605.08831v1 [cs.CV] 28 May 2016

Weighted Residuals for Very Deep Networks

Falong Shen, Gang Zeng

Peking University

Abstract. Deep residual networks have recently shown appealing per-
formance on many challenging computer vision tasks. However, the origi-
nal residual structure still has some defects making it difficult to converge
on very deep networks. In this paper, we introduce a weighted resid-
ual network to address the incompatibility between ReLU and element-
wise addition and the deep network initialization problem. The weighted
residual network is able to learn to combine residuals from different lay-
ers effectively and efficiently. The proposed models enjoy a consistent im-
provement over accuracy and convergence with increasing depths from
100+ layers to 10004 layers. Besides, the weighted residual networks
have little more computation and GPU memory burden than the original
residual networks. The networks are optimized by projected stochastic
gradient descent. Experiments on CIFAR-10 have shown that our algo-
rithm has a faster convergence speed than the original residual networks
and reaches a high accuracy at 95.3% with a 1192-layer model.

[t
-
=
=
o
o
ot
o
=
@]
=

== The state-of-the-art model for image classification is built on inception and resid-

ual structure [II2[3]. Lots of works devoted on residual networks are emerging

a recently [A56l7]. Very deep convolutional networks [8/9], especially with residual

units, have shown compelling accuracy and nice convergence behaviors on many
challenging computer vision tasks [BIIO/II]. Since vanishing gradients problem
is well handled by batch normalization [12] and highway signal propagation [13],
networks with 100+ layers are being developed and trained, even 1000+ layers
structure still yields meaningful results when combined with adequate dropout
as shown in [6] . He et al. [4] also introduced the pre-activation structure to allow
the highway signal to be directly propagated through the very deep networks.
However they seemed to harness the features with a larger dimension (4x) and
adapted multiple 1 x 1 convolutional layers to substitute 3 x 3 convolutional
layers for convergence with 1000+ layers.

A typical convolutional unit is composed of one convolutional layer, one batch
normalization layer and one ReLU layer, all of which are performed sequently [12].
For a residual unit, a central question is how to combine the residual signal and
the highway signal, where element-wise addition was proposed in [3]. A natural
idea is to perform addition after ReLU activation. However, this leads to a non-
negative output from residual branch, which limits the representative ability of
the residual unit meaning that it can only enhance the highway signal. He et al.

2 Shen et al.

[3] firstly proposed to perform addition between batch normalization and ReLU.
In [4], they further proposed to inverse the order of the three layers, performing
batch normalization and ReLU before convolutional layers. The question is due
to that ReLU activation can only generate positive value which is incompatible
with element-wise addition in the residual unit.

As it is non-convex optimization to solve deep networks, an appropriate ini-
tialization is important for both faster convergence and a good local minima.
The “xavier” [14] and “msra” [I5] are popular used for deep networks initializa-
tion. However, for networks with depths beyond 100 layers, neither “xavier” nor
“msra” works well. The paper of [3] proposed to “warm up” the network with
small learning rate and then restore the learning rate to normal value. However,
this hand-craft strategy is not that useful for very deep networks, where even a
very low learning rate (0.00001) still is not enough to promise convergence and
restoring the learning rate has a chance to get rid of the initial convergence [2].

Generally speaking, there are two defects embedded in the training of the
original residual networks

— Incompatibility of ReLU and element-wise addition.
— difficutly for networks to converge with depths beyond 1000-layer using
“msra” initializer.

The third point resides that a better mode to combine the residuals from different
layers are necessary to train very deep networks. For very deep networks, not all
layers are that important as 1000-layer networks often perform not much better
than 100-layer networks. In fact, lots of layers serve as redundant information
and very deep networks tend to over-fit on some tasks.

In this paper, we introduce the weighted residual networks, which learn to
combine residuals from different layers effectively and efficiently. All the residual
weights are initialized at zeros and optimized with a very small learning rate
(0.001), which allows all the residual signals to gradually add to the highway
signal. With a group of gradually growing-up residual weights, the 1192-layer
residual networks converge even much faster than the 100-layer networks. Fi-
nally, the distribution of the learned residual weights is in a symmetry mode
ranging in [—0.5,0.5], which implies the incompatibility of ReLU and element-
wise addition can be appropriately handled. The networks are optimized by
projected stochastic gradient descent with exactly the same training epochs to
original residual networks.

