
ar
X

iv
:2

30
9.

14
17

5v
1 

 [
cs

.S
E

] 
 2

5 
Se

p 
20

23

The Influence of Cognitive Biases on Architectural

Technical Debt

Klara Borowa, Andrzej Zalewski, Szymon Kijas

Warsaw University of Technology

Institute of Control and Computation Engineering

Warsaw, Poland

klara.borowa@pw.edu.pl, a.zalewski@ia.pw.edu.pl, szymon.kijas@pw.edu.pl

Abstract—Cognitive biases exert a significant influence on
human thinking and decision-making. In order to identify how
they influence the occurrence of architectural technical debt,
a series of semi-structured interviews with software architects
was performed. The results show which classes of architectural
technical debt originate from cognitive biases, and reveal the
antecedents of technical debt items (classes) through biases. This
way, we analysed how and when cognitive biases lead to the
creation of technical debt. We also identified a set of debiasing
techniques that can be used in order to prevent the negative
influence of cognitive biases. The observations of the role of
organisational culture in the avoidance of inadvertent technical
debt throw a new light on that issue.

Index Terms—Software Architecture, Cognitive Bias, Techni-
cal Debt, Architectural Technical Debt, Architectural Decision-
Making

I. INTRODUCTION

Technical debt is a metaphor first introduced by Cun-

ningham [1] in order to explain the need of refactoring to

non-technical stakeholders. It represents experiences that are

common to many contemporary software system developers.

Namely, the need to compromise between software quality

(esp. internal) and other non-technical requirements, such as

time-to-release/market. Despite the intense research under-

taken to date, the mechanics of the process by which software

technical debt arises is still far from being fully explained.

This hinders the development and application of systematic

technical debt management approaches.

The main factors that produce the above research challenge

are:

• the substantial variety of types of technical debt (testing

[2], source code [3], architectural [4], etc.);

• the variety of factors that contribute to the creation of

technical debt [5] [3];

• the social and psychological nature of the phenomenon

of technical debt [6] and

• the intrinsic complexity of the mechanisms underlying

the creation of technical debt, resulting from its nature.

Technical debt, whether taken on deliberately or inadver-

tently, is always rooted in human thinking and/or its limi-

tations. Cognitive biases are an important factor that shape

human thinking and decision-making [7], often distorting its

results, making decisions diverge from those fully rational

ones. As a result, it is important and necessary to analyse

the influences of cognitive bias on the emergence of technical

debt, as this aids an understanding of how technical debt

arises, and leads to the development of efficient management

strategies.

This paper presents our research on the influence of cog-

nitive biases on the occurrence of architectural technical debt

(ATD). It was focused on the following research questions:

• RQ1. Do cognitive biases influence the occurrence of

architectural technical debt?

• RQ2. Which cognitive biases have an impact on archi-

tectural technical debt?

• RQ3. Which architectural technical debt items are most

frequently affected by cognitive biases?

• RQ4. What are the antecedents of a harmful influence of

cognitive biases on architectural technical debt?

• RQ5. What debiasing techniques can be used to minimise

the negative effects of cognitive biases?

In order to answer the above questions, we performed

semi-structured interviews with 12 architect-practitioners and

analysed their outcomes. Detailed information on the research

methods can be found in Section III, which is preceded by

an overview of the current state of research in Section II. The

research outcomes are presented in Section IV and discussed

in Section V. The threats to validity are discussed in Section

VI and the outcomes summary and further research outlook is

presented in Section VII.

II. RELATED WORK

Cognitive biases, originally observed by Kahneman and

Tversky [8], [9], are a phenomenon inherent to the human

mind. They are rooted in the duality of the human reasoning

process – according to Kahneman and Tversky – there are two

systems responsible problem resolution that exist and operate

within human mind. System 1, which is responsible for quick

intuitive decisions based on a limited scope of information.

System 2, which is suited for logical and fully rational

reasoning on the basis on a broader set of information. System

2 is invoked consciously whenever we analyse and rationally

resolve problems. If we do not consciously and carefully

consider our decisions (i.e. by employing rational thinking of

System 2), System 1 will draw premature conclusions that will

http://arxiv.org/abs/2309.14175v1


not get corrected by System 2. In such case, we can say that a

cognitive bias has influenced our reasoning and its outcomes.

The possible influence of cognitive biases on Software

Engineering has been already a topic of interest for researchers

for over two decades [10]. Cognitive biases may possibly influ-

ence any Software Engineering activity [7], be it requirements

engineering [11], design [12], development [13] or testing

[14]. Architecture decision-making [15] is also not excluded

from the impact of cognitive biases [16], [17], [18].

The core thesis of this paper, whereby cognitive biases,

by distorting the decision-making process, may contribute to

taking on technical debt, is at an early stage of research. Only

papers [13], [6] [5] indicate that such an influence is possible,

though there have been no detailed investigations on this topic.

Technical debt has been a topic of extensive study in the

recent years. It has resulted in a huge number of papers,

including systematic literature reviews [19], [20], [21] and

even a tertiary study [22] summarising the state of research

on technical debt.

Architectural technical debt (ATD) is the type of TD that

occurs as a result of sub-optimal architectural decisions [23].

ATD can be especially dangerous since it may hinder the

development of future software features [24]. According to

Ernst et al. [25] – ”architectural issues are the greatest source

of technical debt.” The purpose of this paper is to expand the

existing knowledge of how architectural technical debt arises

by analysing how cognitive biases contribute to its emergence.

III. RESEARCH METHOD

A. Cognitive biases

The number of cognitive biases that possibly can have an

influence on software development is vast [7]. As it is not

feasible to analyse every cognitive bias in a single study, we

decided to focus on the biases listed as the most relevant

for architecture decision-making in the exploratory work of

Zalewski et al. [18]. In this work, the researchers attempted to

elicit which cognitive biases have the most significant impact

on architecture decision-making. These are:

• The framing effect – the tendency to judge information

and make decisions based on the how the data is pre-

sented [26].

• Confirmation bias – this effect influences individuals that

have a strong belief they do not want disconfirmed. As

such, they search only for information confirming this

belief, and ignore any proof that they may be in the wrong

[27].

• Anchoring bias – This bias occurs when one’s judgement

is strongly influenced by the first piece of information

given to them. [28] Thus, it often results in individuals

having an irrational preference for the first solution/idea

that they came up with or heard about from someone else.

• Curse of knowledge bias – this cognitive bias manifests

itself in experts that consider part of their knowledge as

obvious, which then results in miscommunication when

they interact with other people [29].

• IKEA effect bias – is the irrational preference for solutions

that have been at least partially developed (or assembled)

by ourselves [30].

• Parkinson’s Law of triviality bias– when a dispropor-

tionately large amount of time and effort is put into

performing trivial tasks and solving trivial problems [31].

