
Instruction Set Encoding Optimization for Code

Size Reduction
Michael Med Andreas Krall

Institut fur Computersprachen
Technische Universitat Wien

Argentinierstr. 8, A-1040 Wien, Austria
{med,andi} @complang.tuwien.ac.at

Abstract-In an embedded system, the cost of storing a
program on-chip can be as high as the cost of the microprocessor
itself. We examine how much a given application's program
size can be reduced when an instruction set is tailored to the
application. We provide different algorithms for calculating an
optimized instruction set and evaluate their impact on the size of
several benchmark programs. Our results show that an average
reduction of 11% is possible, and further improvement can
be achieved by changing the instruction length of the given
architecture. However compiling other applications with such
an optimized instruction set might produce larger code sizes.

I. INTRODUCTION

In embedded systems the cost of memory used for the
instructions can be a significant part of the overall system cost.
Therefore, many techniques have been employed to reduce the
code size of a program. Examples are the use of procedural
abstraction, code compression and tailored instruction sets.

This work focusses on determining the reduction in code
size which can be achieved by an optimal encoding of the
processor's instruction set. Our target architecture (xDSPcore
[KHPP04], an experimental digital signal processing architec-
ture) supports two instruction sizes - one or two instruction
words. Instruction set optimization is achieved by a statical
analysis of the compiled program and by giving shorter
encodings to frequently occurring instructions. In this paper,
we present two algorithms that differ in their run time and
in their degree of optimality. Since an instruction set that is
optimized for one application will affect the code size for other
applications, we also examine this effect.
The next section introduces related work on the subject.

In section III, we present the problem and explain the opti-
mization framework. Section IV describes a heuristic approach
and section V covers an optimal algorithm based on integer
linear programming. The results of a detailed experimental
evaluation are presented in section VI.

II. RELATED WORK

A. Instruction Set Design

One of the earliest studies into automatic instruction set de-
sign was done by Haney [Hay68]. He developed an instruction
set design system (ISDS) that is based on a user supplied cost

This work is supported in part by Infineon Technologies Austria and the
Christian Doppler Forschungsgesellschaft.

model of the operations and a constraint on the total cost. The
ISDS then generates an instruction set by adding features to the
operations such that the total value is maximized while staying
within the limits. While Haney's work relied on the user to
supply costs and values, Knuth analyzed existing machines to
provide data for the design of future machines [Knu71]. He did
a comparative analysis of FORTRAN programs from industry
and commerce. Knuth examined 440 programs and discovered
that the average expression has only two operands, indicating
that support for complex instructions is perhaps unjustified.

Sweet and Sandman [SJGS82] analyzed the instruction set
of the MESA architecture, a Xerox PARC research project.
Their result showed that, on average, the six most frequent
instructions made up 50% of the total program size. They
reduced the instruction set to 100 generic instructions and
added 156 specialized instructions by either combining two
operations or combining an operand value with an operation.
Evaluation of their work showed an overall reduction in code
size of 12%.

Bennet [Ben88] automated this process and applied it to
automatically generate a byte-code instruction set for BCPL.
In an iterative process, various transformations were applied
to the canonical instruction set and the instruction with the
greatest predicted code reduction was added to the existing
instruction set. Experimental results showed a reduction in
code size of about 14%.

Lee et al. [eLCD02] presented an instruction set synthe-
sis technique that employs an efficient instruction encoding
method to achieve maximal performance improvement. They
built a library of complex instructions with various encoding
alternatives and selected the best set of complex instruc-
tions while satisfying the instruction bitwidth constraint. They
solved the problem by integer linear programming and also
by a heuristic algorithm. Evaluation of their algorithm showed
improvements of up to 38% over the native instruction set for
several benchmark applications.
Holmer [Hol94], [Hol93] introduced new concepts in in-

struction set design. He presented a tool for assisting in the
complete design of instruction sets. His tool took a data path
and a set of benchmarks as input and produced as output an
instruction set which optimizes a metric. He transformed the
set of benchmark programs into a large set of symbolic state
transitions each of which represents short code sequences.

1-4244-1058-4/07/$25.00 C 2007 IEEE 9

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

Then optimal sets of instructions are determined for each such
state transition, and the desired instruction set is the cover
of instructions required by the solutions of the benchmark
state pairs. Huang and Despain [HD94] built on the work
of Holmer and further improved the algorithms in order
to generate instruction sets targeted at application specific
instruction processors.
Chang et al. [CTM04] proposed a new instruction synthesis

paradigm based on a detailed analysis of opcode usage of the
MiBench benchmark suite for the ARM Thumb-2 architecture.
Their analysis showed that for a wide range of embedded
applications it is feasible to utilize a 16-bit instruction format.
However each application program may require a different se-
lection of operations and storage components. They suggested
that the mapping of instruction set to microarchitecture be
delayed until after chip fabrication in order to achieve the
highest possible code density while utilizing the fabrication
advantages of a mass produced single chip solution.

