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Abstract- Dynamically reconfigurable systems demand com-
plicated run-time management. Due to resource constraints and
reconfiguration latencies, efficient reconfiguration strategies that
can reduce the overhead cost of dynamic reconfiguration need
to be studied. In this paper, we i) propose a reconfigurable
task model which extends the classical real-time task model to
support the additional states and latencies needed to capture
dynamically reconfigurable behavior, ii) propose a coprocessor-
coupled reconfigurable architecture which has hardware run-
time support for task execution, task reallocation and resource
management, and iii) present a SystemC based framework to
model and simulate coprocessor-coupled reconfigurable systems.
We illustrate how COSMOS may be used to capture the dynamic
behavior of such systems and emphasize the need for capturing
the system aspects of such systems in order to deal with future
design challenges of dynamically reconfigurable systems.

I. INTRODUCTION

Future embedded systems will be based on platforms which
allow the system to be extended and incrementally updated
while running in the field. This will not only extend the life
time of the system, but also allow the system to adapt to the
physical environment as well as performing self-repair and
hence increasing the reliability and robustness of the system.
In order to facilitate this, the platforms need to be dynamically
reconfigurable architectures. Although these platforms will
be based on multiprocessor system-on-chips (MPSoC) and
network-on-chip (NoC) architectures, the dynamic behavior of
the hardware pose new challenges to tools and methodologies
in order to ensure both efficient platform design and run-time
platform usage.

Reconfigurable architectures fully exploit the tradeoff be-
tween the chip area and hardware reusability. Instead of imple-
menting the digital IP core with fixed logic, a programmable
digital device is used. By switching the application running
on the programmable device at run-time, the architecture
should have the flexibility of software and the efficiency of
the hardware, thus enables us to close the gap between the
software and the hardware.
The biggest challenge in reconfigurable system design is to

improve the rate of reconfiguration at run-time by reducing the
reconfiguration overhead. The reconfiguration overhead comes
from multiple sources, and without proper management, the
flexibility of the reconfiguration can not justify the overhead
cost. Many new technologies and designs for minimizing the

reconfiguration overhead have been proposed. Logic granular-
ity [4], [5], host coupling [3], resource management [7], [6]
etc. have been studied in various contexts. These technologies
substantially increase the practicality of the reconfigurable
systems, but also often lead to highly complicated system
behavior. There exists several highly efficient architectures,
but many of them have significant drawbacks in terms of
programmability, flexibility, scalability or utilization rate.

Even though low-level technologies have drawn a lot of
attention, the study on system-level behavior and compilation
is still in its infancy. As high level design decisions made
early in the design process can have a high impact on
the performance of reconfigurable systems, the evaluation of
applications executing on a reconfigurable system in the early
development stages, is a new challenge which needs to be
addressed.

For datapath-coupled architectures [11], [4], reconfigurable
unit (RU) is frequently designed as a special instruction-set
functional unit or extended to a large-scale VLIW proces-
sor, thus the application can be efficiently evaluated with
instruction-level simulation. However, coprocessor-coupled ar-
chitectures, which are usually large-scale, need advanced run-
time resource management and carefully designed architec-
tures. Hence, to improving the system efficiency, we need
to be able to model and analyze such architectures and the
applications running on them.

In this paper we present COSMOS, a framework to model
and simulate coprocessor-coupled reconfigurable systems. We
propose a novel real-time task model which captures the
additional characteristics to correctly handle dynamically re-
configurable systems. We also propose a general model of
coprocessor-coupled reconfigurable systems. The task and ar-
chitecture models are based on an existing MPSoC simulation
model, ARTS [1], which has been extended to facilitate run-
time resource management strategies. To the best of our
knowledge, this is the first attempt to create a system-level
modelling framework for dynamically reconfigurable systems,
which takes into account the reconfigurable architecture, the
application running on the architecture and the run-time task
and resource management.
The rest of the paper is organized as following. Section

II gives an overview of the new technologies employed in
reconfigurable system design. Section III proposes the recon-
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figurable system task model which captures the real-time ap-
plication execution characteristics. Section IV propose a real-
time system model of the coprocessor-coupled architecture
with focus on the run-time resource management and task
execution efficiency. Section V discusses how the task and
architecture models have been implemented in SystemC, and
a demonstrative simulation result is presented in section VI.
Section VII discusses our model's future work and Section
VIII concludes our study.