• Pro-innovation bias – the assumption that innovation is

a value in itself. Which means that new solutions should

always be adopted everywhere, as soon as possible [32].

• Planning fallacy bias – the tendency to underestimate the

time necessary to complete a given task [33].

• Bandwagon effect bias – the desire to ”join the crowd”

and do what others do [34]. This means that popularity

becomes the main factor taken into account when choos-

ing between options.

• Irrational escalation bias – the irrational impulse to

continue wasting resources on an investment that is not

cost-effective [35].

• Law of the instrument bias – sometimes referred to as

the ”law of the hammer” since when you own a hammer,

everything seems to be a nail [36]. This law states that

we tend to overuse tools and solutions that we already

own or are familiar with.

• Optimism bias – the unjustified belief that in our case, in

the same scenario, we are more likely to obtain a positive

outcome than others [37]. This effect makes individuals

more liable to make risky decisions, despite evidence that

it may not be reasonable.

B. Architectural Debt items

Having prepared a list of biases worth exploring, we also

had to specify the kinds of architectural technical debt to

be researched. There are different approaches to categorising

ATD [38], [39], but for this purpose we decided to use the

architectural technical debt items defined by Verdecchia et al.

[5] as the most commonly occurring. We hoped that, since this

categorisation emerged from gathering data during interviews,

it will also be easily understood by our participants. Those

items [5] include:

• Re-inventing the Wheel – which manifests itself when

we use a self-developed component rather than a stable,

verified one that is easily available.

• New Context, Old Architecture – which occurs when not

enough effort is put into keeping the evolution of the

architecture appropriate for its context.

• The Minimum Viable Product (MVP) that stuck – which

appears when software that was hurriedly developed for

a simple temporary solution ends up becoming part of

larger system that is still evolving. Architectural gaps of

the MVP solution are inherited by the system.

• The Workaround that stayed – which appears when

a temporary workaround is used in order to sidestep

architectural constraints. However, it becomes deeply

ingrained in the system and is never removed.



• Architectural Lock-in – which occurs when a component

is so deeply embedded into the system that replacing it

would be extremely expensive or even unworkable.

• Source Code architectural technical debt – a type of ATD

that has its source solely in the implementation of the

solution.

C. Research procedure

The research method assumed in this paper follows the

guidelines for case studies in software engineering by Runeson

et al. [40]. In order to investigate the influence of cognitive

biases on the occurrence of architectural technical debt, we

decided to carry out an empirical enquiry based on a set of

semi-structured interviews with software architecting practi-

tioners.

The general outline of the interview process that we devel-

oped for the purpose of this study, and employed during each

of the twelve interviews with architects, was as follows:

1) The interviewer asked the participant for their consent

to record the interview and to use the acquired data for

research purposes.

2) The researcher obtained statistical data about the partic-

ipant (age, gender, years of experience, position, com-

pany size/domain).

3) The interviewer introduced the participant to the topic

of technical debt and our research.

4) The participant was provided with the definition of each

architectural debt item. Then they were asked if they

had ever encountered this type of technical debt and, if

so, whether they could describe their experience with it.

This is the part of the interview in which the participants

had the freedom to provide any information that they

wanted and believed to be relevant.

5) The interviewer asked the subject if they had any other

experiences with technical debt that they had not men-

tioned yet.

We did not suggest, either before or during the interviews,

that cognitive biases may influence technical debt. The par-

ticipants were informed in advance that we were researching

reasons for the occurrence of technical debt, but we could

not disclose which reasons we were researching, in order to

avoid influencing their answers. After the interviews, if the

participant was interested, we disclosed information about our

research on cognitive biases. In some cases, this resulted in

obtaining additional insights, which were written down for

further analysis.

Almost all of the interviews were conducted in Polish, with

the exception of No. 7, conducted in English.

D. Study participants

In order to find architects-practitioners, we created an ad-

vertisement which we propagated using our private networks.

Most of the participants currently work as architects, though

some also had prior architecting positions and now worked

as leaders/managers/company owners. We also interviewed

one software developer, which provided us with a valuable

distinct point of view. The overall data about the participants

is summarised in Table I.

E. Analysis Procedure

Having obtained the raw data from the interviews, we

performed the analysis in the following steps.

1) The recorded interviews were transcribed.

2) We created a coding scheme for analysing the data, using

the guidelines of Runeson et al. [40]. This codes are

presented in Table II.

3) Each of the authors encoded the transcripts indepen-

dently.

4) Using the negotiated agreement [41] approach, we dis-

cussed the coding and incrementally corrected it until

we reached unanimity.

5) The following metrics were extracted from the tran-

scripts: the number of cases of cognitive bias mentioned

by the participants, occurrences of architectural debt,

cases of cognitive biases influencing architectural tech-

nical debt. Those are presented in Tables III, IV and V

in Section IV.

6) The factors influencing cognitive bias as well as the

debiasing methods mentioned by participants were ex-

tracted. They are presented in Section IV.

7) The notes from the interviewer were analysed, in search

of any additional data that should be taken into consid-

eration while drawing the conclusions.

8) The results were discussed and conclusions drawn in a

discussion between the authors.

IV. RESULTS

A. Architectural debt items influenced by cognitive biases

The participants provided us with accounts about their

previous projects, in which various architectural debt items

could often be observed simultaneously. While analysing the

interview transcripts and interviewer notes, we identified 70

specific occurrences of architectural technical debt items, the

exact number of occurrences of each ATD item is shown in

Table III.

Despite providing the participants with the definitions of

architectural technical debt and the specific architectural debt

items, they often mentioned situations that were not cases of

architectural technical debt, or which fit the definition of a

different technical debt item. A common mistake was the false

belief that the use of an old technology is synonymous with

technical debt, which does not have to be the case.

The most commonly occurring ATD item was ”New Con-

text, Old Architecture”. This specific kind of technical debt

appears naturally, by itself, over time, if not enough effort is

given to periodically update, upgrade, change or refactor the

architecture. This classical problem has already been described

in one of Lehman’s laws of software evolution [42], which

says that at some point of time, perpetually evolving systems

reach a threshold when it is no longer cost-effective to evolve

further without carrying out a major system’s reconstruction.



