
Gravitation Field Algorithm with Optimal Detection 
for Unconstrained Optimization  

 

Lan Huang, Xuemei Hu, Yan Wang*, Fang Zhang, 
Zhendong Liu 

College of Computer Science and Technology, Jilin 
University 

Changchun, China 
*E-mail: wy6868@jlu.edu.cn 

Wei Pang* 
Department of Computing Science 

University of Aberdeen 
Aberdeen, UK 

 
*E-mail: pang.wei@abdn.ac.uk

  
Abstract—Gravitation field algorithm (GFA) is a novel 
optimization algorithm derived from the Solar Nebular Disk 
Model (SNDM) in astronomy, based on the formation of planets, 
in recent years. In this research, an improved GFA with Optimal 
Detection (GFA-OD) is proposed for unconstrained optimization 
problems. Optimal Detection can efficiently locate the space that 
more likely contains the optimal solution(s) by initializing part of 
dust population randomly in the search space of a given problem, 
and then improves the accuracy of solutions. The comparison of 
results on four classical unconstrained optimization problems 
with varying dimensions demonstrates that the proposed GFA-
OD outperforms many other classical heuristic optimization 
algorithms in accuracy, efficiency and running time in lower 
dimensions, such as Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO). 

Keywords-gravitation field algorithm; optimal detection;  
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I.  INTRODUCTION 
It is well known that the optimization problems have 

existed in all aspects of life, many of which are unconstrained 
optimization problems. Although research in optimization has 
been a long history, it is still challenging to acquire desirable 
solutions for complex unconstraint optimization problems, 
regardless of accuracy, efficiency, and running time. The 
traditional mathematical methods for solving those 
unconstrained optimization problems, such as the steepest 
descent method [1], the Newton method [2], the conjugate 
gradient method [3], and the quasi-Newton method [4], have 
such requirements that the optimization problems have to be 
continuous and differentiable and even more prior knowledge 
needs to be available in advance. This makes it difficult to 
solve these complex optimization problems in higher 
dimensions. 

To address the above issues, many innovative 
computational intelligence (CI) have been proposed over the 
past several decades, some of which have achieved varying 
degrees of success. The significant advantages make 
computational intelligence (CI) algorithms widely adopted to 
solve unconstrained optimization problems in real-world 
application fields. During the second half of last century, many 
effective computational intelligence algorithms have been 
developed based on imitations of natural phenomena. For 

instance, Simulated Annealing (SA) algorithm, proposed by 
Metropolis et al. in 1953, was inspired by the annealing 
process in metallurgy. Genetic algorithm (GA) [5, 6] originally 
proposed by J. Holland in 1975, simulates the natural evolution 
selection process, based on Darwin’s biological evolution 
theory. Ant colony optimization (ACO) [7, 8] proposed by 
Marco Dorigo in 1992 is based on the heuristic process of ants’ 
food discovery and incorporated the communication 
mechanisms among the colony members. Particle swarm 
optimization (PSO) [9, 10] proposed by Eberhart and Kennedy 
in 1995 simulates a series of bird foraging behavior. 
Gravitation field algorithm (GFA) [11,12,13] proposed by 
Zheng et al. in 2012 simulates the formation of planets based 
on the SNDM [14] in astronomy. These innovative CI 
algorithms have good performance and some of them have 
been successful applied in many real-world optimization 
problems, especially, in unconstrained optimization problems.  

Although the above innovative CI algorithms have 
achieved good results when solving unconstrained optimization 
problems with respect to accuracy, efficiency, or running time, 
they still have much room for improvement, such as, 
improving the accuracy of solutions in the given time. 