We conduct experiments on CIFAR-10 [16] to verify the practicability of
the weighted residual networks. Training with the weighted residual networks
can converge much faster and reach a higher performance with negligible more
computation and GPU memory cost than the original residual networks. The
weighted residual networks with depths beyond 1000 layers still converge faster
than shallower networks and enjoy a consistent improvement over accuracy with
increasing depths from 100+ layers to 10004 layers without resorting to any
hand-craft strategy such as “warm up” [3]. After applying dropout on the resid-
uals, our weighted residual networks reach a very high accuracy (95.3%) on

Weighted Residuals for Very Deep Networks 3

CIFAR-10 using a 1192-layer model with the same training epochs to the origi-
nal residual networks (about 164 epochs, 64k iterations).
The contributions of our work presented in this paper have four folds:

— We propose the weighted residual networks, which learn to combine the resid-
uals from each residual unit. The weighted residual networks converge much
faster in the training stage and reach a higher accuracy than the original
residual networks at little more computation and GPU memory cost.

— The incompatibility of ReLU and element-wise addition can be addressed
appropriately by weighted residuals and we clear all the obstacles on the in-
formation highway to allow the highway signal to enjoy a unhindered prop-
agation.

— The residuals are gradually added to the highway signal to make the training
process more reliable, even networks with depths beyond 1000 layers can
converge very fast without the “warm up” strategy.

— We modify the down-sampling step to make the spatial size and feature
dimension consistent between highway signal and branched residual signal,
without resorting to zero-padding or extra converting matrix.

The weighted residual networks are simple and easy to implement while having
surprising practical effectiveness, which makes it particular useful for compli-
cated residual networks in research community and real applications.

2 Related works

The residual networks have attracted lots of researchers and many works on
it have appeared [J5I6I7IT7]. In the following paragraphs we will review some
related works.

The residual networks simplify the highway networks [I3] using identity skip
connection, which allows information to flow directly and bypass complex layers.
The residual networks consist of many residual units. There are two information
flows in a residual unit. The highway signal goes through the identity skip con-
nection and the branched residual signal is realized by Conv-BN-ReLU-Conv-BN.
The two flows are combined at the end of a residual unit by element-wise addi-
tion and then it goes through a ReLU layer for activation. This simple structure is
quite powerful and achieved a surprising performance on the imageNet challenge
[1] with 150-layer networks [3].

In the original residual networks, the two flows are added up before ReLU ac-
tivation for a numerical reason that ReLU can only produce non-negative output,
which means the branched residual signal can only enhance the highway signal.
However, intuitively it is not a natural solution as the branched residual signal
needs to be “activated”.

He et al. [4] proposed to handle the incompatibility between ReLU and element-
wise addition by re-arranging these layers to BN-ReLU-Conv-BN-ReLU-Conv and

4 Shen et al.

named it “pre-activation” structure. When applying the “pre-activation” struc-
ture, special attention should be taken on the first and the last residual unit of
the networks.

To train “residual” networks, it is natural to fit on the “residual” only, which
means when the branched residual signal is not presented, the highway signal
should still make meaningful results. Under this condition, the branched resid-
ual signal can focus on fitting the “residual” in a residual unit. Huang et al. [6]
proposed a dropout residual network, which randomly drops the branched resid-
ual signal in each residual unit. Therefore, when the branched residual signal is
presented in a residual unit, it can focus on fitting the “residual”. As this model
can be treated as an ensemble of models with different depths, they named it
“stochastic depth networks”.

In the convolutional networks, the depth and width are both important for
a high performance in image classification [7I3]. The convi-conv3-convl bot-
tleneck structure which used a feature dimension 4x larger than conv3-conv3
reached a higher performance [4]. Zagoruyko et al. [7] used conv3-conv3 with
feature dimension 10x larger and reached the highest performance on CIFAR-
10 (4.10%). However, a larger feature dimension costs much more GPU memory
and leads a shallower structure. There is a balance between depth and width.

In this paper, we mainly focus on models with depth beyond 100+ layers.
We mean to explore how to train a very deep model effectively instead of tuning
a more accurate model.

