
Gravitation Field Algorithm with Optimal Detection
for Unconstrained Optimization

Lan Huang, Xuemei Hu, Yan Wang*, Fang Zhang,
Zhendong Liu

College of Computer Science and Technology, Jilin
University

Changchun, China
*E-mail: wy6868@jlu.edu.cn

Wei Pang*
Department of Computing Science

University of Aberdeen
Aberdeen, UK

*E-mail: pang.wei@abdn.ac.uk

Abstract—Gravitation field algorithm (GFA) is a novel
optimization algorithm derived from the Solar Nebular Disk
Model (SNDM) in astronomy, based on the formation of planets,
in recent years. In this research, an improved GFA with Optimal
Detection (GFA-OD) is proposed for unconstrained optimization
problems. Optimal Detection can efficiently locate the space that
more likely contains the optimal solution(s) by initializing part of
dust population randomly in the search space of a given problem,
and then improves the accuracy of solutions. The comparison of
results on four classical unconstrained optimization problems
with varying dimensions demonstrates that the proposed GFA-
OD outperforms many other classical heuristic optimization
algorithms in accuracy, efficiency and running time in lower
dimensions, such as Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO).

Keywords-gravitation field algorithm; optimal detection;
unconstraint optimization;

I. INTRODUCTION
It is well known that the optimization problems have

existed in all aspects of life, many of which are unconstrained
optimization problems. Although research in optimization has
been a long history, it is still challenging to acquire desirable
solutions for complex unconstraint optimization problems,
regardless of accuracy, efficiency, and running time. The
traditional mathematical methods for solving those
unconstrained optimization problems, such as the steepest
descent method [1], the Newton method [2], the conjugate
gradient method [3], and the quasi-Newton method [4], have
such requirements that the optimization problems have to be
continuous and differentiable and even more prior knowledge
needs to be available in advance. This makes it difficult to
solve these complex optimization problems in higher
dimensions.

To address the above issues, many innovative
computational intelligence (CI) have been proposed over the
past several decades, some of which have achieved varying
degrees of success. The significant advantages make
computational intelligence (CI) algorithms widely adopted to
solve unconstrained optimization problems in real-world
application fields. During the second half of last century, many
effective computational intelligence algorithms have been
developed based on imitations of natural phenomena. For

instance, Simulated Annealing (SA) algorithm, proposed by
Metropolis et al. in 1953, was inspired by the annealing
process in metallurgy. Genetic algorithm (GA) [5, 6] originally
proposed by J. Holland in 1975, simulates the natural evolution
selection process, based on Darwin’s biological evolution
theory. Ant colony optimization (ACO) [7, 8] proposed by
Marco Dorigo in 1992 is based on the heuristic process of ants’
food discovery and incorporated the communication
mechanisms among the colony members. Particle swarm
optimization (PSO) [9, 10] proposed by Eberhart and Kennedy
in 1995 simulates a series of bird foraging behavior.
Gravitation field algorithm (GFA) [11,12,13] proposed by
Zheng et al. in 2012 simulates the formation of planets based
on the SNDM [14] in astronomy. These innovative CI
algorithms have good performance and some of them have
been successful applied in many real-world optimization
problems, especially, in unconstrained optimization problems.

Although the above innovative CI algorithms have
achieved good results when solving unconstrained optimization
problems with respect to accuracy, efficiency, or running time,
they still have much room for improvement, such as,
improving the accuracy of solutions in the given time.

In this paper, we address the above key issues and propose
an improved version of GFA, which is called Gravitation Field
Algorithm with optimal detection (GFA-OD). In GFA-OD, we
devise an improved strategy called Optimal Detection locate a
small enough search space which more likely contains the
optimal solution(s) by initializing part of the dust population
randomly in given search space for a problem, which decreases
the running time and suits better for any other swarm
intelligence optimization algorithms. From the experimental
results on four complex unconstraint optimization problems we
find that GFA-OD is superior to two other classical
optimization algorithms: GA and PSO, in terms of accuracy,
efficiency, and running time. The experimental results
demonstrate the promising application potential of GFA-OD to
more complex and real-world unconstrained optimization
problems.