TABLE I
PARTICIPANT DATA

No. Age Gender Experience (years) Position Company size (employees) Company domain

1 29 M 5 Software Developer over 10 000 Electronics
2 31 M 10 Architect around 2 000 E-commerce
3 54 M 35 Chief Operating Officer around 1 500 High tech
4 37 M 13 Executive consultant around 50 Systems integrator
5 39 M 17 Head of Architects around 350 Finance
6 49 M 26 Architect around 350 Finance
7 37 M 16 Consultant over 10 000 Enterprise Software
8 45 M 21 Chief of Architects around 250 Systems integrator
9 36 M 15 Founder and Chief Technology Officer around 35 Software

10 37 F 15 Architect around 5 000 Telecom
11 40 M 15 Senior Solution Architect over 10 000 Enterprise Software
12 37 M 12 Team Leader over 10 000 Electronics

TABLE II
QUALITATIVE ANALYSIS CODES

Code category Code Definition

Cognitive Bias CB: [bias name] Occurrence of one of the cognitive biases from the list in Section III
Architectural technical debt occur-
rence

ATD: [item type] Occurrence of technical debt, which can be classified into one of the architectural
technical debt items mentioned in Section III. This code was to be used only in cases
when the participant gave a real-life example of a technical debt occurrence.

Architectural technical debt occur-
rence

ATD: Other Unclassified occurrence of architectural technical debt

Architectural technical debt occur-
rence influenced by a cognitive bias

CB influencing ATD:
[note]

Cases when a cognitive bias directly resulted in the creation of technical debt. The note
should contain details of which bias influenced what kind of technical debt items and
how.

Cognitive bias influencing factor CB antecedent: [note] Antecedents of the appearance of cognitive biases. Note should contain a further
description.

Debasing methods Debiasing: [note] Information about interventions that were suggested or performed by the participants,
which could result in a debasing effect.

TABLE III
TECHNICAL DEBT OCCURRENCES MENTIONED BY PARTICIPANTS

Architectural technical debt item Appearances

New Context, Old Architecture 17
Source Code ATD 13

The Workaround that stayed 12
Architectural Lock-in 10

Re-inventing the Wheel 8
The Minimum Viable Product that stuck 6

Other (4 different types of ATD) 4

Many of our participants observed, that this moment often

passes unnoticed.

We found several instances of technical debt that did not

exactly fit any of the categories of ATD items specified by

Verdecchia et al. [5]. These technical debt items are:

• Choosing an obsolete solution that should not be used

in the current circumstances at the start of the project.

Participant No 5 explained that in his company, decision-

makers only consider aged solutions as ”safe enough” to

be used.

• Reusing a component in a setting, in which it does not fit

the given problem. Participant No 1 told us how one of

his colleagues focused on using readily-made solutions so

much, that it resulted in choosing a solution completely

unsuitable for their problem.

• Using a proven architectural solution in a new context,

in which it is not suitable. Participant No 4 explained

a situation in which they had to deal with data on

the client’s customers, for which they used a readily-

made component that integrated all the aspects of every

customer’s data. The problem appeared when it turned

out that not all the customers wanted to have all of their

data connected to a single account, since they may want

to create many accounts for various purposes.

• Transfer of organisational debt onto architectural techni-

cal debt. Organisational debt occurs when key decisions

(such as writing down contracts, defining strategies or

assigning responsibilities) are not made in time. This, in

turn, may affect key design decisions, which have to be

made with incomplete data about the problem at hand.

Participant No. 3 gave us an example of a situation when

a state-owned system had to be deployed before certain

key political decisions were made. This resulted in the

need to redo the basic components of the system.

We did not observe a correlation between the participants’

experience, position or their company’s domain and the

number of ATD items they observed. An interesting case of

this came from participants Nos 5 and 6. Both worked in

the same organisation, No 5 had nine years of experience

less than No 6, but participant No 5 gave us nine examples

of ATD item occurrences, while participant No 6 mentioned



only two.

B. Cognitive biases that influence ATD items

By analysing the transcripts and interviewer notes, we found

155 occurrences of cognitive biases. The exact numbers for

each bias are shown in Table IV. It was not unusual for many

biases to influence a single ATD item, which often occurs

consecutively in a cascade of irrational decisions, such as:

• A decision-maker heard that a specific technology is

popular, which led him to believe that it may be useful

in his case (Bandwagon effect)

• He met with a salesman of this specific solution, who

only informed him about the beneficial aspects of the

solution, which persuaded him to buy it (Framing effect)

• Despite the disadvantages of this solution, it was used

simply because it had already been paid for (Irrational

escalation)

• Which led to an ”Architectural Lock-in” because this

component was so specific and deeply embedded in the

system that it turned out extremely difficult to replace.

In our analysis we took into account not only the biases of the

architects and developers, but also those that influenced other

stakeholders involved in the development and maintenance

process – such as the management and the clients.

Most of the biases mentioned as possibly crucial in the work

of Zalewski et al. [18] had a notable influence on ATD. An

exception here is Parkinson’s law of triviality. This specific

bias may impact the time spent on certain tasks, but it does

not seem to significantly change the final outcomes, and so

has little magnitude when it comes to causing ATD.

TABLE IV
COGNITIVE BIASES PRESENT IN THE PARTICIPANTS’ ACCOUNTS

Cognitive bias Appearances

Anchoring 24
Bandwagon effect 8
Confirmation bias 19

Curse of knowledge 14
IKEA effect 14

Irrational escalation 11
Law of the instrument 10

Optimism bias 20
Parkinson’s Law of triviality 2

Planning fallacy 10
Pro-innovation bias 13
The framing effect 10

C. Influence of cognitive biases on ATD items

In this Section we discuss in-depth how particular ATD

items were impacted by cognitive biases. Table V presents the

exact number of times that a certain cognitive bias influenced

particular ATD items. The data contained in this table does

not add up to the data from Table IV and Table III, because a

specific bias occurrence may have influenced a single ATD

item more than once, and one ATD item may have been

influenced by more than one cognitive bias.

If the influence of a particular bias on a specific ATD item

was reported at least three times, we explored thoroughly the

relationship between that bias and the ATD item.

1) New Context, Old Architecture

The significant impact of cognitive biases on archi-

tectural technical debt can be clearly observed when

researching the causes of this ADT item.

Four participants experienced a situation when a solution

was chosen simply because it was the first possible one

that came to notice (anchoring), and even though it

was not cost-effective and did not enable the further

evolution of the product, resources were persistently

being wasted on it (irrational escalation).

Participant No. 1 for example, was involved in a project

where an open source solution was chosen to create a

simple dashboard for the end user. Unfortunately, as

the solution evolved and expanded, the source code

of this component had to be forked. Ultimately, the

participant’s team introduced an enormous amount of

changes and became the maintainer of this newly created

solution. This increased the team’s workload with the

maintenance efforts.

Too often, a component was used after the support for

it had expired, which either left the component without

maintenance or forced the client to take the path of

expensive, dedicated individual support. Participant No.

11 told us about a few cases of systems made for

the public sector, when his clients needed this kind of

individual maintenance. This could have been prevented

by properly preparing for the time when this problem

was bound to occur, but often no such precautions

are taken, and decisions are made without long-term

planning.

In general, it seems that the decision to start from scratch

with completely new architecture is made reluctantly.

