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Abstract

This paper describes an approach for developing energy-
optimized run-time reconfigurable designs which benefit
from clock gating. The approach is applied to two techniques:
multiplexer-based reconfiguration, and reconfigurable word-
length optimization. The conditions under which this ap-
proach would be preferable to bit-stream reconfiguration are
derived. Various case studies, such as ray tracing, guitar
string simulation and matrix–vector multiplication, are used
to illustrate this approach.

1 Introduction

The sharp rise in integrated circuit fabrication costs and
the need for fast time-to-market and for in-field upgrades
have accounted for the increasing popularity of reconfig-
urable devices such as Field Programmable Gate Arrays
(FPGAs). The flexibility of reconfigurable devices, how-
ever, comes with overheads in latency, area and power
consumption—for instance it has been shown [9] that the
dynamic power consumption for FPGAs can be up to 14
times worse than that for Application-Specific Integrated
Circuits (ASICs).

Two methods for reducing power consumption for re-
configurable devices have been proposed. The first method
involves clock gating: disabling the clock for the inactive
regions in a design to minimise signal transitions and hence
dynamic power [8, 17]. The second method involves recon-
figuring an FPGA with multiple bit-streams, one for each
configuration, so that a small device with low power con-
sumption can be used [1]. However, there are delay and
energy overheads for reconfiguration with bit-streams.

The aim of this paper is to present a novel approach for re-
configuring designs. The approach involves two run-time re-
configuration techniques: multiplexer-based reconfiguration,
and reconfigurable word-length optimization. Clock-gated
reconfiguration with physical multiplexers is faster than re-
configuration by adopting a new FPGA bit-stream, but it

does not provide the area advantage offered by bit-stream
reconfiguration. We also derive the conditions under which
the proposed approach involving clock-gated reconfiguration
would require less energy than bit-stream reconfiguration.

While much work [14, 21] in this field reports that clock
gating reduces power consumption, there is at least one
paper [5] which reports the contrary. Moreover, most results
from previous work are obtained by vendor’s simulators such
as XPower. In contrast, all the power consumption results in
this paper are obtained by measuring the current and voltage
of various applications.

To summarise, the innovative elements of the proposed
approach are:

1. Two methods, involving multiplexing and word-length
optimization, for developing run-time reconfigurable
designs based on clock gating and bit-stream reconfigu-
ration (Section 3).

2. Derivation of the conditions under which clock-gated
reconfiguration should be used in preference to bit-
stream reconfiguration (Section 4).

3. An implementation of our approach for various case
studies: ray tracing, string simulation, matrix–vector
multiply and inner product (Section 5 and 6).

2 Related work

Zhang et al. [21] analyse the effect of clock gating on
power efficiency showing that FPGAs, although not as ef-
ficient as ASICs, can achieve significant power reductions.
Clock gating may not always be the most energy-efficient
solution even if it is the most power-efficient solution in
some cases.

Cadenas et al. [5] implement a clock gating technique
in a pipelined Cordic core with the goal of reducing bit-
switching. They do not obtain power improvements using
a Cordic pipelined design. We explore optimizations both
with clock gating and bit-stream reconfiguration, and use
word-length analysis techniques to improve results. In some



cases we set part of the input to zero to reduce dynamic
power consumption if clock gating has little effect, to reduce
the area overhead.

An alternative to run-time bit-stream reconfiguration is
based on using multiplexers and demultiplexers for time
multiplexing designs [6, 11, 20]. This method supports fast
reconfiguration but requires a large area. However, both this
approach and the clock gating approach require configura-
tions known at design time because they need to be installed
on the chip at the start, while bit-stream reconfiguration can
be used when downloading new configurations.

In control-flow analysis, Styles and Luk use information
about branch frequencies to reduce the hardware used for im-
plementing branches that are infrequently taken [18]. Since
program executions often change their behaviour based on
input data, the circuit needs to evolve at run time in order to
keep the error to a minimum.

Bondalapati and Prasanna reconfigure the circuit at run
time and show that it can be used to reduce execution time
by up to 37% [4].

