs in our approach is
to establish relations between the elements of consecutive API
revisions using the replacement clauses of our API definition
language. In total, this results in five relations, namely one on
types, fields, enum members, services, and service operations.
These relations define which elements are considered to be
the same across revisions, and play a key role in transforming

8Note that the different types of brackets are required for syntactic
unambiguity.

Client Schema Client-Internal
Representation

Client API
Definition

Provider-Internal
Representation Provider Schema

Supported Revision
Set

Provider API
Definition

Revision History API Registry

matched against
1 1

refers to
1 0..*

represents
1..*

represents

derived from
1

1

1
derived from

1

0..*
manages

derived from
1

0..1

◄ predecessor
successor ►

0..1
0..1

derived from
1

1

selects
1..*

«ordered»
contains
0..*

manages
0..*

Fig. 5: Core elements of the approach

ApiDefinition: api QualifiedName {
(UserDefinedTypeOrService)*

}

UserDefinedTypeOrService: EnumType | RecordType | Service

RecordType: (RecordModifier)* record Identifier (extends
Identifier)? (ReplacesClause)? (AsClause)? {

(Field)*
}

RecordModifier: abstract | one of: optional, optin,
mandatory

ReplacesClause: replaces (Identifier | nothing)

AsClause: as Identifier

Field: (FieldModifier)? TypeRef Identifier (FieldReplacesClause)?
(AsClause)?

FieldModifier: optional | optin | mandatory

FieldReplacesClause: replaces (QualifiedFieldName (,
QualifiedFieldName)* | nothing)

QualifiedFieldName: Identifier (. Identifier)?

TypeRef : BasicType | ListType | Identifier

BasicType: int32 | numeric ((IntegerLiteral))? | string ((
IntegerLiteral))?

ListType: TypeRef (* | [IntegerLiteral])

EnumType: enum Identifier (ReplacesClause)? (AsClause)? {
(EnumMember)*

}

EnumMember: Identifier (ReplacesClause)?

Service: service Identifier (ReplacesClause)? (AsClause)? {
(ServiceOperation)*

}

ServiceOperation: RecordType Identifier (RecordType)
(ReplacesClause)? (AsClause)? throws Exception (, Exception)*

Exception: (abstract)? exception Identifier (extends
Identifier)? (ReplacesClause)? (AsClause)? {

(Field)*
}

Fig. 6: Grammar overview of the API definition language

representations. Unrelated elements from the “old” revision
are considered deleted, and unrelated elements from the “new”
revision are considered added. In order for the transformations
to work, we require these relations to be injective partial
functions. The reason for this requirement is given in the
section on representation transformation below. Therefore, we
must ensure that no two elements share the same predecessor.

Unless explicitly suppressed, we assume that two elements
from consecutive revisions are related if they have the same
name and are compatible (implicit replacement). To be com-
patible, the elements must be of the same kind (e.g., record

type, enum type, or service). For fields, we furthermore require
the field’s type to be related, and for service operations, both
the input and the output type must be related. Anonymous
types, such as lists, are considered related if their referenced
types are related. Furthermore, we require bounds on bounded
types to match. If an explicit replacement is specified, the
element with the given name is assumed instead, and the same
rules for compatiblity apply.

To allow for type changes, replacements for fields and
service operations may also refer to elements that are incom-
patible with respect to types. These elements, however, are

not related. Therefore, this results in the removal of the old
and the addition of the new element, possibly under the same
name. To further illustrate these rules, several examples are
given in Table I.

The inheritance mechanism of record and exception types
provides additional options for evolution. Fields may be pulled
up or pushed down along the inheritance hierarchy. However,
we deliberately do not support changing an existing supertype
of a type. While simple on the schema level, this type of
change makes the internal representation and thus the pro-
gramming model significantly more complex.

Before we discuss these changes in detail, we need to take
a quick look at the semantics of inheritance in our approach.
As previously noted, our inheritance mechanism only provides
basic subtyping, and facilitates the modeling of structures with
common fields. Internally, each subtype receives an individual
copy of each inherited field, and the supertype is replaced
by a union type consisting of all possible subtypes. If the
supertype is not abstract, it is added to the union as well. This
interpretation greatly facilitates handling inheritance-related
evolution, as shown below.