This hesitancy can be motivated by many cognitive

biases: the IKEA effect when the old solution was made

by the decision-maker’s organisation (participant No. 9

called a product his ”precious business baby”), or the

optimism bias which may make the decision-makers

believe that no harm may come to them (for example,

when using a system that is not maintained properly).

2) Source Code ATD Source code ATD is most often

influenced by anchoring. When solving a problem, the

very basic, satisficing approach is widely present. Citing

participant No. 11 – ”If something stupid works, then it

is not stupid.” This is especially apparent in organisa-

tions in which decisions on how to implement certain

components are left entirely to individual developers

whose ideas are never challenged. This was the case

in an example provided by participant No. 2, who had

the displeasure of ”inheriting” a completely unscalable

solution, used as a basis for a key e-commerce platform

developed by his company.

This problem of satisficing decision-making is strength-



TABLE V
COGNITIVE BIASES INFLUENCING ATD ITEMS

Cognitive Bias New Context,

Old Architec-
ture

Source Code

ATD

The

Workaround
that stayed

Architectural

Lock-in

Re-inventing

the Wheel

Minimum Vi-

able Product
that stuck

Other

Anchoring 7 5 4 6 4 1 0
Bandwagon effect 0 1 1 1 1 0 0
Confirmation bias 2 2 5 4 5 1 1

Curse of knowledge 2 2 2 4 2 0 0
IKEA effect 3 3 1 2 3 1 0

Irrational escalation 7 1 2 0 1 1 0
Law of the instrument 1 3 2 3 0 0 0

Optimism bias 3 3 3 5 2 4 1
Parkinson’s Law of triviality 0 1 2 0 0 0 0

Planning fallacy 3 4 4 3 1 1 1
Pro-innovation bias 1 1 2 4 4 2 1
The framing effect 1 2 2 3 1 1 0

ened by other cognitive biases as well. The IKEA effect

makes developers choose (or even copy) from their own

previous work, the law of instrument makes them use

only tools that they are familiar with. The confirmation

bias makes them blind to information that their decisions

may be wrong, an effect that is often enhanced by the

optimism bias.

Participant No. 12 encountered a combination of all of

this biases in the form of an enormous Bash based

solution, used to deploy changes to the production

environment. The author of the solution was comfortable

with Bash, and did not consult (nor was he challenged)

his solution’s design with anyone. He did not take

into account that anyone else may ever need to read,

understand or change his code. This resulted in the

creation of an enormous set of Bash scripts that were

extremely hard to comprehend to anyone besides its

author.

All these problems become even more relevant when not

enough time is given for thorough consideration, which

is an intermediate effect of the planning fallacy – when

the planned time for tasks was too short.

3) The Workaround that stayed

A substantial number of workarounds generally come

from two beliefs. Namely, that there is no choice, and

that fast fixes are a normal and proper way of problem

solving. Individuals that firmly believe in either of them

often do not put any additional effort into considering

the, often lacking, rationale behind their ”fixes” (confir-

mation bias).

Having come up with an idea for a simple workaround,

they are satisfied that the problem will be promptly

resolved, and do not search for any alternatives (anchor-

ing).

Participant No. 3 gave us an interesting example, of

an organisation that routinely used a complicated set

of workarounds while processing accounting data. Only

when a new integrated accounting system was intro-

duced, the organisation did realise that they have been

producing faulty financial reports for the last 5 years.

This kind of a mindset is further strengthened when they

are not given enough time, because the the need for such

such tasks has not been foreseen (planning fallacy).

However the workaround does solve the immediate

problem, so there is no urgent need to change the state

of things. This approach, heavily tainted by the optimism

bias, was displayed by Participant No. 9 with the words

”we will hopefully come back to it one of these days.”

4) Architectural Lock-in

The most common pattern behind the occurrence of the

Architectural lock-in ATD item was a combination of

anchoring and optimism bias. Firstly, due to anchoring,

the first satisficing architectural solution was chosen.

Then, even though they did not have any experience

with the solution, development teams simply took a leap

of faith (optimism bias) and used the solution without

further consideration of whether it may be difficult to

replace later.

This would not have become such a serious problem if

individuals did not have a tendency to choose risky in-

novative solutions (pro-innovation bias), or if they took

time to consider the disadvantages of their architectural

concepts (confirmation bias).

Participant No. 12 provided us with the following ex-

ample that illustrates this problem. The maintenance

team in his organisation needed a ticketing system. They

found an simple open source solution on GitHub that

looked satisfactory and choose it, blindly believing that

it would be the proper one. They did not take into

account that the component may require changes in the

future and that it was PHP-based (no one in that team

had prior experience in PHP). When they needed to

expand the solution, they found themselves ”locked-in”

this particular component, while not having the skills

necessary for its further development.

Additionally, we noticed that decision-makers often re-

lied on data from salesmen, which is of course always

prepared in a way that shows the offered solutions



in a positive light (framing effect). Participant No. 3

particularly stressed how ”salesmen should never be

trusted”. Even if decision-makers attempted to obtain

information from experts within their own organisation

– the experts had a tendency to omit key information

during meetings, because of the false belief that such

knowledge is obvious (curse of knowledge).

5) Re-inventing the Wheel

The Re-inventing the wheel ATD item was mainly

observed by our participants in the context of younger,

inexperienced team members, as well as in small compa-

nies, especially start-ups. Lacking prior experience, and

with the possibility to start something new from scratch,

ambitious young people often fall into the temptation

of creating a solution they would have full control

over (thus, anchoring on that single aspect), some-

thing they could call ”their own” (IKEA effect). They

want to be pioneers (pro-innovation bias), despite often

not possessing and not searching for already existing

knowledge. This frequently results in re-inventing the

metaphorical wheel.

Participant No. 7 told us about a case when he worked

in a small company, with a colleague that he described

as an ”IT geek”. This coworker developed a web ap-

plication framework on his own. He frequently applied

it when creating products for the company. After he

changed job, this undocumented framework was left

without its core maintainer.

The unwillingness to face the reality that someone may

have already had the same idea and properly put it into

effect, and thus the inability to find and use ready-made

components, is a symptom of the dangerous influence

of the confirmation bias.

6) The Minimum Viable Product that stuck

We found that the MVP that stuck ATD item was the

least likely to appear from the list defined by Verdecchia

et al. [5]. In our participants’ accounts, MVPs rarely

”got stuck”, which means that our observations for this

type of ATD were limited. In the case of most MVPs

mentioned by our participants, these solutions were

either abandoned as prototypes when a superior solution

was found/developed, or these MVPs were expanded and

matured over time.