In [ARK99] Aditya et al. described a mechanism for au-
tomatic design and synthesis of very long instruction words
(VLIW). The processor design is automatically synthesized
into a detailed structural model using VHDL along with an
estimate of its area. The system also generates the corre-
sponding detailed machine description and instruction format
description that can be used to retarget a compiler and an
assembler, respectively. All this is part of an overall design
system, called Program-In-Chip-Out (PICO), which has the
ability to perform automatic exploration of the architectural
design space.

B. Combined Compiler and Hardware techniques

Liao et al. [LDK99] presented an instruction set archi-
tecture (ISA) extension to enhance code compression. The
idea is similar to procedural abstraction. They proposed the
instruction: CALD address, len. Their CALD instruction
executes len instructions at the corresponding address in a
hardware dictionary. They built up the hardware dictionary
by finding the most common code sequences for a given
program. Choosing the code sequences, and an order for the
code sequences in the dictionary requires some care, because
CALD instructions can execute any substring of the dictionary.

In [LSSC03], Lau et al. further examined Liao's technique
which they call echo instructions. Two or more similar, but
not necessarily identical, sections of code can be reduced to
a single copy of the repeating code. The single copy is left in
the location of one of the original sections of the code. All
the other sections are replaced with a single echo instruction
that tells the processor to execute a subset of the instructions
from the single copy. They also applied register renaming and
instruction scheduling to expose more similarities in code.
In order to support these echo instructions efficiently, their
work proposes minor architectural modifications to standard
processors.

Larin et al. [LC99] presented such a tailored ISA specifi-
cally designed to minimize the size of a single program. To
generate a tailored ISA, the compiler uses the fewest number

of bits in each instruction encoding that is necessary to satisfy
the program's needs. The tailored ISA approach produces
compressed binaries that run with low overhead, but the ability
to specify custom decoder logic is required.

III. INSTRUCTION SET ENCODING OPTIMIZATION

A. Problem formulation

The environment on which we focus is based on an instruc-
tion set architecture (ISA) where each instruction is encoded
using either a single instruction word (short instruction) or
two instruction words (long instruction). The input to our
algorithms is an existing instruction set and a set of compiled
programs. The goal is to find an encoding of the instructions
such that the binary size of the re-compiled input program
becomes minimal. Figure 1 shows the concept of our work. A
set of programs is compiled using the configurable C-Compiler
of the architecture exploration system resulting in an assembler
program. From that assembler output, we gather statistics on
the usage of the instructions and their operands. Using this
data we are able to generate an instruction set optimized to the
input program's requirements. Recompiling the input program
for this new instruction set results in an assembler program
whose binary representation is smaller than the original one.

Fig. 1. solution architecture

The major task of the optimization algorithm is to decide
whether to encode a specific instruction using a single instruc-
tion word or two instruction words. This decision is trivial for
instructions which do not fit into a single instruction word. It is
also trivial under the assumption that all instructions must not
be changed in terms of functionality and the operand sizes. An
algorithm similar to Huffman coding is able to find a solution
for that reduced problem, i.e. an assignment of instructions to
small and large encodings.
We focussed on the broader problem of optimizing the

instruction set by creating new instruction variants, i.e. new
instructions that are more specific than the original instructions
they are based on. The idea is that any such specialized
instruction a which implements a subset of instruction a's
functionality needs fewer bits for encoding. The optimization
potential results from the observation that a single program

10

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

often uses only a subset of the processor's power. Some
functions are never used or, at least, some of them are
used more often than others. Immediate values and the sizes
of offsets are often smaller than permitted by the original
instruction set.

Let's assume that a specific instruction was originally
encoded using two instruction words. Optimization might
allow us to encode a specialized variant using only a single
instruction word. So whenever the new specialized instruction
is used instead of the original one we reduce the program's
code size by one word.
When the original instruction was already encoded using

a single instruction word we can't reduce the code size by
introducing a new instruction. But we can free one slot
in the single-word encoding space for other instructions by
encoding this instruction using two words. This freed encoding
space can then be used for a specialized version of another
instruction.

B. Algebraic model
This section introduces an algebraic model of our optimiza-

tion problem and some notations that will be used later on.
Throughout this section we use ai for an instruction of the
original instruction set S. -ai is used for instructions of the
new instruction set S. The new instruction aio implements the
same functionality as the original instruction ai. -ai (j > 0)
represents a specialized version of ai.

The number of bits required to encode the operands and
function flags of any given instruction is denoted as b(ai) and
b(aij) respectively. We can formulate Lemma 1 which is trivial
to prove:

Lemma 1. Let ai be an instruction requiring b(ai) bits and
let Si be the finite set of all instructions aij which implement
all or part of ai's function; then the following is true:

Vaii C Si : b(aij) < b(ai)
An instruction set that is encoded using n bits gives space

for encoding 2' different codes. We will name this encoding
space or codespace. Any instruction requiring b bits for its
operands consumes 2b bits of this available encoding space.
We denote this requirement as cs(ai) where

cs(ai) 2b(ai)

cs(aij) 2b(aij)

An instruction can be encoded using either a single instruc-
tion word of w-bits or using two instruction words totalling
W = 2w bits. The length of an encoded instruction measured
in bits is l(a). Whenever we reference the disjoint sets of the
original and the new instruction set we will use:

S = Sw u Sw,Sw n Sw = 0

Sw {a l(a) = w}, Sw = {al1(a) = W}
S = Sw u Sw,Sw n Sw = 0

S", {a= (a) = w}, Sw = {all(a) = W}

It is obvious that only instructions having b(a) < w, respec-
tively b(a) < w, can be elements of SW, respectively SW I

The input to our algorithms is a program P consisting of
instructions from the original instruction set. As we are not
interested in the order in which the instructions appear we can
define P as a set of tuples. Each tuple contains a reference to
the instruction a and the number of occurrences f. The same
holds for the optimized program P, so that

P = {(a,f) a C S,a occurs f times ,f > O}

P= {(a,f) a C S,a occurs f times ,f > O}

The size of program P and P is defined as:

P Zl(ai)fi, (ai, fi) C P, ai C S

~P Zl(aj)fj, (aj, fj) C P, aj C S

The goal is to find a program-specific transformation Op
of S onto S such that the resulting program is smaller in size.
Op must be valid with respect to the available code space.

: S -->S

P= 9(P) <P
The optimal transformation of all possible transformations
holding the inequality above is denoted as 9*.

C. Modifications of the Architecture Exploration System
Part of the architecture exploration system is an optimizing

C compiler and an assembler/linker. The assembler/linker is
capable of resolving address labels and producing binary code.
It also provides simple statistics on the offset lengths used by
the instructions.

For our work, the statistics lacked some important details
such as data on the usage of an instruction's different variants
(e.g. how often a multiply operation is used in an integer or in
a floating point context). In order to gather this data we had
two choices: either keep the assembler's code untouched and
analyze just the binary output - or modify the assembler such
that it provides all the data we needed.
We chose a mixed approach and slightly modified the

assembler such that it produces annotated linked code (see
Fig. 2). From this output we were able to gather all the desired
statistics without having to write a disassembler specific to
the target architecture. To a large extent, this approach is
also independent of our architecture exploration system itself.
Any system capable of producing similar annotated code can
benefit from our tool.

Figure 2 shows an example of such annotated assembler
code. The sample consists of two load instructions. The first
loads the value from memory addressed by register RI into
register DI. Afterwards the value of RI is implicitly incre-
mented. The second instruction is similar - it loads the value
in memory addressed by register R7 into the accumulator
A3. Because the instruction set does not contain a simple

11

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

Fig. 2. example of annotated assembler output

instruction for this statement, the compiler had to use a more

complex instruction that also provides the ability to add an

offset to the memory address - in this case the offset is zero.

Lines starting with a semicolon are treated as comments.
We use the special sequence; * for annotations important to
our statistics gathering. The other lines are for informational
purpose to the human analyzing the assembler output.

The ; * lines consist of four fields separated by the
character. The first field indicates whether this instruction
is encoded by a single- or a double instruction word (1
or 2). The second field indicates the instruction's unique
name. It is followed by information about each operand - the
operand's size in parentheses and its actual value. A negative
size indicates that this operand holds signed values whereas
positive numbers indicate unsigned values. Offset operands
have to be treated specially so we mark them with an asterisk
for later identification. The last field gives information on

the total number of bits this instruction requires. This value
includes operands we are not optimizing, e.g. register indices.
When looking at the second instruction of the exam-

ple in Figure 2, we can learn from the; * line that the
ldlo (R7 + 0) , A3 assembler-line is an instance of
the LOAD_LONG_OFFSET_ACCU-instruction. It is a double-
word instruction requiring 26 bits for encoding register ad-
dresses, the operands and selecting various functions. The third
field lists those bit-fields. The f-bit is an unsigned single-bit
flag whose value is zero. The same applies to the mod- and
the rb-bits. The o-bit-field is marked with an asterisk. It is a

16-bit signed offset field whose value is again zero.

The LOAD_LONG OFFSET_ACCU-instruction instance
above is also a good example to examine the potential for
optimization. The instruction set designer allocated 16 bits to
the offset field. In the example above, its value is zero - which
can be encoded using many fewer bits. Is this an extreme
sample or are there lots of LOAD_LONG_OFFSET_ACCU-
instances having a rather small offset? If this is the case,

possibly a shorter new variant using only 5 bits might be
advantageous. Such a variant would require only 15 bits and
would therefore be a candidate for single-word encoding. If

we can replace many of the original double-word instances
with this new single-word instruction then we would reduce
the program's size significantly. The algorithms introduced
in the following sections try to answer the question whether
creating such a new instruction is efficient or not.

IV. GREEDY ALGORITHM

The idea behind the greedy algorithm is to select the most
promising instructions as single-word candidates for the op-

timized instruction set. The algorithm has low computational
complexity but, in general, does not produce optimal results.