In this paper, we address the above key issues and propose 
an improved version of GFA, which is called Gravitation Field 
Algorithm with optimal detection (GFA-OD). In GFA-OD, we 
devise an improved strategy called Optimal Detection locate a 
small enough search space which more likely contains the 
optimal solution(s) by initializing part of the dust population 
randomly in given search space for a problem, which decreases 
the running time and suits better for any other swarm 
intelligence optimization algorithms. From the experimental 
results on four complex unconstraint optimization problems we 
find that GFA-OD is superior to two other classical 
optimization algorithms: GA and PSO, in terms of accuracy, 
efficiency, and running time. The experimental results 
demonstrate the promising application potential of GFA-OD to 
more complex and real-world unconstrained optimization 
problems. 
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II. GRAVITATION FIELD ALGORITHM WITH OPTIMAL 
DETECTION 

A. The Original Gravitation Field Algorithm 
GFA originally proposed by Zheng et al. in 2012 is a novel 

heuristic search algorithm. The basic idea of GFA is to 
simulate the formation process of planets, derived from the 
Solar Nebular Disk Model (SNDM). In GFA, all individuals 
can be mimicked as dusts with mass and each of them belongs 
to a certain group, and the best one is regarded as center dusts 
and others are the surrounding dusts in each group. Based on 
SNDM, each center dusts attracts their surrounding dusts by 
the gravitation field, and the field makes all surrounding dusts 
move toward their center dusts with heaviest mass. In addition, 
each dust has four characteristics: position, mass, group 
number, a Boolean value that records whether it is a center. 
The first one corresponds to a solution of the problem, the 
second one is initialized randomly, and the other two are 
determined by mass function. The detailed steps of GFA is as 
follows: 

1) First, initialization. Generating n dusts ( )1,2,iD i n= L  
randomly distributed in the mass function domain boundary to 
establish the initial solution space. 

2) Second, dividing the search space into several 
subspaces. In any subspace, the dust with the biggest value of 
mass is called the center dust and we assign the flag 1iF = , the 
others are surrounding dusts and we assign the flag 0iF = . 

3) Third, moving dusts. The pace of movement is 
determined by Equation  (1). 

i iPace M dis= ×  ,             (1) 
where idis  is the distance between the moving surrounding 
dust and its center dust in [11, 12] and M is a weight value for 
the distance. 

4) Fourth, absorbing dusts. Some surrounding dusts 
which are close enough to their center dusts are absorbed by 
their center dusts and are eliminated from the initial search 
space for increasing the convergence speed of GFA. 

5) Finally, checking the termination criterion. If the 
algorithm does not meet the stopping condition, GFA will go 
to 3), otherwise, the algorithm stops. 

The study on initial application cases demonstrates that 
original GFA can handle unimodal and multimodal functions 
optimization effectively. But there are still some limitations of 
the original GFA. 

1) It is particularly sensitive to the initial population. It is 
reported that the accuracy of solution is closely related to the 
initial population.  

2) The accuracy of optimal solution is not desirable. As 
with other swarm intelligence optimization algorithms, it is 
easy to fall into local optima. 

B. Gravitation Field Algorithm with optimal detection 
To overcome the shortcoming of GFA presented above, an 

improved Gravitation Field Algorithm with optimal detection 
(GFA-OD for short) was proposed. Optimal Detection was 
performed when the parameter settings are completed. It can 

efficiently locate a small enough search space which more 
likely contains the optimal solution(s) by initializing part of 
dusts population randomly in certain areas of the problem 
search space, and this can decrease the number of iterations for 
the whole GFA-OD and thus shorten the algorithm running 
time. In addition, the improvement can help obtain a more 
desirable optimal solution.  

1) Optimal Detection 
The original GFA, which is started with dusts population 

being initialized randomly in given search space, makes it a 
long iterative process to find a solution that meets the accuracy 
requirement. And the solution that the original GFA finds may 
be even a suboptimal solution whose accuracy could be 
comparable to the solutions that classical heuristic search 
algorithms find, such as GA and PSO. Therefore, to improve 
the accuracy and shorten the overall running time, an optimal 
solution improvement strategy named Optimal Detection is 
proposed for GFA-OD in this research.  