Our approach not only takes into account accuracy re-
quirements, but also models the difference between reconfig-
uration techniques to minimize the energy requirements of
the system.

3 Reconfigurable design with clock gating

This section begins with a short overview of clock gating
in FPGAs (Section 3.1). The application of clock gating to
two reconfigurable methods, multiplexer-based reconfigura-
tion (Section 3.2) and reconfigurable word-length optimiza-
tion (Section 3.3), will then be described.

3.1 Clock gating in FPGAs

Clock gating provides a means of reducing switching ac-
tivity, and hence dynamic power consumption, by disabling
registers from reading external data; so they just keep their
contents when they are inactive.

Clock gating is supported by current FPGA devices. For
instance, the Xilinx Virtex series of devices contain a clock
gating block BUFGCE, which provides a way to turn on or
off a global clock net [8], resulting in power saving both
from the clock net and from the registers attached to it.

However, the number of such clock gating blocks may
be limited—for instance there are only 16 BUFGCE on a
Xilinx XC2VP30 FPGA. If we need more, then we have
to use the clock-enable input to gate the register in each
configurable logic element. To support reconfigurable word-
length optimization, for instance, one requires more clock
gating resources than the specialised clock gating blocks that
current devices provide, so we make use of the clock-enable
input of configurable logic elements.
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Figure 1. A network modelling a design that
can behave either as block A or block B, de-
pending on the control blocks RC DMux and
RC Mux; and its clock-gated implementation.

It is possible that several components can be grouped
together so that they share a single clock gating control, such
that the number of clock gating elements matches the number
of specialised clock gating blocks from a given device. For
simplicity, the designs here do not adopt this approach.

3.2 Multiplexer-based reconfiguration

Previously we reported a model [11] and the associated
development tools [12] for reconfigurable designs. In this
model, a component that can be configured to behave ei-
ther as A or as B is described by a network with A and B
connected between two control blocks. The control blocks,
RC DMux and RC Mux, route the data and results from the
external ports x and y to either A or B at the desired instant,
as shown in Figure 1(a).

Each control block can then be mapped either into a real
multiplexer or demultiplexer to form a single-cycle reconfig-
urable design, or into virtual ones which model the control
mechanisms for replacing one configuration by another [11].

Here we propose a simple extension to this approach
in the case that the control blocks are mapped into real
multiplexers and demultiplexers controlling data-flow to the
reconfigurable regions. Since only one of the reconfigurable
regions will be active at any one time, we can turn off the
clock in those reconfigurable regions which are inactive, as
shown in Figure 1(b). A reconfiguration controller is used
to activate and deactivate successive configurations, and it
would also activate and deactivate the clock gating as well.

In case block A and B in Figure 1 are the same apart
from different constant coefficients, one can either use con-
stant propagation techniques to optimize A and B, or time-



multiplex between different constant coefficients with a
block that supports both A and B. Usually the latter is more
area efficient, but at the expense of performance. Some ex-
amples will be presented in Section 6.1, comparing the time-
multiplexed constant coefficient approach and bit-stream
reconfiguration.

The development flow for producing reconfigurable de-
signs with clock gating or with multiple bit-streams can be
summarised in the following steps.

1. The reconfigurable regions in the design are identified,
with control blocks connecting together the possible
configurations for each reconfigurable component, to-
gether with the sequence of conditions for activating a
particular configuration for each control block.

2. The activation sequence is used to determine the suc-
cessive configurations which are managed by a recon-
figuration controller in hardware or software, adopting
a centralised or a distributed implementation.

3. For designs with clock gating or with partial bit-streams,
identical regions in successive configurations are ex-
tracted to minimise area or to minimise the reconfig-
uration overhead. An efficient algorithm based on
weighted bipartite graphs [16] has been proposed to
automate this step.

4. Each configuration is optimized by techniques such
as constant propagation, since inputs which stay con-
stant throughout a configuration can result in additional
optimization opportunities.

5. For reconfigurable designs with clock gating, there are
further opportunities for optimization with the multi-
plexers and demultiplexers; they can, for instance, be
implemented by multiplexer trees or by decoders.