For an MVP remaining as it is over an extended period

of time, someone had to make a mistake while esti-

mating a very short lifespan for the product (optimism

bias). Participant No. 5 told us that this usually hap-

pened when small programs were written in a hurry to

perform simple tasks like processing/converting text files

or uploading/downloading them.

D. Cognitive bias antecedents (RQ4)

Having identified the biases that influenced the generation

of technical debt, we made an in-depth analysis of the par-

ticipants’ accounts in search of information on why these

cognitive biases occurred. Cognitive biases, as a phenomenon

inherent to the human mind, cannot be completely avoided.

However, certain factors can amplify the influence of cognitive

biases on architecting activities and their outcomes. These

factors, namely, the antecedents of cognitive biases, can be

divided into seven groups:

1) Individual’s emotional state

We found that certain feelings often precede the appear-

ance of biases. These are:

a) Fear of: change, responsibility, consequences and

of starting from square one (precedes anchoring,

confirmation bias, irrational escalation);

b) Shame, especially of one’s past mistakes (pre-

cedesanchoring, irrational escalation);

c) Feeling a lack of agency (makes individuals less

likely to challenge the ideas of others and provide

a debiasing effect);

d) Haste (makes individuals more susceptible toall

biases, especially the planning fallacy);

Fear and shame have a notably destructive effect. One of

our participants attempted to register information about

the technical debt in their organisation. This turned

out to be difficult because employees, even managers,

were unwilling to share information about the technical

debt they were responsible for. They were afraid of

consequences and ashamed of their previous mistakes,

which then hindered the process of actively managing

technical debt. Individuals experiencing great fears are

unlikely to change their behaviour, which makes them

even more susceptible to biases such as anchoring,

confirmation bias and irrational escalation.

Feeling a lack of agency is especially relevant in large

organisations, in which individuals often feel that they

have no influence on any decisions that are being made.

Because of that, they simply remain indifferent, do

not challenge others’ decisions, and end up mindlessly

following orders.

2) Individual’s personality traits

There were two kinds of personality types that were

overly prone to cognitive biases. The extremely ambi-

tious and confident individuals and their opposite – the

reserved ones that lacked assertiveness. The overconfi-

dent architects tended to make fast decisions without

deeper consideration (this makes all cognitive biases

more likely to appear), while the taciturn team members

tended to follow them blindly. In this way, the possibility

of exerting a debiasing effect on their colleagues is lost.

It also makes them more prone to the bandwagon effect.

3) Individual’s mistakes

We observed some common mistakes that foreshadowed

the appearance of cognitive biases. Those included:

• The basic lack of knowledge or experience required

to make decisions in a certain area (if sufficient

knowledge is not obtained, any cognitive biases are

more likely to occur).

• Not performing any search for alternative solutions



(anchoring, confirmation bias, IKEA effect, law of

the instrument, pro-innovation bias).

• Considering only a limited part of a complex prob-

lem, while ignoring the global impact of the solution

(anchoring, confirmation bias, curse of knowledge,

optimism bias, planning fallacy).

• Limiting the planning only to the short term (plan-

ning fallacy, optimism bias).

• Habits (confirmation bias, anchoring, irrational es-

calation, IKEA effect, law of instrument).

• The optimistic belief that mistakes are only made

by others (makes all biases more likely to appear).

An interesting detail is that even seemingly good habits,

such as using proven architectural patterns, may turn

out to be harmful. In the case of this particular habit,

sometimes a design pattern may end up being used in

unsuitable circumstances.

4) Organisational antecedents

The overall environment in which the project is being

developed and maintained has a crucial impact. We

observed several factors that impacted the frequency of

bias appearance:

• Organisational culture: too lax (which strengthens

all biases in individual employees) or too harsh

(which impacts the biases of management and lead-

ers).

• Frequent changes of management staff that impedes

long-term planning (influences all biases)

• Lack of standards and procedures (all biases).

• Unclear separation of duties, especially when it is

not clear who is responsible for which decisions

(this means that nobody provides a debiasing effect

when decisions are made in this area).

• Short-sighted cost/profit optimisation as a default

approach – investing only in areas that give im-

mediate profit (irrational escalation, optimism bias,

anchoring).

• Lack of motivation for optimising the developed

solutions – especially in the case of short-term

cooperation with clients (optimism bias).

• Faulty use of agile development practices – em-

powered by the belief that any problems can be

fixed in further iterations (influences all biases,

since decisions are made in each iteration by all

the parties involved in the project)

A valuable observation that we made was that, in

most of the interviews, cognitive biases appeared as

a consequence of an organisational culture that was

either too lax or too harsh. When the culture in the

organisation was too casual, which is often the case

in startups (participant No 9 provided us with such

insights), individuals are often left to make key decisions

alone. If these decisions are influenced by cognitive

biases, no one challenges them and thus various faulty

decisions are made – mainly by young, overambitious

team members. This may lead to many biased decisions

like choosing trendy solutions (bandwagon effect) or

using only tools that the decision-maker is familiar and

comfortable with (law of instrument).

On the other hand, if the organisation’s culture is

authoritarian, giving little voice to the employees in

lower positions in the hierarchy, then possible biases

of the higher-ups are never challenged or corrected. In

such cases, decision-makers are more susceptible to the

enticements of salesmen (framing effect), or do not have

information that would allow them to plan the time-

frames for projects properly (planning fallacy).

5) Communicational antecedents

Many biases emerge as an after-effect of communication

problems. This most commonly happens when spe-

cialists from different domains interact, although even

close co-workers are not free from this problem. These

problems are often fuelled by the curse of knowledge,

which makes individuals more likely to omit crucial

information that could be obtained from others.

Constructive criticism and challenging the ideas underly-

ing the decisions of others is not standard in every team.

It often means that crucial decisions are never discussed

openly. This means that valuable debiasing opportunities

are lost, which in turn makes biased decisions more

likely to occur. Additionally, sometimes decisions made

during the initial negotiation phase of a project are made

without consulting technical specialists, which leads to

overly strict deadlines and sometimes absurd contractual

arrangements. Participant No 11 told us that, in the case

of projects made for the state, they commonly found

that the price and time-frame for the project were made

absurdly low and short during negotiations, simply in

order to gain the customer, in hope that profit could

be increased later and fixes could be made during the

maintenance phase.

6) Knowledge vaporisation

For any decision to be rational, it is essential for the

decision-makers to have proper knowledge about the is-

sue at hand. However, it is a well-known issue in the area

of architectural knowledge management that knowledge

is not always documented and tends to vanish with the

employees that leave the company. This makes decision-

makers more prone to the effect of all cognitive biases,

since they are frequently forced to make decisions based

solely on their instincts.

7) External

Some antecedents to cognitive biases are completely

beyond our control. The most prevalent is the current

popularity of certain solutions – the deciding factor

behind the bandwagon effect.