This work is supported by the National Natural Science Foundation of
China (Grant Nos. 61472159, 61572227), Development Project of Jilin
Province of China (Nos. 20160204022GX, 20160414009GH, 2017C033).

weipang
Typewritten Text
Final Accepted Version. This paper has been accepted by The 2017 4th International Conference on Systems and Informatics (ICSAI 2017), IEEE press, pp. 1328-1333, Hangzhou, Zhejiang, China, 11-13 November, 2017

II. GRAVITATION FIELD ALGORITHM WITH OPTIMAL
DETECTION

A. The Original Gravitation Field Algorithm
GFA originally proposed by Zheng et al. in 2012 is a novel

heuristic search algorithm. The basic idea of GFA is to
simulate the formation process of planets, derived from the
Solar Nebular Disk Model (SNDM). In GFA, all individuals
can be mimicked as dusts with mass and each of them belongs
to a certain group, and the best one is regarded as center dusts
and others are the surrounding dusts in each group. Based on
SNDM, each center dusts attracts their surrounding dusts by
the gravitation field, and the field makes all surrounding dusts
move toward their center dusts with heaviest mass. In addition,
each dust has four characteristics: position, mass, group
number, a Boolean value that records whether it is a center.
The first one corresponds to a solution of the problem, the
second one is initialized randomly, and the other two are
determined by mass function. The detailed steps of GFA is as
follows:

1) First, initialization. Generating n dusts ()1,2,iD i n= L
randomly distributed in the mass function domain boundary to
establish the initial solution space.

2) Second, dividing the search space into several
subspaces. In any subspace, the dust with the biggest value of
mass is called the center dust and we assign the flag 1iF = , the
others are surrounding dusts and we assign the flag 0iF = .

3) Third, moving dusts. The pace of movement is
determined by Equation (1).

i iPace M dis= × , (1)
where idis is the distance between the moving surrounding
dust and its center dust in [11, 12] and M is a weight value for
the distance.

4) Fourth, absorbing dusts. Some surrounding dusts
which are close enough to their center dusts are absorbed by
their center dusts and are eliminated from the initial search
space for increasing the convergence speed of GFA.

5) Finally, checking the termination criterion. If the
algorithm does not meet the stopping condition, GFA will go
to 3), otherwise, the algorithm stops.

The study on initial application cases demonstrates that
original GFA can handle unimodal and multimodal functions
optimization effectively. But there are still some limitations of
the original GFA.

1) It is particularly sensitive to the initial population. It is
reported that the accuracy of solution is closely related to the
initial population.

2) The accuracy of optimal solution is not desirable. As
with other swarm intelligence optimization algorithms, it is
easy to fall into local optima.

B. Gravitation Field Algorithm with optimal detection
To overcome the shortcoming of GFA presented above, an

improved Gravitation Field Algorithm with optimal detection
(GFA-OD for short) was proposed. Optimal Detection was
performed when the parameter settings are completed. It can

efficiently locate a small enough search space which more
likely contains the optimal solution(s) by initializing part of
dusts population randomly in certain areas of the problem
search space, and this can decrease the number of iterations for
the whole GFA-OD and thus shorten the algorithm running
time. In addition, the improvement can help obtain a more
desirable optimal solution.

1) Optimal Detection
The original GFA, which is started with dusts population

being initialized randomly in given search space, makes it a
long iterative process to find a solution that meets the accuracy
requirement. And the solution that the original GFA finds may
be even a suboptimal solution whose accuracy could be
comparable to the solutions that classical heuristic search
algorithms find, such as GA and PSO. Therefore, to improve
the accuracy and shorten the overall running time, an optimal
solution improvement strategy named Optimal Detection is
proposed for GFA-OD in this research.

Optimal Detection is not only an important improvement in
this paper but also the core part for GFA-OD. The task of
Optimal Detection is to acquire a small enough space quickly
involving the optimal solution with higher probability. It
begins with part of dusts being initialized randomly in the
problem search space. Then the dusts in the top %w of the
population are selected to calculate the boundary of the target
space. If the space is small enough, this process will stop and
the next process will be performed; otherwise repeat the above
process of detection several times until the space is small
enough, based on the requirement of accuracy for a given
problem. The small enough target space called Optimal Space
involving the optimal solution will be identified eventually
when the process of detection is completed. Once the algorithm
found the Optimal Space, GFA-OD does not need to initialize
the population randomly any more across the entire search
space, and it just needs to initialize the population randomly
within the optimal space that GFA-OD has identified. The
strategy of initializing the population in optimal space shortens
the running time because GFA-OD does not need a long
iterative process any more to find a solution that meets the
accuracy requirement. The Optimal Detection proposed for
GFA-OD is illustrated in Fig. 1.