II. BACKGROUND

During a reconfiguration, reconfigurable architectures suf-
fers from latencies due to context switching (configuration and
intermediate data) of an RU. The severity of this latency is
determined by several physical factors, e.g. the scale of the RU,
the logic granularity, the configuration memory bandwidth, the
rate of reconfiguration or the buffering technics of reconfig-
uration memory fetching. In the following we will give an
overview of the related research areas that can reduce such
latencies, and discuss how they affect system behavior.
One research trend assume that the applications, or a collec-

tion of tasks, share the RU in time, as shown in Figure 2A. [8]
proposed a multi-context FPGA that can significantly reduce
the reconfiguration time, but the extra cost of chip area is
hardly justifiable by the performance gain. A solution that can
substantially reduce the area overhead is to increase the logic
granularity of the RU to medium- or coarse-grained, as shown
in Figure 1. Even if these higher-granularity architectures do
not offer highly optimal solutions to applications that heavily
exploit bit-level data manipulations, the concept of multi-
context is proved feasible. But still, the number of contexts
being cached on the RU is usually limited, and optimal
utilization of the limited context resource at run-time is a
difficult challenge for a multi-tasking system [9].

Logic
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1 Context
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Fig. 1. The impact of logic granularity on the chip area of reconfigurable
architectures.

Another type of reconfigurable architecture assume that the
RU is shared in space [10], [7], as shown in Figure 2B. The RU
is partially reconfigurable and large-scaled, thus several tasks
can be run on the same RU with no conflicts among each other.
Besides reconfiguration latency, this class of architectures
leads to complicated inter-task communication and resource
management. Since a task can be allocated on an RU at

any free location during run-time, data traffic between tasks
go through non-deterministic paths, maybe requiring dynamic
routing. For a large programmable array, the complexity of
performing the task placement and data routing at run-time
can be very hard to handle. Also, it is clear that the frag-
mentation is a common issue for this kind of design, thus task
(context) reallocation and rerouting is consistently required for
defragmentation. In summary, the behavior and efficiency of
such system can be very unpredictable, and understanding the
system behavior in the early development stage is crucial.

Ti
T2
T3
T4
T5 /

Reconfigurablei-L"
unit2

A. RU shared in time B. RU shared in space

Fig. 2. Reconfigurable unit design

A third type of RU is a hybrid of the two former families.
This type of architecture is one of the main focus of our
work, and it will be introduced in section IV. This architecture
is viewed as an array of networked multi-context RUs. Such
system also requires efficient dynamic resource management,
but the routing problem is greatly simplified compared to
space-shared architectures.

In general, we are facing the increasing complexity of the
reconfigurable system's spatial and temporal behavior. New
technologies that improve the system's efficiency also compli-
cates the architecture, and the value of the tradeoff between
performance and design complexity is not easily assessable.
A system-level simulator is much needed for evaluating the
performance of dynamically reconfigurable systems. Such a
simulator should give the designer the opportunity to tune
various design parameters and to study the consequences on
system performance.
To build a system-level simulator, we need a thorough

understanding on how to model the tasks which comprise the
application. A task running on the reconfigurable architecture
has a different execution behavior than the classical real-time
task, thus the classical model does not fit our purpose. For
the simulator design, we need i) a general and generic model
of the RU which can represent various types of coprocessor-
coupled RU designs, ii) the dynamic resource management
issue of the RU should be addressed, and iii) the simulation
should be parameterizable so that the consequences of changes
in the physical design can be captured within the model.
The ARTS modelling Framework captures real-time be-

havior of heterogeneous multiprocessor systems, where each
processor may run its own operating system. In our work, we
adopt the underlying message-passing based mechanism of the
ARTS model and some of its RTOS functionality. We extend it
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further to support the modelling of dynamically reconfigurable
systems. In particular, our model, unlike ARTS, supports task
reconfiguration and reallocation during rune-time, i.e. during
simulation.