3 Weighted Residual Networks

Firstly we will give a brief introduction to the residual networks. The residual
networks build the information highway by allowing earlier feature represen-
tation to flow unimpededly and directly to the following layers without any
modification. A residual unit performs the following computation:

Xiy1 = ReLU(x; + AL;(x;,6;)) (1)

Here x; is the input highway signal to the i-th residual unit. 6; is the filter
parameters for the residual unit and it is initialized by “msra”, ALj; is the residual
function, which is realized by a stack of two 3 x 3 convolutional layers. Typically,
one convolutional layer should be followed by one batch normalization layer
to keep the signal with non-zero variance and one ReLU layer for non-linearity
activation. The highway should be clean and unhindered. As it is shown in [4],
obstacles on the highway, such as constant scaling and dropout, will make the
optimization difficult. A typical residual unit is depicted in Figure [I]
The original residual networks stated above have two defects

Incompatibility of ReLU and element-wise addition. The highway signal
and the residual signal which is produced by the residual function are combined
by the element-wise addition. However, the element-wise addition is operated

Weighted Residuals for Very Deep Networks 5

Fig. 1: Diagrammatic sketch of a residual unit. The residual function comprises
of two 3 x 3 convolution layers. Each Convolutional layer (Conv) is followed by
a batch normalization layer (BN) and a ReLU layer (ReLU). The weights of con-
volutional layers are initialized by “msra”. The highway signal and the residual
signal are combined by element-wise addition.

between the BN layer and the ReLU layer after the second Conv layer. This is
mainly due to the ReLU activation function, which produces non-negative output.
The output of ReLU operation is not compatible with element-wise addition as
it can only enhance the highway signal, which limits the representability of the
residual function, which is meant to take values in (—oo, +00). One can of course
resort to designing other activation function which can take values in a larger
range or a symmetry mode around zero.

Initialization of very deep networks. Very deep networks with depths be-
yond 1000 layers, even equipped with residual structure, batch normalization
and ReLU, still do not converge in the training stage as shown in Figure |5 The
paper of [3] proposed to “warm up” the network training with a little learning
rate for several epochs and then restore it to the normal learning rate in order to
facilitate the initial convergence. However, for deeper networks, even very little
learning rate may not work well [2].

In very deep networks, the residuals from each block are added together and
make the training hard to converge. One may want to zero all the residuals to
start the training. However, the weights of the convolutional layers in residual
functions should be initialized by “msra” which has little probability to produce
all-zero weights.

3.1 Weighted Residuals

To address the incompatibility of ReLU and element-wise addition and to get a
better initialization for very deep networks, we introduce the weighted residual
networks. Formally in a weighted residual networks unit, the computation of the
signal is

Xiy1 = X; +)\ZALZ(X“ 91), A € (—1,].), (2)

where 6; is the filter parameters and it is initialized by “msra” , A; is the weight
scalar for the residual and it is initialized by zero with a very small learning rate.
The ReLU activation is removed from the highway and AL; is realized by two
Conv-BN-RelUs.

6 Shen et al.

Fig. 2: Diagrammatic sketch of a weighted residual unit. We move the ReLU from
highway to the branchway, which allows the highway signal to flow unobstruct-
edly through the very deep networks. The residual signal is weighted by a scalar
which is initialized by zero in the training stage. In our experiments, the overall
convergence is promised when all the residuals are gradually added to the high-
way signal. The weight takes values in (—1, 1) to overcome the limitation of the
ReLU activation function.

For any deep blocks, the feature representation x4 in the (i + k)-th layer
can be expressed as a summation of the input layer representation x; and a series
of weighted residual functions,

k
Xipk = Xi + Z N ALiyj(Xiqj,0i45), Nipj € (—1,1). (3)

Jj=1

In the back-propagation stage, the gradient of any layer does not vanish when fil-
ter parameter 0, ; is arbitrarily small. Note that the pre-activation structure pro-
posed in [4] also has a similar property by converting the order of Conv-BN-RelU
to BN-RelU-Conv.

In Figure [3| we visualize the distribution of the learned residual weights in a
1192-layer model. The residual weight values range around (-0.5,0.5) in a sym-
metry mode, which means the branched residual signal has equal probability to
enhance/weaken the highway signal, which means the incompatibility between
ReLU and element-wise addition is appropriately addressed by the learned resid-
ual weights.

percent(%)
n w
T T

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
residual weight value

Fig. 3: Distribution of the learned residual weights in a 1192-layer model.

Weighted Residuals for Very Deep Networks 7

3.2 Modification to the structure.

At the beginning of a new block in the original residual networks, the high-
way signal is down-sampled by a stride-2 convolution layer while the branched
residual signal also need to be halved by a stride-2 convolution layer. When per-
forming the element-wise addition, zeros-padding or convert matrix is necessary
to make a matched feature dimension between the two signals.