Optimal Detection is not only an important improvement in 
this paper but also the core part for GFA-OD. The task of 
Optimal Detection is to acquire a small enough space quickly 
involving the optimal solution with higher probability. It 
begins with part of dusts being initialized randomly in the 
problem search space. Then the dusts in the top %w  of the 
population are selected to calculate the boundary of the target 
space. If the space is small enough, this process will stop and 
the next process will be performed; otherwise repeat the above 
process of detection several times until the space is small 
enough, based on the requirement of accuracy for a given 
problem. The small enough target space called Optimal Space 
involving the optimal solution will be identified eventually 
when the process of detection is completed. Once the algorithm 
found the Optimal Space, GFA-OD does not need to initialize 
the population randomly any more across the entire search 
space, and it just needs to initialize the population randomly 
within the optimal space that GFA-OD has identified. The 
strategy of initializing the population in optimal space shortens 
the running time because GFA-OD does not need a long 
iterative process any more to find a solution that meets the 
accuracy requirement. The Optimal Detection proposed for 
GFA-OD is illustrated in Fig. 1.  

 
Figure 1.  The process of optimal detection 

Fig. 1 shows that the space that GFA-OD acquires to be 
smaller and smaller with the process of ongoing detection. In 



each detection, the dusts in the top %w  of current population, 
namely maxs, need to be picked out. To get the dusts in the top 
%w  of the entire population, GFA-OD has to spend time in 

sorting part of dusts. Obviously, the smaller the value of the 
%w  is, the less time on sorting the top %w  dusts is required. 

Therefore, the value of %w  determines the speed at which the 
optimal space is found. In addition, the value of %w is closely 
related to the quality of the finally solution. When the value of 
%w  is close to 0, the time spent on detection is less, but in this 

case, the algorithm falls into local optimal solutions with 
higher probability. When the value of %w  is close to 1, the 
time spending on detection is higher; in this case, the algorithm 
falls into local optimal solutions with lower probability. In this 
paper, we set %w  as 5% 20%− based on the size of population 
and the dimensions of given problems. 

The pseudo code of acquiring the value of boundary of the 
Optimal Space is presented in OptimalDetect, which is the core 
part of the optimal detection. Where d is the number of 
dimensions of the search space for a given problem, N is the 
size of dusts population, lm is the size of dusts that are the 
dusts in the top %w of the entire population, 0 % 1w< < , 
variable maxi is used to get a 2d ×  matrix named bestBound in 
this research, which stores the values of boundary for the 
optimal space. 

For the sake of getting the maxs to calculate the values of 
boundary for the target space, the top %w dusts need to be 
picked out in the entire current population of size N firstly, 
which requires ( )O N  comparisons for each dust. When this 
process continues to find all members of maxs in the dust 
population, the total complexity of this process is ( )O N lm× . 
To get the lower bound and the upper bound for each 
dimension with the maxs of size lm that is described in 
OptimalDetect requires ( )O d lm×  comparisons. In summary, 
the process of optimal detection requires an overall of 
( ) ( )( )O N lm d lm O N d N× + × = + ×  complexity. Note that 

( )O N  storage is just required for this process. 
2) Main loop 

According to the above details of GFA-OD, the pseudo-
code of GFA-OD is given in Algorithm GFA-OD. 

In Algorithm GFA-OD, the variable bound gives the value 
range of iX  in all dimensions for each solution iD , N is the 
size of population, G  is the number of groups, and d is the 
number of dimensions of the search space.  