A. First Approach

The greedy algorithm implements a straightforward ap-

proach to solve the instruction set selection problem. The idea
is to encode the most valuable instructions using a single
word until all of the available codespace is exhausted. The
value of each instruction is calculated on the number of
occurrences and the instruction length. An appropriate metric
is the quotient of the two, as defined in equation 1 below. p(x)
equals the number of times an instruction occurs (its profit)
- and w(x) is the codespace needed by the instruction (its
weight). Instructions that are smaller and occur more often
have a larger value and will therefore be selected first.

v(x)
P(x)
w(x)

w(x) = 2b(x) (1)

Our goal is to design a n/2n-bit instruction set consisting of
single word n-bit instructions and double word 2n-bit instruc-
tions. We transform this problem into the equivalent problem
of finding an optimal 2n-bit instruction set. Each instruction
that is short enough to be encoded using a single instruction
word is represented twice. One single-word instance requires
2b(x)+± bits of the 22n encoding space and a double-word
instance requires only 2b(x) bits. We call this total set of
instruction candidates the intermediate representation. Figure
3 shows an example of a 4/8-bit input instruction set and its
intermediate representation. Xb represents an instruction of
length b bits. Single-word instructions are printed as Xb. The
original instruction set consists of eleven instructions A to N -

three of which are single words(A, B and F). The intermediate
representation contains all the original instructions plus a copy

for each instruction that might be encoded using a single word
(e.g. G7 is the single-word sibling of the original G3).
The greedy algorithm uses an intermediate representation

of Figure 3 as input. At the beginning (step 0), all double-
word instructions are selected. The result at this stage is an

instruction set containing all original instructions encoded as

2n-instruction words - even if they were single-word encoded
in the input instruction set. Then the algorithm selects the most
valuable element of all single-word instructions that fit into the
remaining codespace.

B. Refinement
In the previous example we considered only a reduced

version of our original problem. We did not create new

12

ld (Rl)+, Dl ;original line of assembler
LOAD
;00110000000000100001l
0O0pizOOfO[mod]O0aaa[rb][rb]bbbI
If=o mod=O i=1 z=O a=1 rb=O b=1 p=1|

lf(+l)=0 mod(+l)=0 i(+l)=1 z(+l)=0 rb(+2)=0|
;*l1LOADlf(+l)=0 mod(+l)=0 i(+l)=1 z(+l)=0
rb(+2)=01131
ldlo (R7 + 0), A3 ;original line of assembler
; LOAD_LONG_OFFSET_ACCU
; 10010001010001110001100000000000000000000I
; 10010[mod]OlflOOOaaaO[rb]bbbOOpOooooooooooooooooI
; If=0 mod=O a=7 rb=O b=3 p=O o=01
; lf(+l)=0 mod(+l)=0 rb(+l)=0 *o(-16)=0|
;*21LOAD LONG OFFSET ACCUjf(+1)=0 mod(+l)=0 rb(+l)=0
*o(-16)=01261

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

Fig. 3. original and intermediate instruction set

variants of instructions that implement a subset of an original
instruction's functionality. Our approach for solving this more
complex situation is introduced below.

In reality, our algorithm has to consider situations when a

candidate instruction is a sub- or a superinstruction of another
one that is possibly already selected. Consider the following
example: an input program uses the original instruction MOV

Rx, immed (5) 20 times. Fifteen out of these 20 times, a

reduced instruction with a smaller immediate is sufficient due
to the fact that the offset value is always smaller than 8. There-
fore we can introduce a new candidate MOV Rx, immed (3)
which needs to be considered when building an optimized
instruction set. In the following, we will name such shorter
instruction instances Xb (n) and their longer variant XB (N)
where B > b and N > n. Whenever Xb (n) is selected
the value of XB (N) must be recalculated. This follows from
the fact that X's profit becomes smaller as soon as one of
its subinstructions X* has already been selected. Equation
2 shows the modified value function v(x). The profit of x

is reduced by the profit of all shorter instructions x* that
are already selected. On the other hand, if x enters the
selection, all previously selected shorter instructions x* leave
the selection instantly. So the actual codespace requirement of
selecting x must be reduced by the sum of all its previously
selected subinstructions.

v(x)

v(x,) = 0, Vx* C sub(x) A x* is selected (3)

We are now able to give the pseudocode-listing (see figure
4) of the greedy algorithm. The value function v(x) referenced
therein is defined as in equation 2.

S intermediate representation including counts
cs 22n n/2n-bit code requested
R {x Ix C S A x is doubleword}
S S\R
WHILE cs <> OASS 0
DO
SORT S on v(x) FOR ALL x C S
x = top(S)
WHILE S 0 A size(x) > cs

DO
x = next(S)

DONE
R =RU{x}
S = S\ {X}

S = S \ sub(x)
cs = cs -space(z)

DONE
RETURN R

FUNCTION v(x)
space(x) = 2bits(x)
FOR ALL y C R y c sub(x)

space (x) = space (x) 2bits(y)
count(x) = count(x) -count(y)

RETURN count(x)1space(x)

Fig. 4. pseudocode of greedy algorithm

C. Discussion

As we will see in section VI, the greedy algorithm produces
quite good, but not always optimal, results. As soon as the
available codespace is too small to hold the next element
of the sorted input set, the optimality constraint is violated.
Dropping an already selected element and choosing other
elements instead might improve the overall result significantly.
The biggest advantage of our greedy algorithm is its running

time. In contrast to all the other algorithms discussed later
the greedy algorithm is amazingly fast. In theory, its solution
might be far away from the optimum but due to the nature of
our problem this is rather unusual. Practical results (see section
VI) show a difference of less than 1% from the optimum.

