
A trust module for the interaction with virtual
characters

Luca Boldrin
InfoCert

Rome, Italy

Vanesa Daza
Un. Pompeu Fabra
Barcelona, Spain

Roberto De Prisco
Un. of Salerno and eTuitus

Fisciano, SA, Italy

Sergi Rovira
Un. Pompeu Fabra

Barcelona, USA

Saverio Sivo
eTuitus

Fisciano, SA, Italy

Abstract—This paper describes the architecture of a trust
module for the interaction between human users and virtual
characters. The module is part of a bigger project whose
goal is that of creating virtual and truly realistic characters
capable of interacting with human users. An example of such
a virtual character is a computer rendered museum clerk that
interacts with visitors. The role of the security module in the
envisioned scenarios is that of providing trust, mainly regarding
the identity of the human user, but also about the “identity”
of the virtual character. In this paper we design (and describe
the implementation) of an architecture in which human users
identities are checked through face recognition and handled with
verifiable credentials managed through a public blockchain. The
project has been funded by the European Union and is under
realization.

I. INTRODUCTION

The goal of the overall project is to create sentient agents
by combining features of Intelligent Personal Assistants and
Embodied Conversational Agents, adding visual photorealism,
believable animations, and socially aware and reactive com-
munication to the resulting virtual character.

The virtual characters that are being developed in the project
will be both highly realistic and extremely flexible in terms
of functionalities. For example, the characters will be able to
reproduce a predefined script with high fidelity, incorporating
emotions, expressed through human-like facial expressions and
gestures. Also, they will be able to interact with the user
realistically, making the experience as close to a real one
as possible, with current state-of-the-art techniques. Beside
the aspect of rendering them very much human like, the
virtual characters will be able to interact with human users to
complete real actions, such as booking hotel rooms or making
purchases.

It is clear that these functionalities are very convenient,
but they pose a security threat to the users if they are badly
implemented. Therefore, it is of paramount importance to
put in place a secure and efficient framework to validate the
identity of both the user and the virtual character during their
interactions. Achieving this is the main purpose of the security
module that we describe in this paper.

Although this paper focuses exclusively on the security
module, it is important to keep in mind that it has been
designed for the specific overall project we just described and
that there are many other components with which the security
module has to interact. Figure 1 gives a rough idea of the

Fig. 1. Trust module within the overall system

modules of the project and their interaction with the security
module. The picture emphasizes also the fact that the security
module is built upon the Sovrin [2] public ledger.

The scenarios envisioned in the overall project call for a
highly distributed system built upon existing infrastructures.
For example, virtual characters might be created by the man-
agement of a hotel chain for the reception of customers in
every branch of the chain. Or can be created to offer online
services, such as bank services or similar. Human users can
thus interact with virtual characters in a variety of ways and
the interactions are inherently distributed. We thus assume that
there is a network layer (the Internet) that interconnects all the
actors of the overall systems.

The problem faced by the security module is that of check-
ing the identity of the human users that access the service
and also the “virtual identity” of the virtual characters. At the
core of the solution are the concept of verifiable credential and
existing, publicly usable infrastructures for their management.
In this paper we describe the architecture we have designed
to solve the problem and an implementation.

The paper is organized as follows. In Section II we briefly
describe the concept of Self-Sovereign Identity systems, veri-
fiable credentials and the facial recognition approach that we
use to check the identity of human users. Then, in Section III
we provide an overall description of the security module,
describing the basic authentication modes. Section IV provides
details about the flow of interactions needed to perform the
authentication checks. Then in Section V we provide a brief
description of the open source technologies available and in



Section VI we provide a description of the implementation.
Finally, in Section VII we provide some concluding remarks.

II. PRELIMINARIES

Verifiable credentials and their handling through the Self-
Sovereign Identity paradigm are crucial for our security mod-
ule. Thus in this section we briefly recall them. We also
mention the face recognition techniques that we use.

A. Verifiable credentials

Verifiable credentials are the digital analogs of any physical
document that can attest the identity of an individual such as
identity cards, passports or driving licenses. Beside providing
the same functionality as their physical counterparts, verifi-
able credentials can be more tamper-evident and trustworthy,
exploiting, for example, by using digital signatures.

There are three main actors in an ecosystem where verifiable
credentials are used:

• Holder: An entity that possesses one or more verifiable
credentials.