111. TASK MODEL

In the ARTS framework, an application is modelled as a
set of task graphs, and each task is modelled as a finite state
machine (FSM), as shown in Figure 3. The state transitions of
a task are driven by the operating system control messages.
Whether a task should run, or be preempted, depends on the
resource allocation, scheduling and task dependency. But for
reconfigurable system, such an FSM is not sufficient to capture
the task execution scenario.

A. task graph B. task FSM

Fig. 3. ARTS task model

Firstly, to initialize the task execution, the initial config-
uration needs to be loaded from the configuration memory
to the RU. Depending on the RU's granularity, size and
memory interfacing, the timing cost for fetching the whole
configuration can be a big overhead. To explicitly express this
task execution phase, a new state initLconfig has been added
to the task model, as shown in Figure 4.

Secondly, the preemption is not simply a process of task
giving up an RU for other tasks, but is also a process of
hardware context switching. Differ from the software context
switching, which mostly involves backing up special-purpose
registers and bookkeeping the operating system management
entries, hardware context switching needs to back up the
configuration and all the intermediate data stored in all the
memory elements. The timing cost of the preemption can
be extremely high if the context is stored in the external
memory, or as low as a single clock cycle if the RU has multi-
context support. Architecture designers would experiment on
various combinations of different context storage design in
order to find an optimal strategy, thus the reconfiguration
latency may vary. In our model, we added two delay states,
reconfig-preempt and reconfig-run, to represent the timing
cost of the preemption.

Finally, the effect of process of task migrating among
multiple RUs need to be modelled. As shown in Figure 4, we
add the reallocation state realloc at three places and marked it
with dashed circles, in order to emphasize that this single state
has multiple entry points and exit points. This is modelled so

Fig. 4. Real-time reconfigurable task model

because reallocation can happen anytime after a task leaves the
idle state, and at different point of time, the reallocation has
different effect on task execution. If the reallocation is started
before a task is run for the first time, the task needs to be
initialized on a different RU. In this case, the (partial) context
of the reallocated task is moved to another RU, then it resumes
the previous state for either continue initializing or waiting to
get permission to run. If the task has been run before, then the
allocation must be ended with the task going to the preempt
state. The reason for such a setup is because the task doesn't
know if it can continue executing after the reallocation, since
the resource status of the reallocated RU is unknown. It is safe
for a task to preempt itself and request resource management
unit for permission to continue execution.

IV. COPROCESSOR COUPLED ARCHITECTURE MODEL

As shown in Figure 2, the architecture design is heading
to two directions. Besides the aforementioned resource man-
agement issue, the time-shared architectures also suffer from
scalability issue, since parallelizing a task to use the full RU
gets harder when RU's size increases. Similarly, the space-
shared architecture's defragmentation gets harder when the
RU upscales, and the rerouting becomes impossible to handle
at run time. Unless the RU is partitioned and modularized,
the space-shared architecture has too many practical issue to
realize.

To solve the problem of both types of the reconfigurable
architecture, we propose a hybrid architecture model. As
shown in Figure 5, our coprocessor consists of an array
of homogeneous multi-context RUs connected with on-chip
networks (NoC). Similar to the time-shared design, the com-
putation resource of our architecture is still the context of
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the RUs. By statically partitioning the applications into tasks,
each of which is small enough to fit into one RU's context,
or one resource, we can explore the application's parallelism
at different levels and efficiently utilize the potential of the
coprocessor. To ease the dynamic resource management, we
assume that tasks never share one RU in space, even if several
tasks can fit into one RU at the same time. This guarantees that
each task can be reallocated without interfering the execution
of the other tasks.