(2)
D. Optimizations

C sub(x) A xc is selected

Similarly, we have set the value of all instructions Xb (n)
to zero if XB (N) has been selected. The simple reason is that
selecting a shorter instruction does not make sense when a

longer and more general variant of this instruction has already
been selected. This is expressed in equation 3.

The pseudocode of Figure 4 recalculated all values and
completely resorted the set S each time an element was

selected. However an element's value and its rank change only
when one of its subelements has just entered the result set.
Therefore we can leave all other elements' values unchanged
and recalculate just the affected elements. The optimized
pseudocode is listed in figure 5.

13

Original n/2n instruction set:

bits instructions

5 N5
4 M4
3 G3, H3, 13
2 B2,C2,D2,E2,F2
1 A1

Intermediate 2n instruction set:

bits instructions

7 G7, H7, 17
6 B6,C6,D6,E6,F6
5 A5,N5
4 M4
3 G3, H3, 13
2 B2,C2,D2,E2,F2
1 A1

P(X) Ei P(X*)i
c(x) Ei c(x*)i

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

Fig. 5. pseudocode of greedy algorithm - optimized

V. ILP-BASED ALGORITHM

The greedy algorithm is fast, but does not give optimal
results. We tried an optimal algorithm based on a 0-1 knapsack
but it did not produce a result after several days of computation
time. This section describes how to formulate the instruction
set optimization problem as an integer linear programming
(ILP) problem which can be solved using standard available
software, such as Ipsolve.

A. Basic ILP maximization problem
Our instruction set allocation problem can be formulated

as an ILP. As a first approach, we start by defining the goal
function and some basic constraints. Our goal is to minimize
the total program size which is equivalent to maximizing the
number of single word instructions used by the input program.
This goal is expressed in equation (4). For each original
instruction, we introduce a binary variable Ij that is 1 if the
instruction is encoded as a single word and 0 otherwise. The
pjs are constants counting how often an instruction occurred
in the input program. Equation (5) expresses the fact that our
codespace is limited and filled by the instructions - either
using constant Wj bits when encoded as a single word or using
wj bits when encoded as a double word.

n

maximize EPjPix. (4)
j=1

n

E: wjEjj + wj(- j) < c, (S)
j=1

O <xj <1.

The ILP formulated so far is sufficient for finding an optimal
re-encoding of the original instruction set without any new

instruction variants. In the next section, we will develop a
more sophisticated model that covers that particular case.

B. Enhanced ILP maximization problem
For each new specialized instruction, we define a new binary

variable Xj,k, k > 1. Original instructions are represented by
the binary variable xj 0. Whenever an instruction is encoded as
a single word the corresponding variable is 1, and 0 otherwise.
Constants wj,k, k > 0 represent the codespace that is required
when encoding an instruction as a single word. We already
know that it does not make sense to encode a specialized
instruction as a double word as it is already covered by the
original instruction. So we only need double word codespace
for our original instructions represented by wj,o. Using these
constants and the binary variables X k we are able to redefine
our codespace constraint as in (6).

n

Wj,0(l
j=l

n m

'+j,O)5+ WXjkl <C,
j=l k=0

(6)

(7)
_ | 1 if single-word encoded

X-i l0 otherwise

For the definition of our goal function, we have to introduce
new variables because we can't use x -k from above. We create
a new variable yjk and a corresponding constant Pj,k. Y is

if the instruction or some more general instruction is encoded
as a single word (8). We use the notation a b if an instruction
variant a is more general than b. If a = 0 this is true for all b
- as a = 0 represents the original instruction which is always
the most general one.

The constant Pj,k counts all instruction instances of the input
program that can be encoded by this specific instruction but
not by another more specific one. All Pj,k sum to the number
of original instruction instances (9). With these new constants
and variables we can define our goal function as in (10).

1 if 3 s k:
-i,k

=

0 otherwise
1

(8)

m

Pj, =Pj
k=O

n m

maximize 5, Pj, kYj, k.

j=l k=0

(9)

(10)

In order to complete our ILP model, we need to define some

additional constraints that express the relations between the
instruction variants. We know that it does not make sense to
create a single-word instruction when a more general variant
is already single-word encoded. This relation and the corre-

sponding equation for our ILP model are expressed in the first
line of (11). The second line expresses the relation between
the Xj,k: whenever a more general instruction is counted as a

single-word instruction then certainly all less general can, too.
The third line expresses the fact that whenever an instruction
is encoded as a single word we can instantly count it as such.

14

S intermediate representation including counts
cs 22n ... n/2n-bit code requested
R {x x C S A x is doubleword}
S S\R
SORT S on v(x) FOR ALL x C S
WHILE cs<> OA S#A 0
DO
REPEAT
x = top(S)
S = S \ {X}

UNTIL S = 0 V size(x) < cs
R =RU{x}
S S \ sub(x)
Cs cs -space(x)
FOR ALL y x C sub(y)
REARRANGE y in S on new v(y,x)

DONE
RETURN R

FUNCTION v(y,x)
space(y) = space(y) -space(x)
count(y) = count(y) -count(x)

RETURN count(y)/space(y)

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

Va b: xj,a XJ> b # Xj,b+Xj,a <1

V1 a b: Yj a >- YibY, Y, (11)
V a: j,a Yj,a Y Xj,a > 0

Up to now, we considered all relations except one. When an
instruction is counted as single-word encoded, it must either
be encoded as such or one of its more general instructions is.
This is expressed in (12).