Recall from the running example that in the last change, a
new sibling type to the street address was created, and that
the common attributes were moved to a new supertype. This
change is best modeled by declaring StreetAddress as the
successor to Address, and then pulling up the fields to the
new supertype PostalAddress. We deliberately allow to
pull up fields that are not present in all subtypes (otherwise, we
would first have to publish a revision with POBoxAddress
having them), but this requires us to explicitly specify the type
from which we are pulling. We also allow to pull up multiple
fields into one, as long as they have the same type.

As opposed to pulling up, a field to be pushed down is
uniquely determined by its name. But in order to clearly
separate a push-down from a simple replacement, we have
chosen to require the field to be qualified with the respective
supertype’s name. A field can be pushed down to multiple
subtypes, for instance, if it should remain in two of three
possible types. This is the only case in which it is legal to
specify two successors to the same element.

Due to our interpretation of inheritance, these changes
are not in conflict with our requirement of the predecessor
relations being injective functions. Especially pushing down a
field to multiple subtypes appears to be a problem, but as each
of the types has an individual instance of this field, these types
are, in fact, unchanged. The field is only removed from fields
that no longer inherit it. Conversely, pulling a field up only
causes some types to receive a new field. Several examples of
such evolution steps are shown in Table II.

D. Schemas and Internal Representations

The API definition serves as the foundation of the schemas
and internal representations for both clients and providers.

Schema derivation works exactly the same for clients and
providers. The process is very straight-forward, and is com-
pletely oblivious of the revision history. We use a schema that

is very similar to Avro’s, the only (but – at least for COBOL –
key) difference is the support for bounded lists and base types.
Conversely, if no bounded types are required, our approach can
be easily adapted to Avro schemas.

Deriving the internal representation is considerably more
complex, especially for the provider. This is due to the fact that
the provider’s internal representation must be able to represent
the entire supported revision set at the same time. The client
internal representation is essentially a provider representation
derived from a singleton revision set.

In order to be able to represent the entire supported revision
set, the internal representation must essentially be a union
of all revisions in the set. Depending on the capablities of
the target language and the desired programming model, the
precise algorithm differs slightly.

The rough outline is as follows. First, all types and ser-
vices from the latest supported revision are added using their
internal names, including their respective sub-elements. For
each previous supported revision, all elements are added to
the internal representation that do not have a successor in the
next supported revision, i.e., have been deleted afterwards.9

Elements that do have a successor are merged, in particular:
• If the newer revision of a type does not contain a field

present in the earlier revision, the field is added
• If the optionality of a field differs between revisions, the

more permissive one is used
• If the exceptions of a service method differ, the union of

both methods is used
For target languages that support it, it may furthermore be

desirable to actually use inheritance for the internal represen-
tation. In such cases, a type must additionally be concrete if
at least one of its supported revisions is concrete.

Obviously, the resulting internal representation contains
every type, field, service, and service operation present in any
of the supported revisions. Note that all elements are based on
their latest revision, e.g., will have their latest internal name.
Furthermore, the optionality of fields is chosen permissive
enough for all revisions.

E. Schema Matching and Representation Transformation

As described in the overview, we employ schema matching
similar to Avro’s to decouple clients and providers as much as
possible. All matching and converting is done by the provider,
so that the client can remain unchanged.

Schema elements are matched by name and must be of
the same type; type promotion is not supported. Since each
client API definition is only matched against the specific
provider revision it refers to, no precautions against renaming
are necessary. After decoding the request data using the client
schema, the resulting mapping from the schema matching is
used to associate the decoded values with the appropriate
types and fields of the provider schema. These, in turn,
allow to identify the corresponding elements in the internal
representation (e.g., the field to store the value in). As the

9Recall that the supported revision set does not need to be contiguous.

Previous revision Current Revision Description
record A { record B replaces A { Record type A is renamed to B
string a string d replaces a Field a in A is renamed to d
int32 b numeric(5) b Type change for b from int32 to numeric(5)

} int32 c replaces b Error, multiple replacements for b
string y replaces x Error, x does not exist in A
string z New field z

}
record X { Type X is deleted
string x

}

TABLE I: Examples for valid and invalid evolution steps

Previous revision Current Revision Description
abstract record A { abstract record A {
string a string a2 replaces B.b, C.c Pull-up of b and c into A

} string a3 replaces B.b2, C.c2 Error, types do not match
record B extends A { }
string b record B extends A
string b2 string b3 replaces A.a Push-down of a into B

} }
record C extends A { record C extends A {
string c string c3 replaces A.a Push-down of a into C
int32 c2 String c Error, multiple successors for c

} }

TABLE II: Examples for valid and invalid evolution steps with inheritance

internal representation is always based on the latest revision
of an element, but the match may involve an older revision
(e.g., referring to an outdated internal name), this may require
to navigate the successors of the respective element until the
latest revision is found.