In our networks as it is shown in Figure [d we directly halve the feature size
at the beginning and the following layers are performed as stated in the previous
sections.

New block New block

Conv-3-stride-2

Conv-3-stride-2
Batch normalization

Batch normalization

Conv-1-stride-2

Conv-3-stride-1
Batch normalization

Batch normalization

Conv-3-stride-1
Batch normalization

Conv-3-stride-1
Batch normalization

b+

T

Fig.4: At the beginning of each new block, the feature map is halved by a
conv-3-stride-2 layer.

3.3 Optimization.

Given training images and its corresponding ground truth labels {I;, y; }, the loss
function is the summation of the negative likelihood and the regularized term

1 T,o 1
=77 2 1og s (15,6, 2) + 116115 + Z I, \
i€l ()

s.t. each elemenet of A € (—1,1).

where 6 is the network parameters which is initialized by “msra”, X is the weight
vector for the residuals and is initialized by all-zeros. We apply projected SGD
to this typical constraint optimization problem. In the (¢ + 1)-th iteration, the
updated X;H is projected to the convex set S

A= Ps(Af + AX) (5)

8 Shen et al.

where the convex set S = (—1,1) and A)! is the gradient of the loss function in
Equation With regard to !, which is effectively computed by back-propagation
[18] in deep networks.

3.4 Implementation details.

Dataset. CIFAR-10 [I6] is a dataset of color images all coming with the same
size of 32 x 32, which consists of 50k training images and 10k testing image in 10
classes. We train our deep model on the train set and evaluate the finally trained
models on the test set. We follow the same residual architecture as proposed in
[3].

Our code is built on the open source deep learning framework Caffe [19]. We
use a weight decay of 0.0001 and momentum of 0.9 with batch size of 128. The
initial learning rate is 0.1 without “warm up” for any model. The initial learning
rate for residual weights is set to 0.001. The filter parameters are initialized by
“msra” [15]. The residual weights are set to all-zeros. We are not meant to push
the state-of-the-art performance on CIFAR-10 so we follow the same training
strategy as [3]. All the models are trained for 64k iterations and the learning
rate is divided by 10 at 32k and 48k iterations. We also adapt the simple data
augmentation as it is shown in [20]: 4 pixels are padded around the training
images with zero-values and a translated or mirrored 32 x 32 crop is fed into
the networks. We do not have val set and the model at the end of training is
used to perform on the test set. In the test stage, the original 32 x 32 images
are evaluated.

The network contains three blocks and the feature map is halved twice.
There are totally 6n + 4 layers as it is shown in Table [l We compare n =
{1,3,9,18,48,100, 198}, which leads to 10, 22, 58, 112, 292, 604 and 1192-layer
networks.

Table 1: Our weighted residual network comprises of three blocks similar to [3].
The first block is started with a 3 x 3 convolutional layer with stride 1. The latter
two blocks are started with a 3 x 3 convolutional layer with stride 2. There are
6n + 4 layers in the whole networks (with the final FC layer).

feature size 32 x 32 16 x 16 8 x 8
filter number 16 32 64
layer number 2n+1 2n+1 2n+1

4 Experiments

In this section we present and analyze the experiment results on CIFAR-10 to
demonstrate the effectiveness of the weighted residual networks.

o

Weighted Residuals for Very Deep Networks

—resnet 10 layers
——resnet 22 layers
——resnet 58 layers

0.9
"

804l 9 .
- o

> Soss

g Y

£037 S0.86

3 5]

o2t o84

= c

£ '§0.82

——resnet 10 layers

0.8 ... ——resnet 22 layers
——resnet 58 layers
0 078 L L L h .
0 3 1 2 3 4 5 6
iter.(1e4) iter.(1e4)
(a) training curve (b) test curve
- , . : : 0.6 , , , ,
4 —resnet 112 layers —resnet 112 layers
—resnet 292 layers 05| —resnet 292 layers |
——resnet 604 layers) ——resnet 604 layers
@ —resnet 1192 layers » —resnet 1192 layers
a 204+ 1
=3 o
> >
Q Q
2 Soaf J
f=4 f=4
[} [}
2 Zoz2t 1
= [~) A\
Sos s
e ot 1
L L 0 = =

iter.(1e4)

(c) training curve

iter.(1e4)

(d) zoom in at training curve

Fig.5: Comparisons of the original residual networks and the weighted residual
networks on the CIFAR-10. The bold lines denote the weighted residual net-
works and the dashed lines denote the original residual networks. The top left
figure is the training entropy loss and the top right figure is the corresponding
test accuracy on shallow networks. The bottom left figure records the training
entropy loss for very deep networks and the bottom right figure is the zoomed
version for more details.