• Issuer: An entity that asserts claims about one or more
subjects and creates a verifiable credential from these
claims. It also transmits the credential to the correspond-
ing holder. Governments, corporations and non-profit
organizations are some examples of issuers.

• Verifier: An entity that receives one or more verifiable
credentials for processing. Examples of verifiers are em-
ployers and websites.

There are two other actors that play an important role when
implementing verifiable credentials:

• Subject: Any entity about which claims are made. Clearly,
in most cases the holder of a verifiable credential is
also the subject but there are exceptions. For example,
parents and pet owners might hold the credentials of their
children or their pet.

• Verifiable data registry: Any system that mediates the
creation and verification of relevant information such
as revocation registries and issuer public keys which
is needed to use verifiable credentials. Examples are
government ID databases and distributed ledgers.

In our project, users and virtual characters will have their
own verifiable credentials, becoming holders of the system.
These credentials will be managed through the Sovrin network,
thus, our approach follow the SSI paradigm. Notice that
Sovrin will provide the registry infrastructure. Issuers can be
external entities. The verifiers will be both the users and virtual
characters, that is, the users will use the verifiable credentials
of the virtual characters to assert their identity and vice versa.
For further information see [4].

B. Self-Sovereign identity systems

Nowadays, we have a digital identity for every task that
we need to perform over the internet. These identities are
managed by centralized systems and the users do not have
any real control over them. The paradigm of Self-Sovereign
Identity (SSI) was created to change this. It allows to create

digital identities that are not managed by a central authority
and that last as long as the user wants. Moreover it allows the
user to have complete control over the information that he or
she discloses each time that his or her identity is needed. A
central component to build an SSI system is that of a verifiable
credentials, discussed in the next subsection.

This idea of SSI has been around for decades but its imple-
mentation has only become possible after the introduction of
the Blockchain technology which started with the “Bitcoin”
era [1]. And it is now becoming a central pillar in the
EU identity ecosystem [15]. We use the Sovrin network to
manage the identities of the users and virtual characters of the
system. For further information about Sovrin and SSI see, for
example, [2], [3].

C. Biometric recognition

To validate the identity of a user we have chosen to use deep
learning based facial recognition. Currently, the best facial
recognition results are obtained from Deep Convolutional
Neural Networks (DCNN). The software that we use (called
Face Matching) uses two of these networks. One network
(NN1) is trained to detect faces in a given image and the
other (NN2) uses Additive Angular Margin Loss (ArcFace) to
obtain highly discriminative features representing each of the
detected faces. A detailed explanation of this technique can
be found in [6]. Also, the reader can find all the necessary
information on deep learning in [5].

We remark that it is possible to use also additional bio-
metric recognitions, such as voice recognition or fingerprint
recognition, and they might be used both as alternatives or in
conjunction. The functioning of the security module does not
change.

III. SECURITY MODULE: OVERALL DESCRIPTION

The security module implements authentication of the play-
ers. The players of the overall project are human users, that
access services, and virtual characters, that offer services.
Both human users and virtual characters are equipped with
digital identities. For a human user, the digital identity is a
picture of the user, together with some secret information;
for virtual characters, the digital identity will consist only
of some secret information. The digital identities are stored
in so called (digital) wallets. The digital identity is acquired
in a registration phase. Several types of security levels are
possible for the registration phase, depending on how strong
the authentication needs to be. The security module that we
design can handle any level; in other words there is no
difference in the identification check. In a real application we
expect that the users will obtain digital identity credentials
from third parties, e.g. Certification Authorities. For the virtual
characters, the digital identity will be created by the security
module upon specific requests for the various use-cases being
built in the project.

Following the Self-Sovereign paradigm, the digital identity
of the user is kept in a private wallet. Hence the users will
have to manage the wallet. To this end, the security module



Fig. 2. Single authentication

comprises a component which is a mobile app through which
the user can manage the wallet and at the same time can
interact with the security module. For the rest of the paper,
we will refer to this mobile app as the Mobile Wallet App,
or MWA for short. Virtual characters are not envisaged in
the Self-Sovereign paradigm. So, we need to somehow handle
their “identities”. In order to manage the identity of the virtual
character in a manner similar to that of human users we will
identify each virtual character with a pair of public-secret keys
and store the public key in the wallet of the user. The public
key will be the “identity” of the virtual character, that only
the virtual agent can “validate” using its secret key.