Fig. 5. Hybrid coprocessor-coupled reconfigurable system

As an architecture design, our architecture has several ad-
vantages compared to many previous designs. Our coprocessor
is upscaled by increasing the number of RUs, thus has more
flexibility to efficiently support tasks of various complexity.
With the support of the NoC, rerouting problem can be solved
on the fly when the tasks are communicating. Since the
coprocessor is modularized, defragmentation is not a crucial
issue as in previous space-shared design. When combined with
our resource management strategy, which will be discussed
later, our co-processor is highly scalable.
As a model, our model can easily be used for both time-

shared and space-shared architecture PSE. To model the time-
shared architectures, by assuming the number of RUs to be
one, our model imitates a multi-context architecture. As to
model a space-shared architecture, by assuming all the RUs to
be single-context, our model can be viewed as a modularized
space-shared RU. By employing a NoC and assuming that
any task can be allocated to a randomly selected RU, the
dynamic placement and routing issues of space-shared archi-
tecture becomes a much easier issue to address. However, the
homogeneity of RUs adds an extra compile/synthesis resource
constraint.
The resource management is still a problem for our ar-

chitecture, since the run-time system needs to manage tasks
in both space and time. For a small-scaled coprocessor, the
CPU/operating system can be used to manage the resource.
But if the system reaches certain scale, it is foreseeable
that taking a snapshot of the whole coprocessor's resource
distribution, evaluating it and allocating/reallocating task by
using the CPU can be a performance bottleneck. Here we
introduce our alternative to address this issue.

Mg M m m

l~

Fig. 6. Hierarchical organization of reconfigurable units

As shown in Figure 6, some nodes in the coprocessor are
selected as Coordinator nodes (C-nodes) or Master nodes (M-
nodes), and the rest are Slave nodes (S-nodes). By structuring
the whole design into hierarchies, the resource management is
distributed into different roles each type of the nodes play.

C-nodes are the resource management nodes. Each time an
application is started by CPU, all C-nodes send message to the
lower hierarchy for resource check. Then M-nodes collect the
weighted resource distribution status from S-nodes and pass it
to the C-nodes. Then the C-nodes, all of which run the same
decision-making protocol, select a resource-optimal M-nodes
to initialize and synchronize the application's execution.

M-nodes are the task execution management nodes. After
the C-nodes assign an application to an M-node, the M-
node reallocates the currently running tasks to free up some
resources if the new application has a higher priority. Then
the M-node initializes the new application's tasks to free
resources, and start its execution. During execution, depending
on the task dependencies and priorities, the M-node can
reallocate the tasks or preempt the task execution. C-nodes
and M-nodes forms a cluster. M-nodes is only controlled by
the C-nodes in its cluster, thus any message received from
other C-node will be ignored.

S-nodes are the computation units. When a task is allocated
to an S-node, the task can be blocked or selected for execution,
depending on its priority or deadline. The node keeps track of
how many resources is currently in use and how many is still
available. The multi-context S-nodes is not bounded to one
specific M-nodes. As long as it gives optimal results, contexts
on a S-node can be shared among all M-nodes.
The tasks of a certain application are distributed on the

S-nodes near one M-node selected by the C-nodes. The
higher priority an application has, the more effort the M-
nodes will put into to cluster its tasks, in order to lower the
communication cost. Lower priority applications' clusters can
be disrupted by the M-nodes when a new application with
higher priority is started. Careful placement of clusters can
help achieve overall system optimality, thus is crucial in our
approach.
Our hierarchical design represents our general resource

management strategy, but we don't enforce a physical bound-
ing between the function of a resource/task management unit
and a RU, except for the S-nodes. For instance, when the
coprocessor is small, the function of the C-node and M-nodes
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can be realized by the operating system running on CPU, or
be combined into one physical RU. It gives us the freedom to
model the architecture on various scales. In our experiment,
priority is based on the overall communication demand of an
application, but we don't constrain how task priority is defined
or what allocation strategy is used. Different designer may
have different preference on specific parts of the system, and
we leave them open for experimentation.
Even though it is not the focus of our work, the latency of

off-coprocessor data communication can be easily modelled by
our framework. Data IO ports connected to the main memory
can be modelled as S-nodes with no context limitation, and off-
coprocessor data communication can be modelled as special
tasks that can only be allocated on the S-nodes that imitates the
coprocessor's JO ports. Given a set of coordinates to the ports,
which is preferably on the boundary of the coprocessor, the
off-coprocessor communication latency can change when the
task reallocation occurs, depending on the distance between
the JO port and the tasks that need access to the main memory.