Fig. 6: Test accuracy on CIFAR-10. The original 1192-layer residual network fails

0.96

0.95

T T
I original residual networks
| | [Jweighted residual networks

test accuracy
o o o o
[{e] (<o) O [{e]
- N w S
T

o
©

0.89

10 layers

22 layers

58 layers

112 layers 292 layers 604 layers 1192 layers

to reach a meaningful result in the training stage and we do not report it.

10 Shen et al.

4.1 Results

Convergence. Firstly we experiment on shallow networks (layer number < 100).
As it is shown in Figure [5fa) and Figure [5{b), both of the weighted residual
networks and the original residual networks have very similar performance of
convergence and final accuracy on shallow networks.

Then we conduct experiments on very deep networks (layer number > 100).
In Figure c), the weighted residual network shows much better performance
on convergence in the training stage. In fact, networks with depths beyond 1000
layers still converge faster than the 112-layer networks in Figure d). As con-
trary, the original residual network does not converge well and the 1192-layer
network even does not converge at all as we did not apply the “warm up” strat-
egy. However, even equipped with “warm up”, the original 1192-layer residual
network ends with over-fitting and reaches a worse performance than the 112-
layer network as it is reported in [3].
Accuracy. The overall test accuracy of deep networks on CIFAR-10 is re-
ported in Figure [6] The blue histograms denote the performance of the orig-
inal networks. The accuracy decreases after the layer number is larger than
100. However, for the weighted residual networks, which are denoted as yellow
histograms, the performance enjoys a consistent improvement with the increas-
ing depths from 10+ layers to 1000+ layers.

The weighted residual networks can always converge faster and reach a higher
performance when there are more layers throughout our experiments.

4.2 Comparison with the State-of-the-art

In this subsection we compare the weighted residual networks (WResNet) with
other recently proposed models. Mainly there are two kinds of models, first of
which focus on enlarging the feature dimension and we call them wide models,
the second of which focus on depths and we call them deep models. Note that
1001-layer Pre-activation [4] is both deep (1000+ layers) and wide (4x feature
dimension) model. The results are presented in Table All these models, except
for Highway [13], share similar structures with ResNet [3], including three feature
blocks.

Pre-activation [4] adapted a convi-conv3-convl bottle-neck structure and
enlarged the feature dimension by 4x. Apparently a 4x wider model enjoys a
higher performance but costs more GPU memory. As the GPU memory (12GB
for one GTX TITAN X) resource is limited, it is important to tune the model
width and depth economically for a very accurate model. WideDim [7] and RiR
[5] are two other methods to enlarge the feature dimension for higher accuracy. A
clear tendency is that a wider feature is better for higher performance. WideDim
adapted a 10x feature dimension and reached a very high performance (95.8%)
on CIFAR-10. Dropout [6] realized stochastic depth networks by applying the
dropout operation on the residual signal at exactly the same GPU memory cost.
The only defect resides that it needs much more epochs (about 2x) to converge
at a good performance.

Weighted Residuals for Very Deep Networks 11

Table 2: Test accuracy(%) on CIFAR-10.

Type method depth | feature dim.| epochs | acc.(%)
Highway 32 - - 91.2
Pre-activation 164 64-128-256 200 94.5
wide models| WideDim 28 160-320-640 200 95.8
RiR 18 96-192-384 82 95.0
ResNet 1202 16-32-64 164 92.1
Pre-activation| 1001 64-128-256 200 95.4
deep models Dropout 1202 16-32-64 300 95.1
WResNet 1192 16-32-64 164 94.9
WResNet-d| 1192 16-32-64 164 95.3

The weighted residual networks make very deep networks training converge
faster and reach a good performance while bringing little more computation and
GPU memory burden. As time and GPU resource is limited, we have not tuned
the model width (feature dim.) or more training epochs and we are meant to
explore the effectiveness of the weighted residuals in training very deep models.
Yet with shorter feature dim., the weighted residual networks still perform much
better than the original residual networks and reach a quite meaningful accuracy
as shown in Table 2

We further apply dropout on the residuals with dropout_ratio = {0.2,0.4,0.6}
for three blocks as proposed by [6]. The performance of this model is named as
WResNet-d. With only about half training epochs of [6], the weighted residual
networks with dropout reach a relative very high performance (95.3%).