The authentication services offered by the security module
can work in a single-check mode or in a continuous mode. In
the single-check mode, the authentication check is made only
once. In the continuous mode, after the initial authentication,
which is the same as the single-check authentication, the vir-
tual characters can continuously make authentication requests
to keep checking the identity of the human user currently
interacting with them. These two modus operandi correspond
to the two general real situations in which a real user needs
to be authenticated only once (for example at the entrance of
a site) or continuously (for example during a conversation).

The digital identity used for the authentication is the binding
of a biometric feature, namely the face of the user, with the real
name of the user. The wallet contains a verifiable credential
with the face of the user. Such a picture is compared with
the pictures, taken by the virtual character, of the person cur-
rently interacting with the virtual character. In the continuous
authentication mode, the virtual character can keep taking
pictures anytime, to repeat the check, for example at fixed
time intervals. The first authentication, the one performed in
the single-check authentication, involves access to the wallet
of the user. This access has to be approved by the user: the app
that manages the wallet asks permission to access the data (the
data is protected by a password that the user needs to type).
Such an access will not be requested for the subsequent checks
in the continuous mode.

The interaction between a virtual character and the security
module are implemented by means of REST calls. The se-
curity module offers a REST access point, whose details are
explained in the subsequent section of this document, which
allow to request both the single-check authentication and the
continuous authentication checks. The virtual agent will also
need to offer a REST access point to receive the result of the
authentication. Figure 2 summarizes the interaction between a
virtual character and the security module, for the single-check
authentication.

Fig. 3. Single authentication

Similarly, the continuous authentication starts with a single-
check authentication, which requires access to the user’s
wallet, and then continues with authentication checks that do
not require access to the user wallet: to avoid such an access
we make the check against the latest authenticated picture. Fig-
ure 3 summarizes the interaction between a virtual character
and the security module, for the continuous authentication.

In the following sections we will provide technical details
about the implementation of the security authentication checks
described above. These authentication checks require a se-
cure management of verifiable credentials (the digital identity
cards) and this is achieved by using existing paradigms,
infrastructures and open source projects as detailed in the
following.

IV. AUTHENTICATION PROCESS

In this section we proceed to explain in detail the authen-
tication process between a virtual character and a user. The
interaction between two virtual characters is out of scope for
this paper (and for the overall project).

Before the authentication process can begin, the user and
the virtual character need to obtain a verifiable credential. That
is, we need a registration step in which such credentials are
created. After the credentials are granted, the user and the
virtual character can start interacting with each other.

The authentication process starts with what we call initial
authentication. At this stage, the virtual character takes a
picture of the user and compares it with the front-facing image
of the user using the face matching software. If the comparison
is correct it is possible to proceed, otherwise, the interaction
is terminated.

For the continuous authentication stage, the system, upon
request of the virtual character, takes new pictures of the user
and compares it with the latest authenticated picture. This is
done for different reasons:

• Using the image that is stored in the credential of the
user requires acquiring a permission from the user. This
is a huge drawback in terms of usability, therefore we
use this image once.

• The conditions under which the image of the user was
taken could differ greatly from that of the images taken
by the agent leading to an increase in the number of false
negatives.

For the continuous authentication check we need also to
decide when to perform the subsequent checks. Since this
decision depends on the application the event that trigger a



check are determined by other components of the system (the
ones providing the service) and not by the security module.

We now proceed to explain each step of the authentication
process in much more detail.

A. Registration

The registration of users and virtual characters to the system
is the first step of the authentication process. What this step
achieves is to deliver to each party a verifiable credential
that will be the key component used for authentication. Let
us detail the registration process for users and for virtual
characters.
Users. The credential to prove the identity of a user will
contain the following information:

• Personal data: name, surname and date of birth.
• Biometric data: biometric signature of the face of the user

(a front-facing image).
All this information will be stored in his or her local wallet.
We do not restrict the level of the certification, that is the
certification can be self-attested (lowest level) or anything else
up to an identity verified by a strong authentication process,
such as the one granted by a Certification Authority.
Virtual Characters. The identity of the virtual characters
will consist of a pair of public and secret keys generated
by the owner of the virtual character. The public key will
be associated to the DID of the virtual agent and the secret
key will be stored locally and kept hidden permanently by the
agent.