Although, often forgotten, an important source of pos-

sible problems also lies in politics and the current legal

status. A proper interpretation and understanding of the

law is not an easy task and often leads to dangerous

misconceptions. One of our participants provided us



with an account in which they had to create a system

before a particular law came into force. This law had

been incorrectly understood by the developers (the curse

of knowledge influenced their communication with legal

specialists), which resulted in the need to perform a set

of quick fixes and workarounds shortly after the system

became available.

Frequent changes in the law, influenced by politics,

may also force numerous technically challenging mod-

ifications to existing systems. Every such decision is

susceptible to the influence of cognitive biases – in this

case, the politicians’ biases.

E. Possible debiasing methods (RQ5)

During the interviews, our participants spontaneously gave

us hints, how to avoid arising certain ATD items. Additionally,

the participants that scarcely encounter specific ATD items,

usually mentioned why they believe that this item does not

occur often in their environment. All this combined together,

in many cases, can be interpreted as a set of possible debiasing

techniques.

We gathered this into a set of bias prevention treatments:

1) Ensuring double-checking and challenging all decisions

and their underlying ideas. Trying to find downsides of

any idea as standard – this will make the critique feel

less personal and is therefore more effective.

2) Developing an environment based on trust, in which

employees can voice their opinions and admit to their

mistakes – knowing that they will receive help, not

scorn. The modern approaches to agile / servant leader-

ship address this issue.

3) Explicitly gathering information about alternatives be-

fore making decisions. Presenting them to others and

asking for their evaluation. This is reminiscent of some

components of architecture evaluation methods.

4) Creating procedures and standards to limit low-quality

reckless alterations of the solution and enable period-

ical refactoring/changes of the system to fit the ever-

changing business context in which it is used.

5) Creating documentation and passing on knowledge. At a

bare minimum, this does not require much resources, it

might involve recording meetings in which information

is shared and decisions are made.

6) Explicitly registering all accounts of TD in the organi-

sation and making plans for a time when it will be dealt

with.

7) Periodically checking whether any new TD has occurred

and whether any old TD needs to be paid – maybe

support expired, or all the people with the relevant

knowledge have moved on and are no longer present.

8) Clearly defining and recording who is responsible for

which part of the project’s scope. This will make the

process of obtaining information and looking for help

more straightforward. It will also minimise the problem

of the individuals in charge avoiding responsibility.

V. DISCUSSION

As the presented results have no direct equivalents (the

possible influence of biases on technical debt has been merely

mentioned [6], [5], [13]), it is necessary to relate these results

to broader research on technical debt, cognitive biases in SE,

antecedents and management techniques for technical debt.

Firstly, we partially confirmed the findings of Zalewski

et al. [18], since almost all the biases (with the exception

of Parkinson’s law of triviality) that they recognised as no-

table for architecture decision-making, were found to have

had a significant influence on ATD. Furthermore, the biases

that we have identified as most commonly influencing ATD

(anchoring, optimism and confirmation bias) have already

been identified as having a significant influence on software

engineering activities [7].

In the field of architectural decision-making, it has already

been noticed that cognitive biases distort the decision-making

process [43] by strengthening the effects of pre-existing

problems/mistakes. As such, the antecedents for cognitive

biases are bound to be, at least partially, similar to previously

discovered causes of ATD. The problems of time pressure,

lack of documentation, unsuitable architectural decisions and

human factors, as specified by Verdecchia et al. [5], are similar

to many of the antecedents that we identified. The issue of

miscommunication between specialists of different domains,

and its influence on technical debt, has also previously been

addressed [44].

The debiasing methods that we propose only affect debt

created inadvertently, since debt deliberately taken on is usu-

ally a result of a rational management strategy [45]. The

debiasing methods that we proposed give an interesting new

perspective to the problem of managing architectural technical

debt – they can be taken as a set of instructions on how to

manage an organisation that would be less susceptible to ATD.

ATD management so far, as indicated by Besker et al. [19],

suffers from a lack of proper management guidelines. A set

of strategies has only recently been proposed [5], [46].

VI. THREATS TO VALIDITY

As with every study, certain issues might pose a threat to

the validity of our findings. Having this in mind, we attempted

to minimise the effects of such threats. Since the research is

qualitative, and our goal was to conduct an exploratory in-

depth analysis, we only took into account the experiences of

our 12 participants. To prevent this from being a problem,

we attempted to make this group as varied as possible – we

interviewed people that held different positions, had varying

levels of experience (from 5 to 35 years), worked in companies

of different sizes (from start-ups to large corporations), and

whose organisations had diverse domains.

Still, in order to further confirm the validity of this research,

it would be useful to expand it with more participants, and

possibly using a different research methodology (like the think

aloud protocol method [47]).

Since our participants were not experts in the field of

technical debt, they often presented examples of cases that



were not actually occurrences of technical debt. Furthermore,

even if their example was indeed a case of technical debt,

they confused various ATD items withe each other. To ensure

that such mistakes did not have an undue influence on our

results, we searched for the ATD items (coded them from

the transcriptions) without taking into account the ATD item

category that the participant believed their example belonged

to.

Since it may be possible for a single researcher to make

a mistake during the coding – for example, to observe a

cognitive bias that did not actually occur – the interview

transcriptions were analysed and coded by us separately,

and then the findings were confronted using the negotiated

agreement approach [41]

To prevent our participants from forcibly searching for

cognitive biases in their experience, we only asked them

to explain the rationale behind the decisions made in their

projects. They were informed about our cognitive bias related

research only after the interviews.

Finally, cognitive biases often overlap and interact with each

other. Which means that their influence on ATD items may not

always be straightforward. We did not analyse the dynamics

of bias’ interaction in this paper.

VII. CONCLUSION AND RESEARCH OUTLOOK

Our research achieved the following:

• We assessed that cognitive biases definitely have a signif-

icant influence on the creation of architectural technical

debt (RQ1).

• We determined that most significant biases that impact

architectural technical debt are anchoring, optimism and

confirmation bias. Nevertheless, the influences of the

curse of knowledge, the IKEA Effect, irrational escala-

tion, pro-innovation bias, planning fallacy, the framing

effect and the bandwagon effect are also noticeable.

• We assessed that cognitive biases affect all of the ATD

items indicated by Verdecchia et al. [5]; nevertheless,

the most frequently affected item turned out to be ”New

Context, Old Architecture” (RQ3) and the least influenced

one appeared to be ”the MVP that stuck”.

• The most common antecedents of cognitive biases that

influence ATD have been identified (RQ4).

• A number of debiasing techniques have been proposed

(RQ5).

Our research revealed also that the organisation’s culture is

often an important factor that influences the creation of tech-

nical debt, since most of the antecedents and the discovered

debiasing methods are connected with how the organisation

is managed, and the frame of mind of the organisation’s

members.