6. For reconfigurable designs with partial bit-streams,
there are further opportunities for optimization involv-
ing techniques such as support for heterogeneous archi-
tectures [3] and for online routing [15].

3.3 Word-length optimization

Another technique that can benefit from the clock gating
method described in Section 3.1 is word-length optimization:
reducing precision of variables such that power and energy
consumption can be minimised. This can be achieved by
various approaches; below we present one based on a method
that combines word-length optimization with an accuracy-
guaranteed technique to reduce power consumption while
maintaining error constraints for the outputs [10].

Every variable involved in arithmetic operations has an
associated range and precision. Our approach to range and
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Figure 2. Outline of a word-length optimiza-
tion tool. AST denotes Abstract Syntax
Trees.

precision optimization is accuracy-guaranteed, which means
that any operations performed by the static analysis are guar-
anteed to produce a specified accuracy irrespective of the
input data. Since these results will be conservative, dynamic
analysis can be used so that the results are guaranteed for a
specific set of input data.

Our range analysis uses a combined Interval/Affine anal-
ysis. Input ranges are propagated to produce ranges for the
intermediate and output variables. Affine arithmetic is used
because it maintains correlations between the ranges, result-
ing in smaller output ranges if a variable is used in several
places.

Precision analysis involves performing arithmetic on er-
rors instead of numeric values to calculate the worst-case
error on the output from errors on the inputs. Range analysis
is performed first because the results are required in these
calculations. This ensures that the accuracy of calculations
is guaranteed.

To control the range and precision optimization to reduce
power consumption, we use a controller, implemented to
use as little power as possible. We adopt a technique involv-
ing control-flow analysis, although the controller could be
replaced for different applications.

Figure 2 shows the outline of a word-length optimization
tool. Combined with control-flow analysis, we reduce word-
lengths to minimize power consumption, for instance by
clock gating part of the registers that remain inactive due to
reduced accuracy. Providing constant zero to inputs of the
inactive regions can achieve a similar effect.



4 Deriving reconfiguration conditions

In many systems such as ray tracing and feature extrac-
tion, the algorithm’s control-flow is dependent on input data.
This means that the functionality of the system will change
as input data changes, so static word-length optimization
will no longer have any effect because when the system
functionality changes, the word-lengths will need to change.

Based on stimuli which may come from outside the sys-
tem or may be generated by the system, the word-lengths
will adapt in such a way as to reduce the power consumption
of the system while keeping the error to a minimum. To
change the word-lengths at run time, we can use one of two
methods: bit-stream reconfiguration or clock gating.

If clock gating is used, there is a static power overhead
because the entire design resides on the chip even if not all of
it is active all the time. Bit-stream reconfiguration does not
have this overhead, but has a high reconfiguration overhead;
for this reason we use a model to determine the most efficient
reconfiguration strategy. We will focus on time and power
consumption results since area is application-dependent.

4.1 Speed considerations

First we define the following terms:

• teb: time spent on execution between successive bit-
stream configurations.

• teg: time spent on execution between successive clock
gating configurations.

• tb: time spent on reconfiguring resources between suc-
cessive execution.

• tg: time spent on reconfiguring gated clock elements
between successive execution.

The total run-time with reconfigurable clock-gating:∑
teg +

∑
tg

The total run-time with bit-stream reconfiguration:∑
teb +

∑
tb

In general tg < tb since reconfiguring the clock gating
can take only a few cycles, but teg > teb since a clock-gated
design is larger and usually slower than the corresponding
bit-stream configuration. Hence the total run time depends
on which term dominates. For instance, if execution time is
short compared to reconfiguration time, then designs with
clock gating are likely to be faster than the corresponding
designs with bit-stream reconfiguration.

In general a design using bit-stream reconfiguration is
likely to have a higher clock speed because it has a smaller
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Figure 3. Power consumption for the guitar
string simulation benchmark.

area as shown in Figure 6(b). It is possible to increase the
clock speed of a design with clock gating by using a different
clock speed for each block (Figure 1), by having multiple
clock domains in the design.