B. Single (initial) authentication

Figure 4 shows the flow of interactions needed for the single
authentication. This pictures shows 6 columns: the first one
represents the human user, the fourth one, the security module
and the last one the Sovrin ledger. The other three, are extra
components that are needed to integrate the service offered by
the Sovrin public ledger. The mediator component is needed
to integrate the Mobile Wallet App, the virtual agent is needed
to connect the virtual character and the virtual agent is needed
to allow the security module to interact with the Sovrin ledger.
In the following we will use the expression “virtual agent” to
indicate the component that acts on behalf the virtual character.
To a rough approximation virtual characters and virtual agents
are the same thing, but to a fine distinction the virtual character
is the one created to interact with the human user of the
services being offered, while the virtual agent is the software
that handles the necessary steps needed to implement the
authentication check on behalf of the virtual character. Because
of this, in the following we may misuse the two expressions
considering them synonymous. We remark that the expression
“virtual agent” comes from the Sovrin jargon.

When the session starts, the virtual agent initiates the au-
thentication process. We will refer to this step as authentication
request. This leads to a proof request where the agent asks
the user for the user credentials (as discussed in the previous
section). The identity of the virtual agent is added to this
request for validation from the user. From his or her side, the

user will validate the identity of the virtual agent by using its
public key to encrypt some random string and asking the agent
to give a correct decryption of the corresponding ciphertext.

All the needed information will be encoded in a QR code
that the user will scan with a smartphone. This allows the
user to accomplish two actions: validate the identity of the
virtual character (which is stored in the virtual agent wallet
in the cloud) and give authorization to the virtual agent to
deliver his/her biometric credential to the virtual agent (which
is stored in the wallet on the smart device of the user).

Once the virtual agent has at its disposal the biometric
information of the user (at the moment we use a front-facing
image, but alternatives also used in synergy are possible) it can
proceed to make an initial assessment of the authenticity of
the credentials provided by the user. The virtual agent will use
a camera to capture a picture of the user (who will be asked
in advance to be facing the camera at all times during the
interaction) and will make an API call to the face recognition
software to make the matching. If the matching is correct, the
initial validation is completed.

C. Continuous authentication

After a first successful check of the identity from both
the virtual agent and the user, the continuous authentication
phase keeps making authentication checks. In this part of
the interaction, the virtual agent will use the image that
it took during the previous phase as the user’s biometric
information and will iterate the previous process until either
party interrupts the interaction. More precisely, the virtual
agent will take a picture of the user and make a call to the
security module to check the match between the two pictures.
If the match is successful, the agent will wait a predetermined
time until taking the next image. If the match is not successful,
the agent will close the interaction. To prevent abrupt service
interruption, depending on the application, the termination of
the interaction might be delayed to a number of consecutive
unsuccessful matches. Figure 5 shows this process.

V. TECHNOLOGIES

As we have said in previous sections, we build on the
self-sovereign identity paradigm which is based on distributed
ledgers and blockchains. We have identified Sovrin as a useful
framework. Hence the Sovrin framework is the base for build-
ing the security module. Over the last years, a number of open
source projects have provided several implementations of the
Sovrin Self-Sovereign identity infrastructure. There have been
also efforts to standardize the approach and make the available
components able to interoperate. Some of these projects focus
more on implementations, some more on higher levels aspects,
such as protocols and standardization. We have evaluated the
available possibilities and we have focused our attention on the
following open source Hyperledger projects: (i) URSA, that
will be used for its ZKP-capable W3C verifiable credentials
primitives; (ii) INDY, that will be used for its Decentralized
Key Management System (DKMS) primitives; (iii) ARIES,
which provides other libraries and also standardization.



Fig. 4. Single authentication flow

All of them are under the umbrella of Hyperledger [7],
which is an open source community that fosters development
of open source code to help implement specific applications
over the public infrastructure. Hyperledger Aries [8] provides
tools to store, transmit and verify digital credentials. In turn,
the Aries library, exploits the cryptographic support offered by
the Ursa [9] and Indy [10] projects. The Aries infrastructure
offers:

• a blockchain interface layer (known as a resolver) for
creating and signing blockchain transactions;

• libraries to implement cryptographic wallets for secure
storage of cryptographic secrets and other information;

• an encrypted messaging system for off-ledger interactions
between clients using multiple transport protocols;

• an implementation of ZKP-capable W3C verifiable cre-
dentials using the ZKP primitives found (this is in the
Ursa library);

• an implementation of the Decentralized Key Management
System (DKMS) specification currently being incubated
in Hyperledger;

• a mechanism to build higher-level protocols and API-like
use cases based on the secure messaging functionality
described earlier.