Figure 1. The process of optimal detection

Fig. 1 shows that the space that GFA-OD acquires to be
smaller and smaller with the process of ongoing detection. In

each detection, the dusts in the top %w of current population,
namely maxs, need to be picked out. To get the dusts in the top
%w of the entire population, GFA-OD has to spend time in

sorting part of dusts. Obviously, the smaller the value of the
%w is, the less time on sorting the top %w dusts is required.

Therefore, the value of %w determines the speed at which the
optimal space is found. In addition, the value of %w is closely
related to the quality of the finally solution. When the value of
%w is close to 0, the time spent on detection is less, but in this

case, the algorithm falls into local optimal solutions with
higher probability. When the value of %w is close to 1, the
time spending on detection is higher; in this case, the algorithm
falls into local optimal solutions with lower probability. In this
paper, we set %w as 5% 20%− based on the size of population
and the dimensions of given problems.

The pseudo code of acquiring the value of boundary of the
Optimal Space is presented in OptimalDetect, which is the core
part of the optimal detection. Where d is the number of
dimensions of the search space for a given problem, N is the
size of dusts population, lm is the size of dusts that are the
dusts in the top %w of the entire population, 0 % 1w< < ,
variable maxi is used to get a 2d × matrix named bestBound in
this research, which stores the values of boundary for the
optimal space.

For the sake of getting the maxs to calculate the values of
boundary for the target space, the top %w dusts need to be
picked out in the entire current population of size N firstly,
which requires ()O N comparisons for each dust. When this
process continues to find all members of maxs in the dust
population, the total complexity of this process is ()O N lm× .
To get the lower bound and the upper bound for each
dimension with the maxs of size lm that is described in
OptimalDetect requires ()O d lm× comparisons. In summary,
the process of optimal detection requires an overall of
() ()()O N lm d lm O N d N× + × = + × complexity. Note that

()O N storage is just required for this process.
2) Main loop

According to the above details of GFA-OD, the pseudo-
code of GFA-OD is given in Algorithm GFA-OD.

In Algorithm GFA-OD, the variable bound gives the value
range of iX in all dimensions for each solution iD , N is the
size of population, G is the number of groups, and d is the
number of dimensions of the search space.

The method ‘OptimalDetect’ corresponds to the process of
optimal detection presented above and saves the information
of optimal space with the variable BestBound. The method
‘Initialize’, ‘Group’, ‘Move’, ‘Absorb’, ’Rotate’ still
corresponds to the five processes as in the original GFA. The
method ‘GetCenters’ is used to get the center dusts for each
group and the method ‘GetBest’ is devoted to update the
historical best solution. If M is the number of iterations and set
as one of the stop conditions, it is obvious that the methods
‘Initial’, ‘Group’, ‘MoveAndRotate’, ‘Absorb’, ‘GetCenters’
and ‘GetBest’ just require ()O N computations. Since

‘OptimalDetect’ require ()()O N d N+ × computations, then the

main loop of GFA-OD require overall ()()O M N d N+ ×
computations. Note that ()O N storage is only required for
GFA-OD.

The strategy proposed in GFA-OD overcomes the
limitations of the original GFA, such as the accuracy of
solution not meeting the requirements of XX and the long
running time. However, the introduction of this strategy is at
the cost of running time. It is noted that the strategy of optimal
detection avoids the long iterative process and shortens the
running time although the time complexity has increased
to ()()O M N d N+ × .

III. EXPERIMENTS AND DISCUSSIONS
To assess the performance of GFA-OD proposed in this

research, the following four classical unconstrained
optimization problems in Table I are chosen, which are used to
test the accuracy, efficiency, and running time in different
dimensions. At the same time, this series of classical test
problems are also applied to the GA and PSO to compare with
GFA-OD. 100 independent trials of each algorithm are
performed for solving four benchmark problems, and we

OptimalDetect
1. for k = 1:d
2. maxi← inf
3. mini← inf
4. for i = 1:lm
5. if .i kmaxs X maxi> then
6. .i kmaxi maxs X←
7. elseif .i kmaxs X mini< then
8. .i kmini maxs X←
9. end if
10. end for
11. bestBound(i:1)← mini
12. bestBound(i:2)maxi
13. end