4.3 Analysis

We provide more insights into the weighted residual networks by presenting more
details information of results in this subsection.

0.4
g
= 02
>
_‘g) l
2 o
=
S-0.2
o
(7}
E | | | | |

0.4 I I I I I I
2 102 202 302 403 503 603 703 804 904 1004 1104

layer number

Fig. 7: The residual weight values from a trained 1192-layer model on CIFAR-10.

The initial learning rate for the residual weights is set to 0.001 for all models
and the residual weights are initialized with zeros. Figure [7] shows the learned

12 Shen et al.

4
3 —
S
52 -
o
[
Q1 -
0
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
residual weight value
(a) 8k iterations
4
3 = —
S
Taf 1
o
[
Q.1 - -
0
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
residual weight value
(b) 16k iterations
4
3 - .
S
820]
o
[9]
Q.

0
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
residual weight value
(c) 32k iterations
4
3 - .
2
T2 B
Q
o
[0
Q9L |
0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
residual weight value

(d) 64k iterations

Fig. 8: Evolution of the distribution of the residual weight values in the training
stage of a 1192-layer weighted residual network on CIFAR-10.

Weighted Residuals for Very Deep Networks 13

residual weight values in each element-wise addition layer in a 1192-layer model.
It comprises two parts divided by a visible sharp boundary around the 800-layer
and the latter residuals have larger weights. It may imply the residuals from the
later layers are more important than earlier layers on the final decisions. We will
explore this phenomenon in the future work.

We have also plotted the evolution history of the distribution of the residual
weight values as show in Figure 8] At the 8k iteration, the distribution is rela-
tive uniform. As more and more training iterations, the distribution begins to
concentrate around two peaks. In the 64k iteration, most of the residual weight
values are around 0.2 and —0.2 in a symmetry mode indicating that the branched
residual signals have equal probability to enhance/weaken the highway signals,
which verifies our hypothesi. Therefore the learned residual weights can solve
the incompatibility between ReLU activation and element-wise addition appro-
priately.

5 Conclusion

The original residual networks have two defects, 1) Incompatibility between ReLU
and element-wise addition. 2) Difficulty for networks to converge with depths be-
yond 1000-layer using “msra” initializer. In this paper we introduce the weighted
residual networks to make very deep residual networks converge faster and reach
a higher performance with little more computation and GPU memory burden
than the original residual networks. All the residuals are added to the highway
signal gradually by the learned slowly growing-up weights to promise conver-
gence. Experiments on CIFAR-10 have demonstrated the effectiveness of the
weighted residual networks for very deep models. It enjoys a consistent improve-
ments over accuracy and convergence with the increasing depths from 1004
layers to 1000+ layers. The weighted residual networks are simple and easy to
implement while having surprising practical effectiveness, which makes it par-
ticular useful for complicated residual networks in research community and real
applications.

References

1. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision 115 (2015) 211-252

2. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact
of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

4. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
arXiv preprint arXiv:1603.05027 (2016)

5. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual archi-
tectures. arXiv preprint arXiv:1603.08029 (2016)

14

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Shen et al.

. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.: Deep networks with stochas-
tic depth. arXiv preprint arXiv:1603.09382 (2016)

. Sergey Zagoruyko, N.K.: Deep networks with stochastic depth. arXiv preprint
arXiv:1605.07146 (2016)

. Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
(2012) 1097-1105

. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)

Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task

network cascades. arXiv preprint arXiv:1512.04412 (2015)

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-

tion with region proposal networks. In: Advances in Neural Information Processing

Systems. (2015) 91-99

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In:

Advances in Neural Information Processing Systems. (2015) 2368-2376

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward

neural networks. In: International conference on artificial intelligence and statistics.

(2010) 249-256

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In: Proceedings of the IEEE Interna-

tional Conference on Computer Vision. (2015) 1026-1034

Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

Shah, A., Kadam, E., Shah, H., Shinde, S.: Deep residual networks with exponential

linear unit. arXiv preprint arXiv:1604.04112 (2016)

Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: Neural

Networks, 1989. IJCNN., International Joint Conference on, IEEE (1989) 593-605

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-

rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.

In: Proceedings of the ACM International Conference on Multimedia, ACM (2014)

675678

Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. arXiv

preprint arXiv:1409.5185 (2014)

	Weighted Residuals for Very Deep Networks
	Falong Shen, Gang Zeng