In order to minimise the amount of unwanted architec-

tural technical debt, organisations should remove the fear of

admitting software deficiencies and introduce trust into the

company’s culture. As noticed by Besker et al. [46], the

penalising approach to managing architectural technical debt

is the least effective one.

An atmosphere of thrust and camaraderie would enable

individuals to provide a debiasing effect to each other. The

ideal environment would be one in which challenging the

ideas of others is commonplace, in the form of sensible, non-

judgemental critique. If meaningful critique of each other’s

ideas becomes commonplace, employees are less likely to feel

threatened by it and to actually start making use of each other’s

suggestions.

In an organisation founded on trust, there should be space

to admitting one’s mistakes. When a problem is detected,

everyone should focus on solving it together, instead of

looking for scapegoats.

Further research could include:

• further confirming our findings with proper quantitative

data;

• how team / organisational culture influences the emer-

gence of inadvertent technical debt;

• in-depth research on particular antecedents’ and biases’

influence on ATD;

REFERENCES

[1] W. Cunningham, “The WyCash portfolio management system,” in Pro-

ceedings of the Conference on Object-Oriented Programming Systems,

Languages, and Applications, OOPSLA, vol. Part F1296, 1992. doi:
10.1145/157709.157715. ISBN 0897916107 pp. 29–30.

[2] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
Journal of Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013.

[3] T. Amanatidis, N. Mittas, A. Chatzigeorgiou, A. Ampatzoglou, and
L. Angelis, “The developer’s dilemma: Factors affecting the decision
to repay code debt,” in 2018 IEEE/ACM International Conference on

Technical Debt (TechDebt), vol. 5, 2018. doi: 10.1145/3194164.3194174.
ISBN 9781450357135. ISSN 02705257 pp. 62–66. [Online]. Available:
https://doi.org/10.1145/3194164.3194174

[4] A. Martini and J. Bosch, “The Danger of Architectural Technical Debt:
Contagious Debt and Vicious Circles,” in Proceedings - 12th Working

IEEE/IFIP Conference on Software Architecture, WICSA 2015, 2015.
doi: 10.1109/WICSA.2015.31. ISBN 9781479919222 pp. 1–10. [On-
line]. Available: https://www.researchgate.net/publication/273769557

[5] R. Verdecchia, P. Kruchten, and P. Lago, “Architectural Technical Debt
: A Grounded Theory,” European Conference on Software Architecture

(ECSA), 2020.
[6] R. Brenner, “Balancing resources and load: Eleven nontechnical phe-

nomena that contribute to formation or persistence of technical debt,” in
Proceedings - 2019 IEEE/ACM International Conference on Technical

Debt, TechDebt 2019, 2019. doi: 10.1109/TechDebt.2019.00013. ISBN
9781728133713 pp. 38–47.

[7] R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, and P. Ralph,
“Cognitive Biases in Software Engineering: A Systematic Mapping
Study,” IEEE Transactions on Software Engineering, vol. 5589, no. c,
2018. doi: 10.1109/TSE.2018.2877759

[8] A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics
and biases,” science, vol. 185, no. 4157, pp. 1124–1131, 1974.

[9] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.
[10] W. Stacy and J. MacMillan, “Cognitive bias in software engineering,”

Communications of the ACM, vol. 38, no. 6, pp. 57–63, 1995.
[11] A. Zalewski, K. Borowa, and D. Kowalski, “On cognitive biases in re-

quirements elicitation,” in Integrating Research and Practice in Software

Engineering. Springer, 2020, pp. 111–123.
[12] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements fixation,” in Pro-

ceedings of the 36th International Conference on Software Engineering,
2014, pp. 895–906.

[13] S. Chattopadhyay, N. Nelson, A. Au, N. Morales, C. Sanchez,
R. Pandita, and A. Sarma, “A Tale from the Trenches :
Cognitive Biases and Software Development,” in International

Conference on Software Engineering (ICSE), 2020. doi:
10.1145/3377811.3380330. ISBN 9781450371216 pp. 654–665.
[Online]. Available: https://doi.org/10.1145/3377811.3380330

https://doi.org/10.1145/3194164.3194174
https://www.researchgate.net/publication/273769557
https://doi.org/10.1145/3377811.3380330


[14] G. Calikli and A. Bener, “Empirical analyses of the factors affecting
confirmation bias and the effects of confirmation bias on software
developer/tester performance,” in Proceedings of the 6th International

Conference on Predictive Models in Software Engineering, 2010, pp.
1–11.

[15] J. Bosch, “Software architecture: The next step,” Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 3047, pp. 194–199, 2004. doi:
10.1007/978-3-540-24769-214

[16] A. Tang, “Software designers, are you biased?” Proceedings - Interna-

tional Conference on Software Engineering, no. January 2011, pp. 1–8,
2011. doi: 10.1145/1988676.1988678

[17] H. van Vliet and A. Tang, “Decision making in software architecture,”
Journal of Systems and Software, vol. 117, pp. 638–644, 2016. doi:
10.1016/j.jss.2016.01.017

[18] A. Zalewski, K. Borowa, and A. Ratkowski, “On cognitive biases in
architecture decision making,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 10475 LNCS, 2017. doi: 10.1007/978-3-
319-65831-59. ISBN 9783319658308. ISSN 16113349 pp. 123–137.

[19] T. Besker, A. Martini, and J. Bosch, “Managing architectural
technical debt: A unified model and systematic literature
review,” Journal of Systems and Software, vol. 135, pp.
1–16, 2018. doi: 10.1016/j.jss.2017.09.025. [Online]. Available:
https://doi.org/10.1016/j.jss.2017.09.025

[20] R. Alfayez, W. Alwehaibi, R. Winn, E. Venson, and
B. Boehm, “A systematic literature review of technical
debt prioritization,” in Proceedings of the 3rd International

Conference on Technical Debt, vol. 10. ACM, 2020. doi:
10.1145/3387906.3388630. ISBN 9781450379601 pp. 1–10. [Online].
Available: https://doi.org/10.1145/3387906.3388630

[21] C. Becker, R. Chitchyan, S. Betz, and C. McCord, “Trade-off decisions
across time in technical debt management: A systematic literature
review,” in 2018 IEEE/ACM International Conference on Technical

Debt (TechDebt). ACM, 2018. doi: 10.1145/3194164.3194171. ISBN
9781450357135. ISSN 02705257 pp. 85–94. [Online]. Available:
https://doi.org/10.1145/3194164.3194171

[22] N. Rios, M. Mendonça, and R. Spı́nola, “A tertiary study on technical
debt: Types, management strategies, research trends, and base informa-
tion for practitioners,” Information and Software Technology, vol. 102,
06 2018. doi: 10.1016/j.infsof.2018.05.010

[23] A. Martini and J. Bosch, “The danger of architectural technical debt:
Contagious debt and vicious circles,” in 2015 12th Working IEEE/IFIP

Conference on Software Architecture. IEEE, 2015, pp. 1–10.