We will not go into detail of the NoC model design in
our work, since it has been addressed by the ARTS model
described in previous work[2]. In this paper, we simply assume
that if two communicating tasks are k hops away on the
coprocessor, the communication latency is kT, where T is the
single-hop base communication latency between those tasks
decided through static analysis. The overall communication
latency of an application is greatly affected by the allocation
strategy, which is one of the most interesting issue to be
addressed by our model.
When a task is reallocated, the context of a task is trans-

ferred from one RU to another. This process results in a
burst of data transfer on the NoC in a short period of time.
Compared to the context transfer, inter-task communication
happens much more frequently than reallocation, and data is
often delivered in smaller packets. These two types of data
transmission have very different requirements on the NoC
design, thus we separate them into two NoCs. The reallocation
NoC is assumed to be able to establish preset paths that
can guarantee to finish the reallocation in a short period of
time, thus the physical distance between the context transfer's
source and destination should not play a significant role in
the overall reallocation latency. In our model, we assume that
any reallocation takes a constant period of time, and several
reallocation can take place concurrently without blocking each
other. Physically, the configuration data communication could
share the inter-task communication NoC, but to demonstrate
the concept, we choose not to do so at the moment.

One final note about our architecture is, compare to previous
works, our approach relies more on the static analysis. We
assume that all the RUs are homogeneous, which implies that
when an application is partitioned into a task graph, each task
has to be able to optimally utilize the computation power of
the RU. It is a challenge to perform DSE with several design
constraints imposed by the RU design, especially if the high-
level synthesis is used.

V. SYSTEM-C SIMULATION MODEL
The general structure of our System-C model is shown in

Figure 7. Various types of modules are organized as mentioned
in Figure 6 and connected with communication links defined in
the System-C master-slave communication library. The links
in solid line are used to convey resource allocation control
messages, while the links in dashed lines are for task execution
control message passing. The critical design issue of our
model is to support task allocation, task execution and task
reallocation.

CPU

Li

C ... C
L3

LT1

_t ......... ~~LT1

Sche' Sche' Sche

C e S C _______________

Resource management
message path <

Task execution
rnessag2path ->

Fig. 7. COSMOS model structure

A. Task allocation
When CPU requests to execute an application, it sends out a

message that includes the header description of the application
to all the C-nodes through link LI. The information contained
in the header are the application's allocation priority, de-
fault distribution requirement, distribution matrix and the
application size. Applications with higher allocation priority
can force low allocation priority tasks to be reallocated and
give up resources. The default distribution requirement
is an integer that specifies the number of S-nodes needed
for optimal allocation of an application. For instance, the
task graph in Figure 3A will be optimally executed if it is
allocated on 2 S-nodes, due to its task-level parallelism. The
distribution matrix specifies how the tasks are divided into
groups, each of which should be allocated on the same S-
node. For example, the task graph in Figure 3A can have a
distribution matrix= [[Ti, T3, T4],[T2, T5]]. This indicates
that, in order to optimally utilize the task level parallelism and
minimize the communication cost, M-node should attempt to
allocate task 1, 3 and 4 on one S-node, and allocate task 2 and
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5 on the other one. Application size simply stands for how
many tasks the application has been partitioned into.
Upon receiving the message that requests C-nodes to start

up an application, each C-node will further send request
through link L2 to the M-nodes in their clusters to exam the
resource distribution. M-nodes send the request further down
to S-nodes through link L4, and each S-node reports how many
free context it has to M-nodes through link L5.

At this point, each M-node has an updated resource distribu-
tion map of the whole coprocessor, and needs to evaluate if the
M-node itself is resource-abundant. Application is optimally
allocated if its tasks are nested into cluster, thus having clus-
tered free resources around an M-node ease the allocation for
this M-node. Depending on the resource distribution around
a specific M-node, resources are weighed for this M-node.
Another factor that influence the allocation is the reallocation
potential of each M-node. If there are many high-priority
applications nested around and being controlled by an M-
node, reallocation will be difficult to perform for this M-
node. Thus, we sum up the priorities of all the running tasks
being controlled by each M-node, and use it to downgrade the
overall resource count. To summarize, each M-node weighs
its resource distribution map and sums up all the weighed
resource to get an overall weighed resource count, then the
number is divided by the priority sum of all the running tasks.