Our secure module is built upon the Aries infrastructure. In
order to exploit the tools offered by the Aries infrastructure
we need to develop components able, on one hand, to ex-
ploit such tools and, on the other hand, to interact with the
other components of the project, implementing all the needed
functionalities. Based on the role of each software component
we will have an Aries component to integrate. The piece
of software for such an integration is called a “controller”.
One of the most important components is the Aries agent.
An Aries agent is able to establish connections with other
Aries agents, exchange messages between connected Aries
agents, send notifications about protocol events to a controller
and expose an API for responses from the controller with
instructions in handling protocol events.

The specific Aries Agent implementation we have chosen
is the Aries Cloud Agent, named ACA-Py for short and
implemented in Python. The source code is available in a
GitHub repository [11]. This agent implementation embeds the
Indy Software Development Kit, a SDK already used in many
production deployments. The Aries component used to man-
age/control an Aries Agent is named “Controller”. The Aries
Cloud Agent and a controller run together, communicating
using asynchronous, stateful applicative level protocols named
Aries protocols. For the implementation of our controller we



Fig. 5. Continuous authentication

used the Python Framework Django. Beside the controller,
another component that we need is the MWA (Mobile Wallet
App) which will manage the user’s SSI wallet and that acts as
an Aries Controller mobile side. The mobile app uses a special
Aries agent running on the mobile device, agents running
mobile side are called “edge agents”, in the Sovrin jargon.
To develop the edge agent we used the library VCX, whose
source code is available in a GitHub repository [12]. VCX, a
wrapper on Libindy, is suitable for mobile development both
on Android and IOS OS. To communicate with an edge agent,
the Aries architecture requires another special server side agent
named mediator. For the mediator agent, we used a Node
AriesVCX Agency [13] (absaOSS). The Mobile Wallet Appli-
cation has been developed using the Flutter [14] framework.
Flutter is an open-source framework, created by Google, that
allows to develop cross-platform mobile applications. Mobile
applications written with Flutter are compiled both for Android
and iOS.

VI. IMPLEMENTATION

As we have already said, the foundation of the security
module is given by the Sovrin public ledger, and we use as
building blocks some open source projects (Aries, Indy, Ab-
saOSS). These open source projects offer basic functionalities
for the management of the credentials: applications, such as
our security module, need to implement several pieces of code
to have a full functioning service. Figure 6 summarizes the
software components of the security module. Some of these
components are the ones offered by the open source projects
that we have mentioned earlier. Some others are those that
need to be developed to implement the security module.

A. Open source components

1) Aries Cloud Agent (ACA-Py): This software component
is the interface between the security module and the Sovrin
blockchain used to manage the digital identities. It will be
connected to the core part of the security module, that is the

Fig. 6. Software components

Security Credential Controller, but it is needed also for the
cloud wallet of the virtual agents.

Indy (and its underlying Ursa cryptography) enables issuers,
holders and verifiers to exchange verifiable credentials and
presentations by exchanging sequences of messages. All those
issuers, holders and verifiers will use agents (software) that
can be built by many different organizations — open source
tools, commercial agents available for purchase, and custom-
built proprietary agents. Since there are other verifiable cre-
dential ecosystems being developed, in the Aries community,
in parallel to Hyperledger Indy, Aries is also intended to
be verifiable credential-agnostic and multiledger — some
Aries implementations are becoming able to support different
verifiable credential implementations.

The Hyperledger Aries standardizes the operations on ver-
ifiable credentials through the Aries Cloud Agents (ACA).
So, in order to be compliant with the Aries standard we
need to access the functionalities of the infrastructure through
the Aries Cloud Agents (ACAs). In the jargon of Aries, the
software components that interact with the ACAs, are called



controllers. In our case we need to develop the Security
Credential Controller and also the Virtual Agent Controller
that will manage the wallet of the virtual agent.