Algorithm GFA-OD
1. bestBound← OptimalDetect (N, bound, targetFun);
2. initialdusts← Initial (bestBound, N, targeFun)
3. [groupdusts,center] ← Group (initialdusts, G)
4. dust ← groupdusts
5. while the stop conditions are not met do
6. movedust ← Move (dust, center, targetFun);
7. absdust Absorb (center, movedust, bestBound);
8. rotatedusts← Rotate(absorbdust, targetFun)
9. dust ← absdust
10. [center,dust] ← GetCenters (G, dust);
11. best← GetBest (best, center);
12. end
13. return optimal solution

choose the median, the Mean squared error, and the Standard
Deviation of the obtained solutions to measure the performance
of these three algorithms. Lastly, we present the experimental
results and make discussions in this section.

A. Benchmark problems and performance measure
1) Test problems

The functions listed in Table I are part of the most
commonly used functions and datasets to test the performance
of unconstraint optimization algorithms. These benchmark
problems are chosen from a number of significant past studies
in unconstraint optimization problems. The functions are
known widely as the Sphere [15], Griewangk [15], Ackley
[15], Zakharov [15], Rotated Hyper-Ellipsoid [16], and Levy
[16] functions, and they can be scaled to any number of
variables (dimensions). Table I also shows the domain, the
objective function, and the global minimum for every
benchmark problem. Additionally, the four benchmark
problems have the same global minimum, and the global
minimum of the four problems are equal to zero, regardless of
the number of variables. The Zakharov, Sphere and Rotated
Hyper-Ellipsoid functions are continuous, convex, unimodal,
and multidimensional; the first one is plate-shaped and the
latter two are bowl-shaped in their two-dimensional forms. The
other functions are multimodal, multidimensional, with a large
number of local optima.

TABLE I. THE TEST PROBLEMS OF GFA-OD, GA AND PSO

Name Variable
ranges Objective function and optimum

Sphere [50,50]ix ∈ − () 2

1

d

i
i

f x x
=

=∑ ， ()0, ,0 0f =L

Griewangk [5,5]ix ∈ − ()
2

11

cos 1
4000

d d
i i

ii

x xf x
i==

⎛ ⎞
= −∏ +⎜ ⎟

⎝ ⎠
∑ ，

()0, ,0 0f =L

Ackley [15,30]ix ∈ − ()
()2

1 =1

1 10.2 cos 2

20 20

d d

i i
i i

x xd df x e e e
π

=

⎛ ⎞ ⎛ ⎞⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
= + − − ，

()0, ,0 0f =L

Zakharov [5,10]ix ∈ − ()
2 4

2

1 1 1
0.5 0.5

d d d

i i i
i i i

f x x ix ix
= = =

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ，

()0, ,0 0f =L

2) Performance measure
To investigate the accuracy, efficiency, and running time of

GFA-OD, we choose three common performance metrics to
evaluate the performance of the three algorithms: GFA-OD,
GA and PSO.

The median value, we choose the median value of solutions
that are found by the three algorithms from 100 individual
trials.
The Mean squared error (MSE) [17]: it has the following
general definition as in (2), where n is the number of tests,
()if x is the solution of the ith trial and ()optf x is the actual

global minimum. Obviously, a lower value of MSE means that
the algorithm achieves better performance.

() ()()2
1

1 n

i opt
i

MSE f x f x
n =

= −∑ . (2)

The Standard Deviation (STD) [18]: it has the following
general definition as in (3), where n is the number of tests,

()if x is the solution of the ith trial and ()f x is the mean of

all the ()if x . As with MSE, a lower value of MSE stands for
better performance of the algorithm.

() ()()()
2

1

1
1

n

i
i

STD f x f x
n =

= −
− ∑ . (3)

The median value and the MSE are adopted to measure the
accuracy of solutions that are obtained by three different
algorithms. The STD is employed to measure the stability of
the performance for the three test algorithms.

