
A Trace-based Scenario Database for
High-level Simulation of Multimedia MP-SoCs

Peter van Stralen and Andy D. Pimentel
Computer Systems Architecture group, Informatics Institute

University of Amsterdam, The Netherlands
Email: {p.vanstralen, a.d.pimentel}@uva.nl

Abstract—High-level simulation and design space exploration
nowadays are key ingredients for system-level design of modern
multimedia embedded systems. The majority of the work in this
area evaluates systems under a single, fixed application workload.
In reality, however, the application workload in such systems (i.e.,
the applications that are concurrently executing and contending
for system resources), and therefore the intensity and nature of
the application demands, can change dramatically over time. To
facilitate the simulation and exploration of different workload
scenarios, this paper presents the concept of a so-called scenario
database, which has been integrated in our Sesame system-
level simulation framework. This scenario database compactly
stores application scenarios and allows for generating application
workloads – in the form of event traces – belonging to the stored
scenarios for the purpose of scenario-aware simulation in Sesame.

I. INTRODUCTION

The design complexity of modern multimedia embedded
systems, which are increasingly based on heterogeneous
MultiProcessor-SoC (MP-SoC) architectures, has led to the
emergence of system-level design. A key ingredient of system-
level design is the notion of high-level modeling and sim-
ulation, which allows for capturing the behavior of system
components and their interactions at a high level of abstraction.
As these high-level models minimize the modeling effort and
are optimized for execution speed, they can be applied early
during the design to perform design space exploration (DSE).

With our Sesame modeling and simulation framework [1],
[2], we target efficient system-level DSE of embedded mul-
timedia systems, allowing rapid performance evaluation of
different MP-SoC architecture designs, application to archi-
tecture mappings, and hardware/software partitionings. Key to
this flexibility is the separation of application and architecture
models, together with an explicit mapping step to map an
application model onto an architecture model. This mapping
step has been implemented using trace-driven co-simulation
of the application and architecture models.

So far, Sesame has been using fixed application workloads,
as represented by one or more fixed application models that
are mapped onto the underlying architecture model. However,
application behavior of modern multimedia embedded systems
becomes increasingly dynamic. Here, one can distinguish
two types of dynamic behavior: intra-application and inter-
application dynamic behavior. An example of intra-application
dynamic behavior is when an application aims at maintaining

a certain level of Quality of Service (QoS) under changing
circumstances. For example, a video application could dy-
namically lower its resolution to decrease its computational
demands in order to save the battery in case the battery is
running low. Inter-application dynamic behavior is caused by
the fact that modern multimedia embedded systems require to
support an increasing number of applications and standards.
Also, today’s embedded systems become more and more open
systems for which third-party software applications can be
installed. As a consequence, the application workload in such
systems (i.e., the applications that are concurrently execut-
ing and contending for system resources), and therefore the
intensity and nature of the application demands, can change
dramatically over time. For this reason, the notion of workload
scenarios has gained research interest in the past years [3], [4].

To facilitate the simulation and exploration of different
workload scenarios, which will be referred to as application
scenarios in this paper, we present the concept of a scenario
database. This scenario database compactly stores all possi-
ble application scenarios, which have been identified using
mechanisms that will also be presented in this paper. From
the scenario database, the workload – in the form of event
traces – belonging to each of the stored scenarios can be
easily generated for the purpose of scenario-aware simulation
in Sesame. The focus of this paper will be on the scenario
database design and its effectiveness to compactly store the
workload scenarios. Actual deployment of the database in real
system-level MP-SoC DSE experiments is, however, beyond
the scope of this paper. The interested reader is referred to [5],
[6], in which the scenario database has been used for a new
scenario-based DSE method which simultaneously searches
for optimal MP-SoC design instances and for a representative
set of workload scenarios to evaluate these design instances.

The remainder of this paper is organized as follows. In
the next section, we briefly describe the Sesame system-
level simulation framework. Section III presents the scenario
database and discusses its internal structure. In Section IV,
we explain how the database is filled by detecting scenarios
within applications and between applications. This section also
describes the techniques we apply to compactly store the
scenarios. In Section V, we present the results from several
experiments to evaluate the effectivity of the scenario database
in terms of storage size of the scenarios. Section VI discusses
related work and Section VII concludes the paper.

II. HIGH-LEVEL MP-SOC SIMULATION

To facilitate flexible performance analysis of embedded
(multimedia) systems architectures, the Sesame modeling and
simulation environment [1], [2] uses separate application and
architecture models. An application model describes the func-
tional behavior of an application while the architecture model
defines architecture resources and captures their performance
constraints at a high level of abstraction. After explicitly
mapping an application model onto an architecture model,
they are co-simulated via trace-driven simulation. This allows
for rapid evaluation of the system performance of a particular
(set of) application(s), mapping, and underlying architecture.
Such rapid performance evaluation enables efficient system-
level design space exploration (DSE) that can be deployed
during the early stages of design. The layered infrastructure
of Sesame is illustrated in Figure 1.