Messaging between Aries agents is defined at several con-
ceptual layers. At the lowest level, it is just the ability for
one agent to send a chunk of data, and for another agent to
receive that data. In the upper layer, there is the ability for
agents to exchange a sequence of messages to accomplish
some shared task. That’s a protocol. Aries messaging is
based on the DIDComm (DID Communications) protocol. As
indicated by the name, DIDComm uses the data associated
with DIDs, that is public keys and service endpoints, to,
respectively, encrypt and route messages. The controller can
be built embedding the ACA-Py functionalities as a library.
The controller uses the library to drive the agent according
to the needs of our application. In particular we are using
the ACA-Py implementation available in a public GitHub
repository . The ACA-Py implementation is suitable for all
non-mobile agent applications, separates the controller and
agent into processes communicating using an HTTP REST
API. The controller receives web-hook notifications from the
agent as events occur (e.g. messages are received from other
agents) and uses an HTTP API exposed by the agent to
respond to those events or to initiate new actions. With this
approach, a web controller is similar to any modern web app,
sending requests and receiving messages over HTTP to an
agent service. Although the ACA-Py is written in Python, the
controller is by design completely independent of the agent
and thus can be written in any language. A controller could
even be an existing enterprise application, extended to use
verifiable credentials by adding API calls to an Aries agent
process. Our specific controller will be described in the next
section.

The ACA-Py provides all of the core Aries functionality
such as interacting with other agents and the ledger, managing
secure storage, sending event notifications to, and receiving
instructions from the controller. The controller executes the
logic of the application and this determines the behavior of
the agent, that is how it responds to the events it receives, and
when it initiates events.

2) VCX Mediator – based on AbsaOSS: The Mediator
component is necessary in order to securely deliver messages
from one edge agent to another, because mobile agents do not
have an endpoint (a physical address) that other agents can
use for sending messages. Thus, it is impossible for mobile
agents and enterprise agents to send messages to each other
directly. In DIDComm, the Mediator is used to manage the
list of agents through which the messages will be routed. If
there is no list of agents, the message will go directly to the
receiver. For each mediator, the sender, explicitly adds another
envelope, another layer of encryption and a ”To” address.

In our security module, this software component is responsi-
ble for the communication between the user wallet application
and the various Aries Cloud Agent deployed.

Mobile wallets are not online at all times, and are not
constantly polling to see if they have any incoming messages

(that consumes resources, particularly data and battery, on the
phone), the mediator provides a queue to hold messages until
the mobile agent requests them. The mediator will use the
mobile OS (iOS or Android) notification mechanism to let the
user know when a message arrives in the queue, triggering a
check with the mediator.

The specific Mediator component that we use is the Medi-
ator developed by Absa and called AbsaOSS.

3) VCX Indy – part of the mobile app: The mobile wallet
app needs to manage the identity of the users. To this end
we use the VCX library. This library is a C-callable library
built on top of Libindy that provides a high-level credential
exchange protocol. It simplifies creation of agent applications
and provides a better agent-2-agent interoperability.

There are two communication methods: proprietary and
Aries. The mobile wallet app will use the Aries method in
order to interact, using DIDcomm messaging, with other Aries
agents of the security module.

The VCX library is written in Rust. It provides many
wrappers for many programming languages. Among these
there are also the wrappers for the mobile platform that will
be used for the Wallet Application development.

The mobile wallet app will communicate with other agents
using a VCX mediator.

B. Code developed

In order to integrate the open source code with the specific
application we are building, we needed to implement several
software components. We have split the needed code into 5
pieces, which are (see Figure 6):

1) A Security Credential Controller. This controller is in
charge of interacting with the Aries agents both to issue
a credential and to verify a credential. In typical SSI
jargon, it acts both as “Issuer” and as “Verifier”.

2) A Virtual Agent Identity Controller. This is needed to
manage the (virtual) wallet of the virtual agents; it acts
a SSI holder. As we have explained in other parts of the
project this wallet should be part of the virtual agent, but
to ease the implementation of use cases we incorporated
the management of the identities of virtual agents within
the security module.

3) A Human User Identity Controller (Mobile Wallet App).
This is needed to manage the identities of the human
users; it acts as an SSI holder. The mobile app includes
the management of the wallet of the user. It includes
also the code for creating the self-issued credentials.

4) Biometric Module. This module is the one that performs
the comparison of two faces that is needed for the
verification of the users’ credentials.