To encode the result from the internal representation, the
process is performed the other way. In particular, the pre-
decessor relation may be required to associate the internal
revision with the appropriate elements of the schema. It is this
bidirectional mapping that requires the predecessor relation to
be an injective partial function. Encoding the data is again
performed using the client schema to ensure that the data is
returned exactly as the client expects them.

VI. EVALUATION

In order to assess the general feasibility of our approach, we
conducted a short evaluation with respect to the goals stated
in the introduction. To address Goals 1 and 2, we conducted a
small survey with nine professional developers from our case
study. We particularly selected participants that had several
years of professional experience. The participants were given
a presentation of the approach in small groups, and were
asked to fill out a short questionnaire afterwards. Four of the
respondents reported to use only Java in their everyday work,
four both Java and COBOL, and one Java and JavaScript.

Regarding Goal 1, we asked the respondents to rate their
agreement to three statements on a seven-point scale, ranging
from “fully disagree” (encoded as -3) to “fully agree” (+3).

All participants agreed to the statement that the approach
is comprehensible (fully agree: 4 / 5 / 0 / neutral: 0 / 0
/ 0 / fully disagree: 0; median: 2). The statement that the
approach addresses a relevant problem was also agreed to, but

was apparently seen quite differently among the participants.
While four participants fully agreed to this statement, three
participants chose the neutral option (4 / 1 / 1 / 3 / 0 / 0 / 0;
median: 2). The participants were furthermore asked whether
they could envision applying the approach in their everyday
work, and whether it supported the types of changes they
needed. These statements were also generally agreed to (1
/ 4 / 2 / 2 / 0 / 0 / 0; median: 2) and (2 / 1 / 3 / 2 / 1 / 0 / 0;
median: 1), respectively.

Regarding Goal 2, we were particularly interested in iden-
tifying aspects of the approach that might negatively affect a
developer’s day-to-day work. Overall, handling the potentially
large number of optional fields in the provider code raised the
greatest concern among the participants, with 6 participants
agreeing to some degree to the statement that this might
impede their everyday work (0 / 1 / 4 / 3 / 0 / 1 / 0; median:
1). Creating and maintaining client schemas also led to some
concern, but the respondents were mainly indifferent (0 / 0 /
1 / 4 / 1 / 2 / 0; median: 0). Maintaining the provider histories
(0 / 1 / 0 / 3 / 2 / 2 / 1; median: -1) and explicitly publishing
them to a repository (0 / 0 / 1 / 1 / 2 / 3 / 2; median: -2) were
not considered as notable impediments.

The respondents were furthermore able to add remarks in an
open text field. The most frequent remark was that a facility
for highlighting semantic changes might be useful to make
clients more aware of such changes.

We see the greatest threats to the validity of this survey in
the size and structure of the sample, the sampling method, and
potential biases. Due to the small sample size and the fact that
all participants work for the same company, the results may
not be generalizable. Several biases may result from the fact

that the participants were selected by the researchers, and that
one of the researchers, besides his research, works for the same
company. Therefore, the responses may be unduly favorable
of the approach.

Despite these threats, we conclude that there is a strong
indication that the approach is considered applicable in prac-
tice, although further research is necessary to support this
indication. As for Goal 2, the survey revealed no show-
stoppers, but suggests that future work should also focus on
programming patterns and tooling to efficiently handle the
additional complexity for the provider.

To address Goals 3 and 4, we created a proof-of-concept
implementation of our approach. This implementation con-
sisted of three components: One containing the API defini-
tion language and the schema resolution mechanism, and a
runtime component for both Java and COBOL for performing
the actual data conversions. Since published API definitions
are immutable, schema resolution is a one-time operation.
Therefore, the impact on runtime performance is determined
by the conversion components.