Vb:YJb > xJ,bV(3aZ1b:xj,a b 1)y

(XJ,b + S Xj,a')
alb

-y > 0EJ,b -

C. ILP problem solvers

ILP in general is NP-complete, but there are quite a few
good solvers that are publicly available. The most prominent
are:

* lp_solve is a MIP (mixed integer programming) solver.
lp_solve is available under GNU LGPL and is capable
of solving linear and integer programming problems. It
runs as a standalone program or can be incorporated into
other software as a library.

* GLPK (GNU Linear Programming Kit) is a set of routines
written in ANSI-C which can be linked as a library for
solving linear programming problems. It also includes a
branch-and-bound algorithm which can be applied to ILP
problems.

* OPBDP is an implementation in C++ of an implicit
enumeration algorithm for solving (non)linear 0-1 (or
pseudo-Boolean) optimization problems with integer co-
efficients. It contains a couple of different heuristics to
solve the problem more efficiently and can be improved
by adding heuristics of your own. It is available as a
standalone program or can be linked to applications as a
library.

For our work we chose lp_solve as it supports a very flexible
input syntax and it solves our problem instances within a
few seconds. Unexpectedly the runtime of OPBDP which is
specialized for nonlinear 0-1 optimization problems was much
higher.

D. Discussion

The ILP approach for solving our instruction set alloca-
tion problem is very powerful. In contrast to the algorithms
presented earlier, the ILP model allows us to add constraints
that can't be easily added to the other algorithms. Consider,
for example, the requirement that we want the instruction
set to contain a single word ADD Rx, immed (3) instruction
whenever a SUB Rx, immed (3) is encoded as a single word.
With our ILP model, we only need to add a simple equation
representing that constraint: xADD,3 =XSUB,3.

VI. EXPERIMENTAL RESULTS

Our work is based on an existing instruction set that was
designed by experienced architects over a long period. The
instruction set consists of 217 multi-purpose instructions; 130
of them are 20-bit instructions and 87 of them are 40 bits
long. 58% of the 40-bit instructions require fewer than 20
bits for their operands. These instructions were possibly added
to the instruction set by the architect at a later time when
the 20-bit codespace was already nearly exhausted. Coding
these instructions using a short word would have required a
reorganiLzation of the existing instruction set encoding.

Statistics showed that fewer than 50% of the available
instructions are ever used. This fact alone theoretically opens
the potential for much optimization when we are allowed to
create a reduced instruction set containing only the instructions
that are actually used. However, only a few of the 51 40-
bit instructions that require fewer than 20 bits are used by
our benchmark programs. So the potential is rather small in
practice.
We used a set of DSP benchmarks for our experimental

results. The benchmarks were written in standard ANSI C and
compiled using the optimizing C compiler of the architec-
ture exploration system. Table I gives an overview of these
compiled benchmark programs and some figures. For each
benchmark we listed the number of distinct 20- and 40-bit
instructions and the resulting total code size. All benchmark
programs represent specific fields of DSP-related applications
and to some extent they differ in their instruction set require-
ments. In order to represent a general purpose DSP application,
we created a synthetic benchmark which is a combination
of all other benchmarks. From table I we learn that 20% to
50% of our programs' code size is comprised of double-word
instructions. At best, we can therefore theoretically achieve
up to a 25% of reduction in code size when we are able to
re-encode all 40-bit instructions using a single 20-bit word. In
practice, the optimization potential is somewhat smaller - as
we will see later on.

A. Locally optimized instruction sets

This section describes the results when constructing an
optimized instruction set for the DSP-benchmark programs
introduced in the previous section.

Table II lists the code size of our benchmark programs using
the original instruction set and the resulting code size when
recompiling it using one of the newly constructed instruction
sets. The results apply to a relaxed problem formulation where
unused instructions are not included in the new instruction
set. Therefore we call these instruction sets locally optimized.
In section VI-B, we present results for globally optimized
instruction sets.

Analysing the data from this figure demonstrates that for
some programs the theoretical optimum - i.e. encoding all
40-bit instruction used as single-word instructions - is nearly
reached. For example 24.1% of the rijndael benchmark pro-
gram's code size was made up of 40-bit instructions. In
principle, any optimization technique that does not change

15

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

benchmark distinct instructions code size[bits] code size[%]
program 20-bit 40-bit j total 20-bit L 40-bit total 20-bit 40-bit
adpcm 38 15 53 10080 3840 13920 72.4 27.6
blowfish 40 15 55 12480 4400 16880 73.9 26.1
cmac 53 23 76 40760 39960 80720 50.5 49.5
dct32 39 13 52 13640 9240 22880 59.6 40.4
dct8x8 38 19 57 13260 5480 18740 70.8 29.2
dot 32 11 43 7460 2560 10020 74.5 25.5
gsm 51 23 74 62740 33360 96100 65.3 34.7
g721 50 13 63 25600 8760 34360 74.5 25.5
ghs 43 18 61 45460 13880 59340 76.6 23.4
rijndael 49 19 68 53340 16960 70300 75.9 24.1
serpent 54 21 75 73160 19840 93000 78.7 21.3
viterbi 42 17 59 14140 8480 22620 62.5 37.5
synthetic 61] 27] 88 T 185860 98680] 284540 65.3 34.7