After the M-nodes calculate their final resource count, the
number is sent to the C-nodes through link L3. C-nodes then
decides which M-node has the highest amount of resource
available for the application. Together with the application
priority and the distribution matrix, the decision is then
passed through link L2 to the selected M-node for setting up
the task execution.
The selected M-node first attempts to reallocate some run-

ning tasks, whose priorities are relatively lower than that of
the new application, to free up some S-nodes till there is
enough free clustered context to allocate the newly-started
application. Then the new application's tasks are allocated to
the free S-nodes with the guidance of distribution matrix. If
the distribution matrix can not be strictly followed due to
the resource availability, spanning to several more S-nodes is
allowed. After each task is allocated onto an S-node, the M-
node sends a "start" message to all these tasks through link
L4, the corresponding S-node and link LT3 to signal the task
execution. And finally, some bookkeeping is done in M-nodes
and S-nodes.

B. Task execution control

The task execution in COSMOS is essentially the same as
in ARTS multiprocessor model. Task execution is controlled
through the synchronizer in the M-node and the scheduler in
the S-node, as shown in Figure 7. In COSMOS, we adapt
to the well-understood direct synchronization (DS) protocol
and the earliest-deadline-first (EDF) scheduling for initial
experimentation.

Task interacts with the run-time system in the similar way
as ARTS tasks model. When a task is ready for execution,

it sends a "ready" message to synchronizer through link LT1.
When the synchronizer and scheduler permit the task execution
to start, the task receives a "run" message through link LT3
and starts executing. When the task is in the "run" state, it can
be preempted by the scheduler at any point of time. Similarly,
when the task is in the "preempted" state, scheduler can issue
"resume" message to let the task continue executing.
The synchronizer acts as a task dependency filter. Its

purpose is to block the execution of those tasks that have
unsolved dependencies to the preceding tasks. When a task is
initialized and has requested for initial execution through link
LT1, the synchronizer will immediately block the task if there
are unsolved data dependencies. Every time a task finishes
its execution, the synchronizer check if any blocked task's
dependency is completely solved and ready for execution. The
M-node is selected to perform the synchronization since it has
the control of the whole application.
When a task is released by the synchronizer, a message

is sent from the synchronizer to the scheduler through link
LT2. The EDF scheduler then decide if the task should start
the execution on the S-node immediately or be blocked until
the currently running task is finished, depending on which
task's deadline is arriving earlier. If the task released by the
synchronizer has a tighter deadline compared to the currently
running task, the currently running task is preempted and
blocked in a task list. Once the running task has finished its
execution, the blocked task that has the earliest deadline is
selected for execution.

C. Task reallocation

As mentioned before, task reallocation can occur anytime
between the time the task starts initialization and the end of
execution. The reallocation basically involves putting the task
into the reallocation state for a period of time and updating
the task model's information about onto which S-node it is
reallocated. The reallocation of a task goes through several
different scenarios when the reallocation is initiated at different
point of time.
The first possibility is the case that a task is reallocated

during initialization. In this case, the task hasn't been blocked
by either the synchronizer or scheduler, and the task goes back
to initialization right after the reallocation is finished.
The second possible case is the situation that a task is

reallocated when it is in the ready state. In this case, the task
might be blocked by either the scheduler or the synchronizer.
When the task goes into the reallocate state, the synchronizer
or the scheduler that blocks the reallocated task need to
clean up the record of blocking. When the task finishes the
reallocation, the task sends the "ready" message again to the
synchronizer to get processed again and goes into the "ready"
state again. It is worth noting that, if a task is blocked by the
synchronizer when the reallocation start, it is not necessarily
true that the same task is still blocked by the synchronizer
when the reallocation is finished, since the task dependency
can be solved during the reallocation process.
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The last possibility is the case that a task has been partially
executed before reallocation. The task can only be blocked
by the scheduler, or not be blocked at all. If the task is
blocked by a scheduler, the scheduler also needs to clean up
the record of task being blocked. After the task is reallocated,
the task goes into the "preempted" state and send a "ready"
message to synchronizer, which will directly pass the message
to the scheduler where the task is reallocated since the task
dependency has been solved before.