In our experiments, we focused on two scenarios most
relevant to our case study, namely remote invocations be-
tween Java applications and in-process calls between COBOL
programs. For Java, we used reflection-based decoders and
encoders to convert the serialized client data directly into the
provider’s internal representation and vice versa. A simple
binary format was used for serialization. In our experiments,
the performance of our converters was comparable to that
of the JSON libraries Jackson and Yasson. For instance,
converting a Customer object from client revision 1 to
provider revision 6 and back took, on average, 1.67µs using
our converters, while serializing and deserializing the object
took 1.1µs with Jackson and 4.4µs with Yasson.

For our COBOL experiments, we created a converter pro-
gram in C to serve as a proxy between two interacting COBOL
programs and convert parameters and results as needed. The
transformations themselves were defined using a simple byte-
code, which can by generated dynamically, and interpreted by
the C program. Although these conversions were considerably
faster than the ones from our Java experiment, it must be noted
that this is truly additional overhead, as COBOL parameters
are usually just passed by reference.

Our proof-of-concept implementation suggests that our ap-
proach is indeed applicable to aged technologies like COBOL.
However, it may have a considerable performance impact due
to additional overhead. For remote communication, this is of
less concern, since the conversions can be efficiently integrated
into the necessary serializations and deserializations.

VII. RELATED WORK

Evolving software as well as their data and artifacts in a
compatible way is a major challenge, and a large body of
research exists on various aspects of this topic. The reasons
for and challenges of API evolution have been investigated in
multiple studies. For instance, Dig and Johnson [14] report that
the majority of breaking changes are caused inadvertedly by

refactorings, and conclude that tool support is required to en-
sure compatibility with clients. Research focused particularly
on the evolution of public Web APIs reaches different conclu-
sions. While Fokaefs et al. [15] find that mostly compatible
changes such as field additions are made, other studies report
that client application developers suffer considerably from
non-standardized or even no procedures for API evolution
[16] and poor documentation and communication of changes
[17]. Wang et al. [18] observe that, in particular, the addition
or removal of methods leads to many questions by client
developers on Q&A sites like StackOverflow.

One of the central aspects of our approach, namely de-
riving schemas and representations from modifications of
API definitions, is closely related to co-evolution or coupled
evolution. A co-evolution approach that also uses traceability
information from models to derive transformations on derived
data is describe in [19]. The authors present an approach for
specifying changes to an entity model, and use the traceability
information to derive database migrations reflecting these
changes. Wagelaar et al. [20] propose a virtual machine for
executing transformation bytecode, which is a similar notion
to the generic transformer for COBOL.

Compatible evolution has also been studied for binary
artifacts. The primary goal of binary compatibility is to allow
that a newer version of, say, a library can be dynamically
linked with a program that was compiled against an older
version of this library. For instance, a compiler may statically
embed indexes of the virtual method table within the object
code of a derived class. If a new virtual method is added to the
superclass, these stored indexes may become invalid, therefore
breaking binary compatibility [21].

Most modern programming languages provide information
about the changes that do and do not preserve binary com-
patibility. The Java Language Specification [22], for instance,
contains an entire chapter on this topic.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach for continuous
API evolution for enterprise software systems in order to
support the independent deployability of single applications.
As shown by the proof-of-concept implementation, this ap-
proach is indeed viable and satisfies the goals described at
the beginning of this paper. Although it would certainly be
possible to add more powerful evolution mechanisms, we
decided to aim for an approach that is both easy-to-use and
easy-to-understand for a developer.

In our future work, we plan to extend this approach in
several ways. First, we intend to address the findings and
limitations of our evaluation. Besides more sophisticated im-
plementations, this includes tooling for managing, querying,
and editing revision histories, and a more in-depth exploration
of the resulting programming model. Further opportunities
for research include a more formal treatment of the API
definition language and their underlying evolution semantics
as well as the introduction of such concepts into existing API
specifications like OpenAPI.

REFERENCES

[1] S. Newman, Monolith to Microservices – Evolutionary Patterns to
Transform Your Monolith. Sebastopol, CA: O’Reilly, 2020.

[2] J. Humble and D. Farley, Continuous Delivery. Upper Saddle River,
NJ: Addison-Wesley, 2011.