5) A REST API Gateway. This will be used for communica-
tion with the virtual agent as described in other parts of
this document. In later sections, we will delve into more
details for each of these components. Before that we
review the flow of interactions between the components.



C. Virtual Character Cloud Wallet
The virtual agent wallet will be maintained in the cloud and

the agents will access them through specific REST API. The
cloud wallet is managed through a controller which is part of
the security module (see Figure 6). This component allows the
virtual agent to store his own credentials and to communicate
with the secure module to create a “credential proof” to prove
that he has a specific credential.

D. Mobile Wallet App
Users will be able to manage their identity credentials using

a mobile wallet app. With the app, the user will be able to
collect one or more identity credentials and will have the
opportunity to prove that he has certain credentials by respond-
ing to the required proofs. The app is being developed to be
compliant to the philosophy of Self Sovereign Identity and
respecting the user’s privacy. The contents of the credentials
will be accessible only with the explicit consent of the user,
e.g. the user will have to enter a secret password or scan his
fingerprint to allow access to the credentials.

E. Face recognition module
The biometric module is responsible for the face matching

of users’ pictures. The basic functionality of the module is the
comparison between front-facing images of human faces. The
result of the comparison is a similarity value. The Biometric
AI-Face-Matching solution uses machine learning to identify
the faces, analyze the characteristics and finally compare them.
The basic light/dark flow allows to find a basic pattern in the
face image. The comparison algorithm uses a neural network
trained to generate 128 measurements for each face. The
algorithm is able to generate these measurements from a face
that has never processed in a few milliseconds and turn it into a
vector. The reliability of the similarity value returned depends
on the context and the quality of the images.

The response contains both a “match” result, which is true
for a match and false for a mismatch, and in case of a
match it also contains the similarity value, which is a number
between 75 and 100. For smaller similarities values we have a
mismatch. Notice that, depending on the use case, we can also
look at the actual value of the similarity and decide to accept
or deny authentication directly on the similarity value. The use
of higher thresholds allows for a stronger face recognition but
might create more false negatives.

The biometric module also allows the creation of a bio-
metric “signature” that can be used by the security module to
create the user’s biometric credential. The biometric signature
is just an encoding of a picture of the face of the user.

VII. CONCLUSIONS

In this paper we have presented the design of a security
module whose purpose is that of checking identities of human
users and virtual characters. The current implementation is
based on face recognition. However the design allows for
easy extension to additional identity checks, such as voice
recognition: the flow for the checking is the same. This is a
possible future extension.

ACKNOWLEDGMENT.

The security module described in this paper is part of a
bigger project, currently under realization, funded by H2020
from the European Commission: PRESENT - Photoreal REal-
time Sentient ENTity - H2020-ICT-2018-20/H2020-ICT-2018-
3. Grant Agreement: 856879.

REFERENCES

[1] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”,
bitcoin.org/bitcoin.pdf.

[2] Sovrin library: https://sovrin.org/library/
[3] A. Satybaldy, M. Nowostawski, J. Ellingsen, “Self-Sovereign Identity

Systems”. In Proc. of Privacy and Identity Management. Data for
Better Living: AI and Privacy. IFI AICT 576, pp. 447– 461, 2019.
DOI:10.1007/978-3-030-42504-3 28.

[4] M. Sporny, D. Longley, D. Chadwick, “Verifiable Credentials
Data Model 1.0 Expressing verifiable information on
the Web”. W3C Recommendation 19 November 2019.
https://www.w3.org/TR/vc-data-model/.

[5] I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning”. MIT Press,
2016.

[6] J. Deng, J. Guo, N. Xue, S. Zafeiriou, “ArcFace: Additive Angular
Margin Loss for Deep Face Recognition”. In Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
doi:10.1109/cvpr.2019.00482.

[7] https://www.hyperledger.org/
[8] https://www.hyperledger.org/use/aries
[9] https://www.hyperledger.org/use/ursa

[10] https://www.hyperledger.org/use/hyperledger-indy
[11] https://github.com/hyperledger/aries-cloudagent-python
[12] https://github.com/hyperledger/aries-vcx
[13] https://github.com/AbsaOSS/vcxagencynode
[14] https://flutter.dev
[15] https://digital-strategy.ec.europa.eu/en/library/

trusted-and-secure-european-e-id-regulation