3) Parameter settings
The basic parameters for three algorithms are set as in

Table II. The size of the population is set as 1000* d , where d
is the number of dimensions of given search space, moreover,
d =2, 3, 5, 10, 20 in this research. The maximum number of
iterations are set differently for the three different algorithms to
control their running time in the same dimension, which for
GFA-OD is 20, for GA and PSO is 200* d . It is noted that the
maximum number of iterations for GFA-OD is much less than
that for GA and PSO, because the introduction of Optimal
Detection can find the approximate location of the optimal
solution in search space, which is employed to avoid the long
iterative process. The number of groups is just set as 3 for
GFA-OD to ensure multi-agents. The parameter TolFun is the
average change in the value of the fitness function or mass
function and it is changed from the default value of 1.0e-6 to
1.0e-30 to ensure that the optimal solution they acquire is
accurate enough.

TABLE II. THE PARAMETERS SETTING FOR EGFA, GA AND PSO

Parameters
setting EGFA GA PSO

Population size 100* d 100* d 100* d

Max number
iterations 20 200* d 200* d

The number of
groups 3 - -

TolFun 1.0e-30 1.0e-30 1.0e-30

B. Results and Discussions

In this research, every benchmark problem shown in Table
I, is scaled to different number of variables, whose value range
of each dimension is also set in Table I. The basic parameters
of each algorithm are set as in Table II. Three performance
metrics, the median, MSE and STD, are employed to measure
the accuracy and efficiency of each algorithm in given running

time. In this research, we do not make any systematic
investigations on finding the best parameters for EGFA and we
just focus on the accuracy of each algorithm in a given running
time. In addition, a higher accuracy of the optimal solution
indicates better performance of the algorithm.

To compare the performance of EGFA, GA and PSO on
unconstrained optimization problems with different number of
dimensions in given running time, four test problems with 2, 3,
5, 10, 20 dimensions are considered in this study. The
comparisons of three algorithms: EGFA, GA and PSO on three
of the four test problems in median, MSE and STD are shown
in Figs. 2-4. (The results of Figs. 2-4 are the median value, the
MSE and the STD of 100 tests, which the size of the
population is set as 1000* d , where d is the number of
dimensions and d=2, 3, 5, 10, 20, the iterations for EGFA is set
as 20, for GA and PSO is set as 200*.) Fig. 2 shows that EGFA
has better performance in accuracy than GA and PSO,
especially in low-dimension search spaces. Fig. 3 shows that
the solution EGFA finds has smaller error than the other two
classical optimization algorithms. Fig. 4 demonstrates that
EGFA has more stable performance compared with GA and
PSO. In addition, the accuracy of solutions obtained by EGFA
will decrease with the increase of the dimensions of search
space like PSO, but EGFA has better accuracy than PSO as
shown in Figs. 5-7.

Figure 2. A Comparison of EGFA, GA and PSO in log10(median) with
2,3,5,10,20 dimensions

Figure 3. A Comparison of EGFA, GA and PSO in log10(MSE) with

2,3,5,10,20 dimensions

Figure 4. A Comparison of EGFA, GA and PSO in log10(STD) value with
2,3,5,10,20 dimensions

Besides the accuracy, the running time is another very

important factor to measure the efficiency of an algorithm. It is
obvious that the introduction of Optimal Detection is at cost of
time, but the optimal space acquired by the Optimal Detection
can help to decrease the number of iterations and shorten the
overall algorithm running time. The total running time of three
algorithms for 100 trials on three of the four test problems with
the number of dimensions d=2, 3, 5, 10, 20 is reported in Fig.
5. As one can see that PSO is the fastest algorithm, but it has
the lowest accuracy compared to EGFA and GA. Moreover,
EGFA performs better than GA on these test problems with the
same running time. Table III also shows that the running time
of the three algorithms on the benchmark problems increases
dramatically with the increase of the dimensions. All
experiments were implemented on a PC (i5-4200M, 8GB,
Windows 7, Matlab R2014a).

Figure 5. A Comparison of EGFA, GA and PSO in log10(STD) value with

2,3,5,10,20 dimensions

IV. CONCLUSION
In this research, a novel GFA-OD is presented based on the

original GFA. A novel accuracy improvement strategy called
Optimal Detection is employed to quickly identify the so-called
optimal space that contains the optimal solution in search space
with higher probability. All the four complex benchmark
problems taken from literatures in unconstraint optimization
are chosen to evaluate the performance of GFA-OD. The
experimental results show that the proposed GFA-OD has
better performance in accuracy, efficiency, and running time
compared with GA and PSO. It is noted that the solutions
which GFA-OD finds are frequently closer to the actual
optimal solutions than the other two algorithms in lower
dimension search spaces on all the four benchmark problems,
but at the same time, we also notice the fact that all the three
optimization algorithms face challenges on complex
unconstraint optimization problems in higher dimensions both
in terms of accuracy and running time, especially when the
dimension is larger than 20, which needs us to make more
efforts in future research. Our study of GFA-OD applied to
complex unconstraint optimization problems in higher
dimensions is in progress. Future research will include how to
find more effective methods to adjust the parameters according
to the information of specific problems.