The method ‘OptimalDetect’ corresponds to the process of 
optimal detection presented above and saves the information 
of optimal space with the variable BestBound. The method 
‘Initialize’, ‘Group’, ‘Move’, ‘Absorb’, ’Rotate’ still 
corresponds to the five processes as in the original GFA. The 
method ‘GetCenters’ is used to get the center dusts for each 
group and the method ‘GetBest’ is devoted to update the 
historical best solution. If M is the number of iterations and set 
as one of the stop conditions, it is obvious that the methods 
‘Initial’, ‘Group’, ‘MoveAndRotate’, ‘Absorb’, ‘GetCenters’ 
and ‘GetBest’ just require ( )O N computations. Since 

‘OptimalDetect’ require ( )( )O N d N+ × computations, then the 

main loop of GFA-OD require overall ( )( )O M N d N+ ×  
computations. Note that ( )O N  storage is only required for 
GFA-OD.  

The strategy proposed in GFA-OD overcomes the 
limitations of the original GFA, such as the accuracy of 
solution not meeting the requirements of XX and the long 
running time. However, the introduction of this strategy is at 
the cost of running time. It is noted that the strategy of optimal 
detection avoids the long iterative process and shortens the 
running time although the time complexity has increased 
to ( )( )O M N d N+ × . 

III. EXPERIMENTS AND DISCUSSIONS 
To assess the performance of GFA-OD proposed in this 

research, the following four classical unconstrained 
optimization problems in Table I are chosen, which are used to 
test the accuracy, efficiency, and running time in different 
dimensions. At the same time, this series of classical test 
problems are also applied to the GA and PSO to compare with 
GFA-OD. 100 independent trials of each algorithm are 
performed for solving four benchmark problems, and we 

OptimalDetect 
1. for k = 1:d     
2.     maxi← inf 
3.     mini← inf 
4.     for i = 1:lm    
5.           if .i kmaxs X maxi>  then 
6.               .i kmaxi maxs X←     
7.           elseif .i kmaxs X mini<  then 
8.               .i kmini maxs X←      
9.           end if 
10.    end for 
11.    bestBound(i:1)← mini  
12.    bestBound(i:2)maxi  
13. end 

 

Algorithm GFA-OD 
1. bestBound← OptimalDetect (N, bound, targetFun);   
2. initialdusts← Initial (bestBound, N, targeFun)   
3. [groupdusts,center] ← Group (initialdusts, G)  
4. dust ← groupdusts                                  
5. while the stop conditions are not met do 
6.       movedust ←  Move (dust, center, targetFun);  
7.        absdust  Absorb (center, movedust, bestBound);    
8.        rotatedusts← Rotate(absorbdust, targetFun) 
9.        dust ←  absdust 
10.     [center,dust] ← GetCenters (G, dust);   
11.     best← GetBest (best, center);   
12. end 
13. return optimal solution 



choose the median, the Mean squared error, and the Standard 
Deviation of the obtained solutions to measure the performance 
of these three algorithms. Lastly, we present the experimental 
results and make discussions in this section. 

A. Benchmark problems and performance measure 
1) Test problems 

The functions listed in Table I are part of the most 
commonly used functions and datasets to test the performance 
of unconstraint optimization algorithms. These benchmark 
problems are chosen from a number of significant past studies 
in unconstraint optimization problems. The functions are 
known widely as the Sphere [15], Griewangk [15], Ackley 
[15], Zakharov [15], Rotated Hyper-Ellipsoid [16], and Levy 
[16] functions, and they can be scaled to any number of 
variables (dimensions). Table I also shows the domain, the 
objective function, and the global minimum for every 
benchmark problem. Additionally, the four benchmark 
problems have the same global minimum, and the global 
minimum of the four problems are equal to zero, regardless of 
the number of variables. The Zakharov, Sphere and Rotated 
Hyper-Ellipsoid functions are continuous, convex, unimodal, 
and multidimensional; the first one is plate-shaped and the 
latter two are bowl-shaped in their two-dimensional forms. The 
other functions are multimodal, multidimensional, with a large 
number of local optima.  