D. NoC model and communication tasks

The ARTS framework explicitly models the communication
latency between tasks if the tasks are allocated on different
processing elements. As shown in Figure 8, communication
between tasks are treated in two different ways. A local
communication inside of a processor, e.g. the dependency
between Ti and T3, is assumed to have no timing cost, and
the dependency is implicitly solved by the local synchronizer.
But the communication between tasks allocated on different
processors are transformed into communication tasks with
explicit execution time, e.g. as task ci 2. A NoC scheduler is
used as shown in Figure 8 and 7 to handle the communication
latency and NoC scheduling strategy. The communication
latencies are decided before simulation time.

Sync Sync

Sche Sche

CPUl CPU2 CPUl NoC CPU2

Fig. 8. ARTS communication task

In COSMOS model, since the tasks can be reallocated at
simulation time, any task dependency can become a com-
munication task. Furthermore, the communicating source and
destination is not fixed on the RU array, thus the physical
system and the model should have a varying communication
latency. In our model, we assume all the task dependencies to
be a communication task, and each communication task has
a base latency. Each time a task is reallocated, the commu-
nication task that is linked to the reallocated task update its
communication source or destination's coordinates, depending
on how the task is linked to the communication task. If a
communication task's source and destination are allocated on
the same S-Node, the communication will be finished in one
simulation clock cycle, which is negligible. If the source and
destination of a communication task are not allocated on the
same S-node, the communication latency is the product of the
base communication task latency multiplied by the number of
hops between the source and the destination s-nodes.

VI. SIMULATION RESULTS

To demonstrate the function of the model, we set up
the architecture and application as shown in Figure 9. The
architecture is a 3x3 RU array with one C-node, one M-
node and seven S-nodes, each of which supports dual-context.
Application 1, 2, and 3, whose task graphs are shown in Figure
9C, start their execution at t=TI, T2 and T3, respectively,
as shown in Figure 9A. The application I is assigned a
slightly earlier deadline compared to the other 2 applications
for demonstrative purpose. We assume all the communication
tasks to have a single-hop latency of two clock cycles, and the
NoC scheduler can only handle one communication message
at a time. The latencies for task initial configuration and
task reallocation are assumed to be 5 cycles. The latencies
of task staying in reconfig-preempt state and reconfigirun
state are assumed to be 3 cycles. All the numbers presented
here, including the size of architecture and various timing
figures, are only for demonstration purpose and only serves
the purpose of helping readers to understand the function of
the model. COSMOS is a flexible model, and there is no
constraints on how these number can be decided.
An optimal system's reallocation strategy should minimize

the occurrence of task reallocation while keeping the overall
communication overhead small. But for our experiment, in
order to demonstrate the scenario of task reallocation with
a simple setting, we select a reallocation strategy that is far
from optimal. We define the M-node to be the only cluster
center for all three applications. When each application is
initialized, its task will be allocated as close to the M-nodes as
possible, resulting in the lower priority task to be reallocated
on the S-nodes farther away from the M-node. This is achieved
by weighing the resource with the distance between the S-
node and the M-node during resource evaluation, selecting the
most resource-optimal S-node for allocation and selecting the
second-most resource-optimal S-node for reallocation.
At t=14, CPU requests to start application 1. The M-node

first check the application's distribution matrix for allocation
guidance. According to the application I's distribution matrix,
which suggests that task T00 and TO1 should be allocated on
the same RU, the M-node initialize both tasks on S-node(0,2).
Task T02 and T03 are both allocated on S-node(l,l) for the
same reason. After the tasks finishes the initialization and get
ready for execution, only task TO0 goes into the "run" state,
since it's the only task without unsolved dependencies. All the
other tasks are blocked by the synchronizer for the time being.