4.2 Energy consumption considerations

Figure 3 shows the power savings of a guitar string simu-
lation benchmark with simulated inputs. The clock gating
graph shows the minimum power consumption achievable
of the design at various precisions; overheads such as power
dissipation of the controller are not included. Since the en-
tire design, including the inactive parts, is still on-chip, the
design is larger than the one with minimum logic resulting
from bit-stream reconfiguration; hence the clock-gated de-
sign consumes more power during execution than the design
with bit-stream reconfiguration for a given precision. This
difference is shown in Figure 3 as δp.

However, bit-stream reconfiguration may consume more
power during the reconfiguration process than the clock-
gated design, so we need to analyse the situation in more
detail to derive the conditions under which one method pro-
duces better designs than the other. Our analysis is based
on energy consumption, which takes into account execu-
tion time and reconfiguration time, as well as the power
consumption during execution and the power consumption
during reconfiguration.

First we define the following terms:

• peb: power spent on execution between successive con-
figurations with multiple bit-streams, reconfiguring all
relevant resources;

• peg: power spent on execution between successive con-
figurations when reconfiguring just the clock gating
elements;



• pb: power spent on reconfiguring bit-streams between
successive execution;

• pg: power spent on reconfiguring gated clock elements
between successive execution.

From Figure 3, we know that total energy with reconfig-
urable clock gating:∑

(teg × peg) +
∑

(tg × pg)

Total energy with a reconfigurable design with bit-streams:∑
(teb × peb) +

∑
(tb × pb)∑

(tg × pg) is usually small, so we ignore it. Given

δp = peg − peb

tgb = teg − teb

(since δp can be obtained from Figure 3) the clock gating
designs will require lower energy dissipation than the corre-
sponding designs with bit-stream reconfiguration when:

∑
(teg × δp) +

∑
(tgb × peb) <

∑
(tb × pb)

If
∑

(tgb × peb) is small compared to other terms, then we
can neglect it.

Assuming that there are n reconfigurations, then:∑
(tb × pb) = n× tb × pb

and we can define tae, the average time spent on execution
between reconfiguration, by:

n× tae =
∑

teg

Hence:
tae < (tb × pb)/δp (1)

for designs employing clock gating to be used. From Fig-
ure 3, given tae, which depends on the application, we can
calculate the average precision required.

In addition to determining the condition that favours clock
gating in achieving a low energy design, the above model
can be used in various ways. For instance, it enables us to
study quantitatively how energy consumption varies with the
frequency of reconfiguration: more frequent reconfiguration
favours clock-gating, while less frequent reconfiguration
favours bit-stream reconfiguration.

5. Related considerations

We now discuss several considerations related to the pro-
posed approach.
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Figure 4. Range variation for different images
on the ray tracer.

5.1 Loops and convergence

If the number of iterations of a loop is not known at
compile time, a conservative estimate must be used. If the
number of iterations varies by a large amount, the accuracy
of the computation may be larger than required. For this
reason we allow the word-lengths of variables to change at
run time which usually reduces energy consumption.

If the solution converges, the accuracy of the variables
at the start of the computation can have a lower accuracy
than the variables at the end. The variables will gradually
need to increase in accuracy. In this case clock gating will be
more appropriate since the interval between reconfigurations
with different accuracy tends to be small, and bit-stream
reconfiguration can involve a large overhead with little gain
in area.

5.2 Input range analysis

In a recent paper [13] we show that input range analysis
can reduce the word-length of variables without adversely
affecting the result. As an example, Figure 4 shows what
happens when different scenes are processed by a ray tracer:
simpler scenes are likely to have a narrower range. Of the
two graphs shown, the variables in the simpler scene (im-
age 2) require 2 fewer bits than those in the more complex
scene (image 1). After analysing the input ranges, we can
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Figure 5. Average execution time above which bit-stream reconfiguration becomes more efficient
than clock gating.

see that after fewer than 5 iterations, the maximum and min-
imum values of variables can be detected.