TABLE I.  THE TEST PROBLEMS OF GFA-OD, GA AND PSO 

Name Variable 
ranges Objective function and optimum 

Sphere [ 50,50]ix ∈ −  ( ) 2

1

d

i
i

f x x
=

=∑ ， ( )0, ,0 0f =L  

Griewangk [ 5,5]ix ∈ −  ( )
2

11

cos 1
4000

d d
i i

ii

x xf x
i==

⎛ ⎞
= −∏ +⎜ ⎟

⎝ ⎠
∑ ， 

( )0, ,0 0f =L  

Ackley [ 15,30]ix ∈ −  ( )
( )2

1 =1

1 10.2 cos 2

20 20

d d

i i
i i

x xd df x e e e
π

=

⎛ ⎞ ⎛ ⎞⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
= + − − ， 

( )0, ,0 0f =L  

Zakharov [ 5,10]ix ∈ −  ( )
2 4

2

1 1 1
0.5 0.5

d d d

i i i
i i i

f x x ix ix
= = =

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ， 

( )0, ,0 0f =L  

  

2) Performance measure 
To investigate the accuracy, efficiency, and running time of 

GFA-OD, we choose three common performance metrics to 
evaluate the performance of the three algorithms: GFA-OD, 
GA and PSO.  

The median value, we choose the median value of solutions 
that are found by the three algorithms from 100 individual 
trials.  
The Mean squared error (MSE) [17]: it has the following 
general definition as in (2), where n is the number of tests, 
( )if x  is the solution of the ith trial and ( )optf x  is the actual 

global minimum. Obviously, a lower value of MSE means that 
the algorithm achieves better performance. 

( ) ( )( )2
1

1 n

i opt
i

MSE f x f x
n =

= −∑ .          (2) 

The Standard Deviation (STD) [18]: it has the following 
general definition as in (3), where n is the number of tests, 

( )if x  is the solution of the ith trial and ( )f x  is the mean of 

all the ( )if x . As with MSE, a lower value of MSE stands for 
better performance of the algorithm. 

( ) ( )( )( )
2

1

1
1

n

i
i

STD f x f x
n =

= −
− ∑ .           (3)  

The median value and the MSE are adopted to measure the 
accuracy of solutions that are obtained by three different 
algorithms. The STD is employed to measure the stability of 
the performance for the three test algorithms.   

3) Parameter settings 
The basic parameters for three algorithms are set as in 

Table II. The size of the population is set as 1000* d , where d  
is the number of dimensions of given search space, moreover, 
d =2, 3, 5, 10, 20 in this research. The maximum number of 
iterations are set differently for the three different algorithms to 
control their running time in the same dimension, which for 
GFA-OD is 20, for GA and PSO is 200* d . It is noted that the 
maximum number of iterations for GFA-OD is much less than 
that for GA and PSO, because the introduction of Optimal 
Detection can find the approximate location of the optimal 
solution in search space, which is employed to avoid the long 
iterative process. The number of groups is just set as 3 for 
GFA-OD to ensure multi-agents. The parameter TolFun is the 
average change in the value of the fitness function or mass 
function and it is changed from the default value of 1.0e-6 to 
1.0e-30 to ensure that the optimal solution they acquire is 
accurate enough. 

TABLE II.  THE PARAMETERS SETTING FOR EGFA, GA AND PSO 

Parameters 
setting EGFA GA PSO 

Population size 100* d  100* d  100* d  

Max number 
iterations 20 200* d  200* d  

The number of 
groups 3 - - 

TolFun 1.0e-30 1.0e-30 1.0e-30 

 

B. Results and Discussions 
 

In this research, every benchmark problem shown in Table 
I, is scaled to different number of variables, whose value range 
of each dimension is also set in Table I. The basic parameters 
of each algorithm are set as in Table II. Three performance 
metrics, the median, MSE and STD, are employed to measure 
the accuracy and efficiency of each algorithm in given running 



time. In this research, we do not make any systematic 
investigations on finding the best parameters for EGFA and we 
just focus on the accuracy of each algorithm in a given running 
time. In addition, a higher accuracy of the optimal solution 
indicates better performance of the algorithm.  