[24] A. Martini, J. Bosch, and M. Chaudron, “Architecture technical debt:
Understanding causes and a qualitative model,” in 2014 40th EUROMI-

CRO Conference on Software Engineering and Advanced Applications.
IEEE, 2014, pp. 85–92.

[25] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? Manage it? Ignore it? Software practitioners and technical
debt,” in 2015 10th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering, ESEC/FSE 2015 - Proceedings, 2015. doi:
10.1145/2786805.2786848. ISBN 9781450336758 pp. 50–60. [Online].
Available: http://github.com/neilernst/td-survey

[26] A. Tversky and D. Kahneman, “The framing of decisions and the
psychology of choice,” Science, 1981. doi: 10.1126/science.7455683

[27] R. S. Nickerson, “Confirmation bias: A ubiquitous phenomenon in many
guises,” Review of general psychology, vol. 2, no. 2, pp. 175–220, 1998.

[28] G. B. Chapman and B. H. Bornstein, “The more you ask for, the more
you get: Anchoring in personal injury verdicts,” Applied Cognitive Psy-

chology, 1996. doi: 10.1002/(SICI)1099-0720(199612)10:6¡519::AID-
ACP417¿3.0.CO;2-5

[29] J. Kennedy, “Debiasing in the Audit Curse of Knowledge Judgment,”
The Accounting Review, 1995.

[30] M. I. Norton, D. Mochon, and D. Ariely, “The IKEA effect: When
labor leads to love,” Journal of Consumer Psychology, 2012. doi:
10.1016/j.jcps.2011.08.002

[31] C. Northcote Parkinson, “Parkinson’s law: or the pursuit of progress,”
1961.

[32] E. M. Rogers, A. Singhal, and M. M. Quinlan, “Diffusion of inno-
vations,” in An Integrated Approach to Communication Theory and

Research, Third Edition, 2019. ISBN 9781351358712

[33] M. V. Pezzo, J. A. Litman, and S. P. Pezzo, “On the distinction between
yuppies and hippies: Individual differences in prediction biases for
planning future tasks,” Personality and Individual Differences, 2006. doi:
10.1016/j.paid.2006.03.029

[34] H. Leibenstein, “Bandwagon, snob, and veblen effects in the theory
of consumers’ demand,” Quarterly Journal of Economics, 1950. doi:
10.2307/1882692

[35] B. M. Staw, “The escalation of commitment: An update and appraisal,”
in Organizational Decision Making, 2010.

[36] A. H. Maslow, The psychology of science; a reconnaissance, 1966. ISBN
National Library: 0354146 LCCN: 66-11479

[37] O. P. O’Sulliivan, “The Neural Basis of Always Looking on the Bright
Side,” Dialogues in Philosophy, Mental and Neuro, 2015.

[38] T. Besker, A. Martini, and J. Bosch, “Technical debt cripples
software developer productivity: A longitudinal study on developers’
daily software development work,” in 2018 IEEE/ACM International

Conference on Technical Debt (TechDebt), vol. 10, 2018. doi:
10.1145/3194164.3194178. ISBN 9781450357135. ISSN 02705257 pp.
105–114. [Online]. Available: https://doi.org/10.1145/3194164.3194178

[39] R. Verdecchia, “Architectural Technical Debt Identification: Moving
Forward,” Proceedings - 2018 IEEE 15th International Conference on

Software Architecture Companion, ICSA-C 2018, pp. 43–44, 2018. doi:
10.1109/ICSA-C.2018.00018

[40] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research

in Software Engineering: Guidelines and Examples, 2012. ISBN
9781118104354. [Online]. Available: www.wiley.com.

[41] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman,
“Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability,” Internet and Higher Education, vol. 9, no. 1,
pp. 1–8, 2006. doi: 10.1016/j.iheduc.2005.11.001

[42] M. M. Lehman, “Programs, Life Cycles, and Laws of Software Evolu-
tion,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.
doi: 10.1109/PROC.1980.11805

[43] A. Manjunath, M. Bhat, K. Shumaiev, A. Biesdorf, and F. Matthes,
“Decision Making and Cognitive Biases in Designing Software Archi-
tectures,” Proceedings - 2018 IEEE 15th International Conference on

Software Architecture Companion, ICSA-C 2018, pp. 52–55, 2018. doi:
10.1109/ICSA-C.2018.00022

[44] T. Stablein, D. Berndt, and M. Mullarkey, “Technical debt-related
information asymmetry between finance and IT,” in 2018 IEEE/ACM

International Conference on Technical Debt (TechDebt), 2018. doi:
10.1145/3194164.3194180. ISBN 9781450357135. ISSN 02705257 pp.
134–137. [Online]. Available: https://doi.org/10.1145/3194164.3194180

[45] T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe, and J. Bosch,
“Embracing technical debt, from a startup company perspective,” Pro-

ceedings - 2018 IEEE International Conference on Software Mainte-

nance and Evolution, ICSME 2018, pp. 415–425, 2018. doi: 10.1109/IC-
SME.2018.00051

[46] T. Besker, A. Martini, and J. Bosch, “Carrot and stick
approaches when managing technical debt,” in Proceedings of

the 3rd International Conference on Technical Debt, 2020. doi:
10.1145/3387906.3388619. ISBN 9781450379601 pp. 21–30. [Online].
Available: https://doi.org/10.1145/3387906.3388619

[47] M. E. Fonteyn, B. Kuipers, and S. J. Grobe, “A description of think aloud
method and protocol analysis,” Qualitative health research, vol. 3, no. 4,
pp. 430–441, 1993.

https://doi.org/10.1016/j.jss.2017.09.025
https://doi.org/10.1145/3387906.3388630
https://doi.org/10.1145/3194164.3194171
http://github.com/neilernst/td-survey
https://doi.org/10.1145/3194164.3194178
www.wiley.com.
https://doi.org/10.1145/3194164.3194180
https://doi.org/10.1145/3387906.3388619


This figure "fig1.png" is available in "png"
 format from:

http://arxiv.org/ps/2309.14175v1

http://arxiv.org/ps/2309.14175v1

	Introduction
	Related Work
	Research Method
	Cognitive biases
	Architectural Debt items
	Research procedure
	Study participants
	Analysis Procedure

	Results
	Architectural debt items influenced by cognitive biases
	Cognitive biases that influence ATD items
	Influence of cognitive biases on ATD items
	Cognitive bias antecedents (RQ4)
	Possible debiasing methods (RQ5)

	Discussion
	Threats to Validity
	Conclusion and Research outlook
	References