Similar techniques can be used in analysing word-length
of variables in different execution phases, in case they have
significantly different accuracy requirements, in addition
to different branch probabilities [18]. Hence the proposed
approach can provide additional optimisations for phase-
optimised reconfigurable systems [19].

5.3 Custom processors

If a custom processor executes several different fixed or
floating-point applications and if each application requires
a different accuracy, then the unused bits can be set to zero,
or clock-gated in order to save power. If a functional unit
is not required by the processor, it may be more efficient to
reconfigure the chip and remove it, rather than using clock
gating and keeping the unit on-chip.

6 Results

To perform the experiments we use the Xilinx XUP board
with a Virtex II Pro XC2VP30–7 FPGA. All designs are
synthesized using Handel–C 4.1 and Xilinx ISE 9.2. We
measure the power consumption by attaching an ammeter
to the 1.5V VCCINT jumpers which supply power to the
FPGA.

6.1 Arithmetic and simulation designs

When applying our model, we use 14ms for the average
reconfiguration time [7] and 1500mW for the average recon-
figuration power [2]. The energy required to reconfigure the
chip is therefore 21mJ.

Figure 5 shows how the average execution time, given by
equation (1), varies with output precision and vector size. In
this case when the average execution time exceeds the value
indicated on the graphs, bit-stream reconfiguration will be
more energy-efficient than clock gating.

Figures 6 and 7 show how area, speed and power vary
with vector size for designs with time-multiplexed constant
coefficients (see Section 3.2) and designs with bit-stream
reconfiguration optimized by constant propagation.

6.2 Ray tracing designs

The bottleneck in most ray-tracers is the ray-sphere in-
tersection. For every ray, it must be determined whether
it will intersect with an object. This kernel is executed
approximately 70 million times for each image, of which
approximately 2 million calls are intersections. We traverse
the rays in a breadth-first fashion because this makes the ray
intersections more predictable.

If the hardware design were implemented specifically
to cater for simpler scenes, the precision could be greatly
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Figure 6. Variation of area, speed and power
with vector size for a constant inner product
design.

reduced to conserve power. Since the ray tracer should be
able to deal with any scene, we reduce the word-lengths at
run time to reduce power consumption. Reducing the word-
lengths can be achieved by gating the clock or the inputs as
explained in Section 3.3.

Figure 8(a) shows the area and speed of the ray tracer
at different output precisions. As expected, area increases
as output precision increases, while speed decreases since
larger designs are slower. Figure 8(b) shows the maximum
dynamic power saving of the ray tracer at different output
precisions for clock gating and bit-stream reconfiguration.
If we adopt bit-stream reconfiguration rather than clock gat-
ing with lower precisions, the ray-tracer has shorter execu-
tion time and lower power consumption during execution.
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Figure 7. Variation of area, speed and power
with vector size for a constant vector multi-
plier design.

However, there are performance and energy overheads of
reconfiguring the FPGA for designs with bit-stream recon-
figuration, as explained in Section 4.

7 Summary

This paper presents an approach for developing recon-
figurable designs that can benefit from clock gating, which
includes a model that enables comparison of the proposed
techniques with bit-stream reconfiguration. Current and fu-
ture work includes automating the development method in
Section 3, extending the proposed approach to cover recon-
figurable designs that make use of both bit-stream reconfigu-
ration and clock-gated reconfiguration, and quantifying the
trade-offs of these methods for a wide variety of devices.



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 5  10  15  20  25  30
 90

 95

 100

 105

 110

 115

 120

 125

A
re

a
 [
s
lic

e
s
]

S
p
e
e
d
 [
M

H
z
]

Output Precision [bits]

area
speed

(a)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 5  10  15  20

P
o
w

e
r 

[m
W

]

Output Precision [bits]

clock gating
bit-stream reconfig

(b)

Figure 8. Area, speed and power consump-
tion of the ray tracer at various output preci-
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novel and comparative evaluation. In Proceedings of the EUROMI-
CRO Conference on Digital System Design: Architectures, Methods
and Tools, pages 584–590, 2006.