REFERENCES
[1] B. Chatterjee, Steepest Descent Method: Springer US, 2013.
[2] F. Ahmad, E. Tohidi, and J. A. Carrasco, "A parameterized multi-step

Newton method for solving systems of nonlinear equations," Numerical
Algorithms, vol. 71, pp. 1-23, 2016.

[3] J. Zhao, E. A. H. Vollebregt, and C. W. Oosterlee, "A fast nonlinear
conjugate gradient based method for 3D concentrated frictional contact
problems," Journal of Computational Physics, vol. 288, pp. 86-100,
2015.

[4] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, "A Stochastic
Quasi-Newton Method for Large-Scale Optimization," Siam Journal on
Optimization, vol. 26, 2015.

[5] M. A. Salido, J. Escamilla, A. Giret, and F. Barber, "A genetic algorithm
for energy-efficiency in job-shop scheduling," The International Journal
of Advanced Manufacturing Technology, vol. 85, pp. 1303-1314, 2016.

[6] E. Elyan and M. M. Gaber, "A Genetic Algorithm Approach to
Optimising Random Forests Applied to Class Engineered Data,"
Information Sciences, 2016.

[7] T. Liao, K. Socha, M. A. M. D. Oca, and T. Stützle, "Ant Colony
Optimization for Mixed-Variable Optimization Problems," IEEE
Transactions on Evolutionary Computation, vol. 18, pp. 503-518, 2014.

[8] Z. Wang, H. Xing, T. Li, and Y. Yang, "A Modified Ant Colony
Optimization Algorithm for Network Coding Resource Minimization,"
IEEE Transactions on Evolutionary Computation, vol. 20, pp. 1-1, 2015.

[9] J. Kennedy and R. Eberhart, Particle swarm optimization: Springer US,
2011.

[10] X. L. Wen, J. C. Huang, D. H. Sheng, and F. L. Wang, "Conicity and
cylindricity error evaluation using particle swarm optimization,"
Precision Engineering, vol. 34, pp. 338-344, 2010.

[11] M. Zheng, G. Liu, C. Zhou, Y. Liang, and Y. Wang, "Gravitation field
algorithm and its application in gene cluster," Algorithms for Molecular
Biology, vol. 5, pp. 1-11, 2010.

[12] M. Zheng, Y. Sun, G. Liu, Y. Zhou, and C. Zhou, "Improved Gravitation
Field Algorithm and Its Application in Hierarchical Clustering," Plos
One, vol. 7, p. e49039, 2012.

[13] M. Zheng, G. X. Liu, Y. Zhou, and C. G. Zhou, "Reconstruction of gene
regulatory network based on gravitation field algorithm," Jilin Daxue
Xuebao, vol. 44, pp. 427-432, 2014.

[14] K. J. Walsh and A. Morbidelli, "The Effect of an Early Planetesimal-
Driven Migration of the Giant Planets on Terrestrial Planet Formation,"
vol. 526, pp. 202-207, 2011.

[15] Yang and Xin‐She, "Appendix A: Test Problems in Optimization,"
Engineering Optimization, pp. 261-266, 2010.

[16] M. Laguna and R. Martí, "Experimental Testing of Advanced Scatter
Search Designs for Global Optimization of Multimodal Functions,"
Journal of Global Optimization, vol. 33, pp. 235-255, 2005.

[17] G. Steenackers and P. Guillaume, "Bias-specified robust design
optimization: A generalized mean squared error approach," Computers
& Industrial Engineering, vol. 54, pp. 259-268, 2008.

[18] A. Majumder, "Application of Standard Deviation Method Integrated
PSO Approach in Optimization of Manufacturing Process Parameters,"
Handbook of Research on Artificial Intelligence Techniques &
Algorithms, 2015.