[3] H. Knoche and W. Hasselbring, “Drivers and Barriers for Microservice
Adoption – A Survey among Professionals in Germany,” Enterprise
Modelling and Information Systems Architectures (EMISAJ) – Interna-
tional Journal of Conceptual Modeling, vol. 14, no. 1, pp. 1–35, 2019.

[4] ——, “Using Microservices for Legacy Software Modernization,” IEEE
Software, vol. 35, no. 3, pp. 44–49, May 2018.

[5] T. Stahl and M. Völter, Model-Driven Software Development – Technol-
ogy, Engineering, Management. Chichester: Wiley, 2006.

[6] R. Daigneau, Service Design Patterns – Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Upper Saddle River, NJ:
Addison-Wesley, 2012.

[7] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun, and M. Stocker,
“Interface evolution patterns: Balancing compatibility and extensibility
across service life cycles,” in Proceedings of the 24th European Con-
ference on Pattern Languages of Programs. New York, NY, USA:
Association for Computing Machinery, 2019.

[8] P. Sturgeon, Build APIs You Won’t Hate. Leanpub, 2016.
[9] M. Medjaoui, E. Wilde, R. Mitra, and M. Amundsen, Continuous API

Management. Sebastopol, CA: O’Reilly, 2019.
[10] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable Cross-

Language Services Implementation,” Facebook, Tech. Rep., 2007.
[11] R. Blue and D. Cutting. (2020) Apache Avro 1.10.1 Specification.

[Online]. Available: https://avro.apache.org/docs/1.10.1/spec.html
[12] M. Kleppmann, Designing Data-Intensive Applications. Sebastopol,

CA: O’Reilly, 2017.
[13] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic Versioning

versus Breaking Changes: A Study of the Maven Repository,” in 2014

IEEE 14th International Working Conference on Source Code Analysis
and Manipulation, 2014.

[14] D. Dig and R. Johnson, “How do APIs evolve? A Story of Refactoring,”
Journal of Software Maintenance and Evolution: Research and Practice,
vol. 18, no. 2, 2006.

[15] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An
Empirical Study on Web Service Evolution,” in 2011 IEEE International
Conference on Web Services, 2011.

[16] T. Espinha, A. Zaidman, and H. Gross, “Web API growing pains: Stories
from client developers and their code,” in 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE), 2014.

[17] S. M. Sohan, C. Anslow, and F. Maurer, “A Case Study of Web API
Evolution,” in 2015 IEEE World Congress on Services, 2015.

[18] S. Wang, I. Keivanloo, and Y. Zou, “How Do Developers React to
RESTful API Evolution?” in Service-Oriented Computing. Springer,
2014.

[19] S. Vermolen and E. Visser, “Heterogeneous Coupled Evolution of
Software Languages,” in Model Driven Engineering Languages and
Systems”. Springer, 2008.

[20] D. Wagelaar, L. Iovino, D. Di Ruscio, and A. Pierantonio, “Transla-
tional Semantics of a Co-evolution Specific Language with the EMF
Transformation Virtual Machine,” in Theory and Practice of Model
Transformations. Springer, 2012.

[21] I. R. Forman, M. H. Conner, S. H. Danforth, and L. K. Raper,
“Release-to-Release Binary Compatibility in SOM,” in Proceedings of
the Tenth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications, 1995.

[22] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, D. Smith,
and G. Bierman. (2020) The Java Language Specification, Java SE
15 Edition. [Online]. Available: https://docs.oracle.com/javase/specs/jls/
se15/jls15.pdf

https://avro.apache.org/docs/1.10.1/spec.html
https://docs.oracle.com/javase/specs/jls/se15/jls15.pdf
https://docs.oracle.com/javase/specs/jls/se15/jls15.pdf

	I Introduction
	II Case Study
	III A Simple Evolution Example
	IV API Evolution
	IV-A API Evolution Concepts and Patterns
	IV-B Evolvability in Existing RPC Implementations
	IV-B1 Apache Thrift
	IV-B2 Apache Avro

	IV-C Summary

	V Our Approach to API Evolution
	V-A Overview
	V-B The API Description Language
	V-C API Evolution
	V-D Schemas and Internal Representations
	V-E Schema Matching and Representation Transformation

	VI Evaluation
	VII Related Work
	VIII Conclusions and Future Work
	References