At t=22 the application 2 is initialized. Since the application
2 has the same priority as application 1, it does not cause any
task reallocation. At t=30, application 3 starts its initialization.
Since this application has a higher allocation priority, previ-
ously allocated tasks have to be reallocated to more remote S-
nodes. As shown in Figure 9B, task TO 0, TO 1 and TO 2 are
replaced by task T2 0, T2_1 and T2 2, respectively. From the
waveform, we can see that the reallocated tasks enter and exit
"realloc" state at the same time. Since task TO0 is running
when being reallocated, after it finishes the reallocation, it
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Fig. 9. Demonstrative simulation

goes into "preempted" state and wait for synchronizer and
scheduler to start it again, as shown in Figure 4. The other
two reallocated tasks go back to "ready" state and wait for
their dependencies to be solved.

After the reallocation, communication task c0O0i1 and
c0_2_3 become non-local, and the communication task
c0_0_2's latency is increased by one hop. The communication
task c2_0_1, which is made local by the distribution matrix
and reallocation, cost only one clock cycle to finish.
At t=98, task T2_2 goes through a few state changes, which

is caused by task T0 3. As shown in Figure 9B, these two
tasks are allocated on the same S-node. At t=86, task T2_2's
dependency is solved, and the synchronizer starts its execution.
When the simulation time reaches 98, task TO_3's dependency
is also solved, and the scheduler decides that T03 should start
its execution since it has an earlier deadline. Task T2_2 goes

through a long preempt phase and return to the "run" state
after task T03 finishes its execution.

VII. FUTURE WORK

Our current work concentrates on the real-time behavior
of the task being executed on the coprocessor, but the tim-
ing characteristic of the management strategy has not been
thoroughly addressed. Take reallocation for an example, the
decision of which task should be reallocated to which S-
node is an important decision. If the M-node can thoroughly

analyze the current resource distribution status, the reallocation
strategy will improve the result. However, the decision is
made by M-node at run-time, thus the latency on making the
decision becomes an overhead to the task execution as well.
There are trade-offs between reallocation optimality and the
reallocation latency, and such trade-off is not well-understood
at the moment. In our model, we currently assume that all
the resource management algorithms are executed in no time,
which can be too optimistic for a large system. In the future,
some improvement can be made on this aspect of our model.

One other major issue is the methodology design. In our

work, we proposed to execute tasks on a homogeneous RU
array, which requires area/resource-constrained partition and
synthesis tool to support the architecture. Not only the task-
level parallelism need to be analyzed when designing the
task graph, but in order to optimally utilize the RU of the
given size and resource, we also have to investigate the loop-
level parallelism. Also, task partition has direct impact on the
inter-task communication latency, which is a crucial factor on

task execution efficiency. In the future we will study some

benchmarks and investigate how challenging it is to partition
an application into equal-sized hardware tasks in order to
optimally utilize our architectures.

From the application allocation/execution scenario, we can

identify plenty of issues to be addressed in the future. The
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strategies of allocation, scheduling and reallocation et.c. are
open for further study, and the architecture design issues in
terms of NoC and C/M-node design are still not thoroughly
addressed. We are currently looking into programmable soft-
processor for the C/M-node implementation, which gives the
possibilities of reconfiguring a physical S-node into C-node or

M-node, to achieve self-reparation.

VIII. CONCLUSION

We presented a general real-time execution model for tasks
that are executed on the reconfigurable architecture. Then we

proposed a general system-level real-time simulation model
of the coprocessor-coupled reconfigurable architectures. Our
simulation framework is highly scalable, and can be ex-

tended to support various run-time management algorithms
and communication strategies. Through our simulation, we

demonstrated how our simulator can be used for studying the
system-level design, and pinpointed what architecture design
issues can impact the application execution performance.

Reconfigurable system usually are highly complicated to
analyze at an early development stage, and the need of
simulation tool support is crucial in order to understand the
interplay between the architecture, the application and the
run-time management system. Our future work will focus on

the run-time management system development and the design
space/platform space exploration of the reconfigurable systems
with our framework.
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