TABLE I
BENCHMARK PROGRAMS - CODE SIZE ANALYSIS

original greedy algorithm exact algorithm
benchmark code size code size code size
program bits % bits L % bits L %
adpcm 13920 100.0 12800 92.0 12780 91.8
blowfish 16880 100.0 15680 92.9 15620 92.5
cmac 80720 100.0 66360 82.2 65640 81.3
dct32 22880 100.0 20000 87.4 20000 87.4
dct8x8 18740 100.0 16920 90.3 16920 90.3
dot 10020 100.0 9280 92.6 9280 92.6
gsm 96100 100.0 85700 89.2 85580 89.1
g721 34360 100.0 31300 91.1 31220 90.9
ghs 59340 100.0 53980 91.0 53880 90.8
rijndael 70300 100.0 63480 90.3 63160 89.8
serpent 93000 100.0 85240 91.7 84800 91.2
viterbi 22620 100.0 19380 85.7 19300 85.3
synthetic [284540 100.0 258520 [90.9 T 253700 89.2

TABLE II
BENCHMARK ANALYSIS - 20/40 BIT CODE LOCALLY OPTIMIZED

important architectural features is limited to 12%; with the
technique presented here we gained 10.2%.

Figure 6 shows for each benchmark application a compar-
ison of the optimized 20/40-bit and 16/32-bit instruction set.
When using single benchmark programs for the optimization,
the 16/32-bit encoding results in a significantly smaller code
size. When using all benchmark programs together (synthetic)
the 20/40-bit and 16/32-bit instruction sets nearly give the
same results.

B. Globally optimized instruction sets

For the data presented in table III, we created for each
benchmark program a globally optimized 16/32-bit instruction
set using the ILP algorithm. As the resulting instruction set
contains all features of the original instruction set, we were
able to recompile the other benchmark programs with this
instruction set. As can be seen from table III, an instruction set
optimized for one program can have a negative impact on the
code size of other programs. The only global optimization that
produced smaller code for all benchmark programs was the op-
timization for the synthetic benchmark. All other optimizations
produced larger code for at least one other benchmark.

100,0°

95 X0

90 0%

85 X0

80,0%

75 X0

70 0X

* 20/40-bit
E 16/32-bit

Fig. 6. comparison of 16/32- and 20/40-bit optimization

C. Algorithm execution time

We compared the execution time of the greedy and ILP
algorithms. This was interesting as, in general, the ILP-based
approach may not finish within reasonable time. The good
runtime results of this algorithm are primarily a merit of
the lp_solve application which includes several heuristics and
sophisticated algorithms for solving ILP problems efficiently.

Table IV shows the time the two algorithms spent computing
a locally optimized 20-/40-bit instruction set. The times were
measured on a Pentium III 900 MHz single-processor machine
with all algorithms implemented in ANSI-C. As expected, the
greedy algorithm is always the fastest one and finishes within
a few milliseconds. The ILP based is also fast enough to be
used for large problems. If, for very large problems, the ILP
algorithm is not fast enough, the greedy algorithm could be
used as fall back.

VII. CONCLUSION

In an embedded system, the cost of storing a program
on-chip can be as high as the cost of the microprocessor
itself. In this paper we developed a strategy for reducing this
cost by reducing the code size of a given application. We
achieved this by creating a new instruction set that is optimized

16

.. 'f e e le" Z.l .. e//e .P"' ,-e, .,,

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

16/32 - instruction set globally optimized for
benchmark

program E J 7L 7 I a I =I Xl
adpcm 84.9 89.3 92.1 92.0 89.7 87.5 89.8 87.2 91.4 89.9 91.4 88.6 88.7
blowfish 94.2 85.8 93.7 100.1 93.3 96.1 94.1 93.6 98.7 93.3 95.7 92.6 94.2
cmac 92.2 90.7 85.1 93.8 91.6 93.9 91.7 91.9 95.3 91.3 91.2 89.1 89.3
dct32 93.6 95.3 94.3 83.8 89.4 92.7 91.0 91.8 94.5 94.3 94.1 92.9 90.2
dct8x8 97.6 96.2 96.9 90.7 84.7 96.5 94.0 93.9 101.3 98.0 98.6 91.7 94.0
dot 84.6 86.2 89.6 87.5 85.0 82.2 88.1 84.8 88.6 87.0 88.9 86.5 87.2
gsm 93.0 94.1 93.1 93.8 93.8 93.7 86.7 90.9 91.4 92.1 91.8 93.9 87.6
g721 94.2 99.3 98.1 102.1 99.5 95.0 95.2 88.7 96.1 97.4 94.5 96.9 92.3
ghs 97.2 99.1 97.6 100.5 102.0 95.7 93.7 94.8 89.8 99.6 95.8 97.9 92.4
rijndael 96.9 99.7 99.0 98.2 99.3 97.7 96.3 94.9 96.2 90.2 93.5 99.2 91.8
serpent 99.8 101.0 99.4 103.9 102.6 100.5 97.9 98.0 99.9 94.8 92.0 99.9 95.5
viterbi 92.6 91.8 91.7 93.9 90.5 93.1 93.7 92.4 96.6 93.5 93.5 85.2 92.7
synthetic 95.9] 96.1 94.4] 97.4 97.3 96.7 92.3 94.0 [94.0 93.6 [93.5 95.6 [90.5