To compare the performance of EGFA, GA and PSO on 
unconstrained optimization problems with different number of 
dimensions in given running time, four test problems with 2, 3, 
5, 10, 20 dimensions are considered in this study. The 
comparisons of three algorithms: EGFA, GA and PSO on three 
of the four test problems in median, MSE and STD are shown 
in Figs. 2-4. (The results of Figs. 2-4 are the median value, the 
MSE and the STD of 100 tests, which the size of the 
population is set as 1000* d , where d  is the number of 
dimensions and d=2, 3, 5, 10, 20, the iterations for EGFA is set 
as 20, for GA and PSO is set as 200*.) Fig. 2 shows that EGFA 
has better performance in accuracy than GA and PSO, 
especially in low-dimension search spaces. Fig. 3 shows that 
the solution EGFA finds has smaller error than the other two 
classical optimization algorithms. Fig. 4 demonstrates that 
EGFA has more stable performance compared with GA and 
PSO. In addition, the accuracy of solutions obtained by EGFA 
will decrease with the increase of the dimensions of search 
space like PSO, but EGFA has better accuracy than PSO as 
shown in Figs. 5-7. 

  

  
 

Figure 2.   A Comparison of EGFA, GA and PSO in log10(median) with 
2,3,5,10,20 dimensions 

  

  
Figure 3.  A Comparison of EGFA, GA and PSO in log10(MSE) with 

2,3,5,10,20 dimensions 

 

  

  
 

Figure 4.   A Comparison of EGFA, GA and PSO in log10(STD) value with 
2,3,5,10,20 dimensions 

 
Besides the accuracy, the running time is another very 

important factor to measure the efficiency of an algorithm. It is 
obvious that the introduction of Optimal Detection is at cost of 
time, but the optimal space acquired by the Optimal Detection 
can help to decrease the number of iterations and shorten the 
overall algorithm running time. The total running time of three 
algorithms for 100 trials on three of the four test problems with 
the number of dimensions d=2, 3, 5, 10, 20 is reported in Fig. 
5. As one can see that PSO is the fastest algorithm, but it has 
the lowest accuracy compared to EGFA and GA. Moreover, 
EGFA performs better than GA on these test problems with the 
same running time. Table III also shows that the running time 
of the three algorithms on the benchmark problems increases 
dramatically with the increase of the dimensions. All 
experiments were implemented on a PC (i5-4200M, 8GB, 
Windows 7, Matlab R2014a). 

  



  
Figure 5.  A Comparison of EGFA, GA and PSO in log10(STD) value with 

2,3,5,10,20 dimensions 

IV. CONCLUSION 
In this research, a novel GFA-OD is presented based on the 

original GFA. A novel accuracy improvement strategy called 
Optimal Detection is employed to quickly identify the so-called 
optimal space that contains the optimal solution in search space 
with higher probability. All the four complex benchmark 
problems taken from literatures in unconstraint optimization 
are chosen to evaluate the performance of GFA-OD. The 
experimental results show that the proposed GFA-OD has 
better performance in accuracy, efficiency, and running time 
compared with GA and PSO. It is noted that the solutions 
which GFA-OD finds are frequently closer to the actual 
optimal solutions than the other two algorithms in lower 
dimension search spaces on all the four benchmark problems, 
but at the same time, we also notice the fact that all the three 
optimization algorithms face challenges on complex 
unconstraint optimization problems in higher dimensions both 
in terms of accuracy and running time, especially when the 
dimension is larger than 20, which needs us to make more 
efforts in future research. Our study of GFA-OD applied to 
complex unconstraint optimization problems in higher 
dimensions is in progress. Future research will include how to 
find more effective methods to adjust the parameters according 
to the information of specific problems. 
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