TABLE III
BENCHMARK ANALYSIS - 16/32 BIT CODE GLOBALLY OPTIMIZED

TABLE IV
ALGORITHM RUNTIME FOR LOCALLY OPTIMIZED 164/32 BIT

INSTRUCTION SET

to the application's requirements, exploiting the use of two
instruction sizes (one or two instruction words).

Our evaluation showed that, on average, a given program's
code size can be reduced by about 11%. Some applications
can be reduced in size up to 20%. This was achieved without
changing the fundamental architectural components of the
underlying processor. Further optimization is possible when
the bit-length of the instruction set is reduced. This yielded
an improvement of an additional 8% compared to the original
code size.

ACKNOWLEDMENT

We like to thank Nigel Horspool and the anonymous re-

viewers for their helpful suggestions.

REFERENCES

[ARK99] Shail Aditya, B. Ramakrishna Rau, and Vinod Kathail. Automatic
architectural synthesis of vliw and epic processors. In ISSS
'99: Proceedings of the 12th international symposium on System
synthesis, page 107, Washington, DC, USA, 1999. IEEE Computer
Society.

[Ben88] Jeremy Peter Bennett. A methodology for automated design of
computer instruction sets. Technical Report UCAM-CL-TR-129,
University of Cambridge, Computer Laboratory, March 1988.

[CTM04] Allen Cheng, Gary Tyson, and Trevor Mudge. Fits: framework-
based instruction-set tuning synthesis for embedded application
specific processors. In DAC '04: Proceedings of the 41st annual
conference on Design automation, pages 920-923, New York, NY,
USA, 2004. ACM Press.

[eLCD02] Jong eun Lee, Kiyoung Choi, and Nikil Dutt. Efficient instruction
encoding for automatic instruction set design of configurable
asips. In ICCAD '02: Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design, pages 649-
654, New York, NY, USA, 2002. ACM Press.

[Hay68] Frederick M. Hayne. "Using a Computer to Design Computer
Instruction Sets". PhD thesis, Carnegie-Mellon University, 1968.

[HD94] Ing-Jer Huang and Alvin M. Despain. Synthesis of instruction
sets for pipelined microprocessors. In DAC '94: Proceedings of
the 31st annual conference on Design automation, pages 5-11,
New York, NY, USA, 1994. ACM Press.

[Hol93] Bruce K. Holmer. Automatic design of computer instruction sets,
1993.

[Hol94] Bruce K. Holmer. A tool for processor instruction set design.
In EURO-DAC '94: Proceedings of the conference on European
design automation, pages 150-155, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[KHPP04] Andreas Krall, Ulrich Hirnschrott, Christian Panis, and Ivan
Pryanishnikov. xDSPcore: A Compiler-Based Configureable Digi-
tal Signal Processor. IEEE Micro, 24(4):67-78, July/August 2004.

[Knu7I] Donald E. Knuth. An empirical study of fortran programs. In
Software- Practice and Experience, pages 105-133, 1971.

[LC99] Sergei Y. Larin and Thomas M. Conte. Compiler-driven cached
code compression schemes for embedded ilp processors. In MI-
CRO 32: Proceedings of the 32nd annual ACM/IEEE international
symposium on Microarchitecture, pages 82-92, Washington, DC,
USA, 1999. IEEE Computer Society.

[LDK99] Stan Liao, Srinivas Devadas, and Kurt Keutzer. A text-
compression-based method for code size minimization in embed-
ded systems. ACM Trans. Des. Autom. Electron. Syst., 4(1):12-38,
1999.

[LSSC03] Jeremy Lau, Stefan Schoenmackers, Timothy Sherwood, and Brad
Calder. Reducing code size with echo instructions. In CASES '03:
Proceedings of the 2003 international conference on Compilers,
architecture and synthesis for embedded systems, pages 84-94,
New York, NY, USA, 2003. ACM Press.

[SJGS82] Richard E. Sweet and Jr. James G. Sandman. Empirical analysis
of the mesa instruction set. In ASPLOS-I: Proceedings of
the first international symposium on Architectural support for
programming languages and operating systems, pages 158-166,
New York, NY, USA, 1982. ACM Press.

17

cputime [seconds] of
greedy ILP

algorithm algorithm
adpcm 0.07 0.25
blowfish 0.04 0.42
cmac 0.07 0.79
dct32 0.04 0.30
dct8x8 0.05 0.22
dot 0.02 0.20
gsm 0.11 0.83
g721 0.05 0.47
ghs 0.05 0.39
rijndael 0.05 0.42
serpent 0.06 1.27
synthetic [0.17 4.18

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 05:51 from IEEE Xplore. Restrictions apply.