For application modeling, Sesame uses the Kahn Process
Network (KPN) model of computation [7], which fits well to
the multimedia application domain. The KPN model we use is
a dataflow network of concurrent autonomous processes that
communicate data in a point-to-point fashion over bounded
FIFO channels, using blocking read/write on an empty/full
FIFO as synchronization mechanism. The computational be-
havior of a KPN application is captured by instrumenting the
code of each Kahn process with annotations that describe
the application’s computational actions. The reading from and
writing to KPN channels represent the communication behav-
ior of a process within the application model. By executing
the KPN model, each process records its actions in order to
generate its own trace of application events, which is necessary
for driving an architecture model. These application events
consist of computation (EXECUTE) events and communication
(READ and WRITE) events and are typically coarse grained:
e.g. EXECUTE(DCT) refers to the execution of a Discrete
Cosine Transform, while READ(CHANNEL ID,PIXEL-BLOCK)

Decode

Processor

Memory

Mapping layer: abstract RTOS
(scheduling of events)

Processor Processor

Event traces

Ap
pl

ica
tio

n
m

od
el

Ar
ch

ite
ct

ur
e

m
od

el

Scheduled read,
execute, write events

Inter application scenario
Intra application scenario Intra application

scenario

EncodeSample

Quality
Control Display

VideoMP3

Fig. 1. High-level MP-SoC simulation in Sesame.

indicates the sending of a pixel-block over a FIFO channel.
An architecture model simulates the performance conse-

quences of the computation and communication events gener-
ated by an application model. To this end, each architecture
model component is parameterized with an event table con-
taining operation latencies. The event table entries could, for
example, specify the latency of an EXECUTE(DCT) event, or
the latency of a memory access in the case of a memory com-
ponent. We note that communication is simulated explicitly at
architecture level, taking into account e.g. contention behavior.
To bind application tasks to resources in the architecture
model, Sesame provides an intermediate mapping layer. This
layer controls the mapping of KPN processes (i.e. their event
traces) onto architecture model components by dispatching
application events to the correct architecture model compo-
nent. The mapping includes the binding of KPN channels to
communication resources in the architecture model.

The mapping layer also models an abstract (RT)OS in the
sense that it schedules the events from different event traces in
the case when multiple application processes are mapped onto
a single processor component. As is illustrated by the MP3
and Video applications in Figure 1, Sesame also supports the
mapping and simulation of multi-application workloads onto
an architecture platform [8]. For this purpose, the schedulers
inside the mapping layer are capable of scheduling events from
different traces from within a single KPN application but also
from different KPN applications.

III. APPLICATION SCENARIO DATABASE

To systematically define and generate different multi-
application workloads, so that these workloads can be used
during system-level DSE, we have extended the Sesame sim-
ulation framework with the concept of application scenarios.
Here, we distinguish between two types of application sce-
narios: intra and inter-application scenarios. Intra-application
scenarios are scenarios which describe the behavior (or op-
eration modes) of a single application, like playing music in
mono or stereo. Intra-application scenarios can be described in
several ways, such as by means of the used input parameters
of the application or using the trace of executed instructions.
The inter-application scenarios, on the other hand, describe
the behavior of multiple applications. The most obvious way
of describing the behavior of multiple applications is to indi-
cate which applications can run concurrently. The application
scenarios, as proposed in this paper, are illustrated in Figure
1. Here, it can be seen that an intra-application scenario
corresponds to a single KPN. As will be explained in more
detail later on, we capture an intra-application scenario by the
set of trace events that are dispatched by the KPN processes
during a particular execution phase of the application. This
set of trace events not only consists of the ordinary READ,
WRITE and EXECUTE events, but also contain WHILE, WEND
and QUIT events. These special events are explained later on.
The behavior of a complete system with multiple applications
is described by an inter-application scenario. Such an inter-
application scenario actually bundles the descriptions of all the

QualityEncodeSample

mp3 Video

DisplayDecode

Id
Intra app.
scenario

0 000

1 011

2 112

3 112

Inter app
scenario

10

01

11

Id Loop counters Trace

0 0: [{4},{3,4,4,4}];
1: [{2},{6,7}];

WHILE 7
WHILE 4
EXECUTE 0
WRITE 2 350
WRITE 1 100
READ 5 1
WEND 4
READ 4 8
WEND 7
QUIT

1 2: [{2},{2,7},{5,4}];
3: [{3},{4,4,5},{4,6,9}];

WHILE 13
WHILE 5
EXECUTE 0
WRITE 2 350
WRITE 1 100
READ 5 1
READ 4 8
WEND 5
WHILE 4
EXECUTE 0
WRITE 2 350
WRITE 1 100
READ 5 1
WEND 4
WEND 13
QUIT

Id Intra app.
scenario

0 00

1 10

Id Loop counters Trace

0 0: [{4}, {4,3,5,3}]; WHILE 7
WHILE 4
READ 2 350
EXECUTE 1
WRITE 3 85
READ 6 1
WEND 4
READ 7 8
WEND 7
EXECUTE 2
EXECUTE 3
QUIT

1 1: [{2,{2,5},{2,2},
 {2}];
2: [{2,{2,9},{3,2},
 {2}];
3: [{3,{4,6,9},
 {2,2,4},{5}];

<events>

Id Loop counters Trace

0 0: [{2},{3,4},{3,3}]; <events>

1 1: [{2},{2,3},{2,2},
 {2,2}];

<events>

2 2: [{2},{2,6},{3,2},
 {3,2}];
3: [{3},{4,4,5},
 {2,2,4},{2,4,5}];

<events>

Id Loop counters Trace

0 0: [{7}];
1: [{16}];

WHILE 2
READ 9 30
EXECUTE 7
WEND 2
QUIT

Id Loop counters Trace

0 0: [{3},{2,2,3}]; WHILE 5
EXECUTE 6
WHILE 2
EXECUTE 5
WRITE 9 30
WEND 2
WEND 5
QUIT

1 1: [{3},{4,7,5}]; WHILE 5
EXECUTE 6
WHILE 2
EXECUTE 5
WRITE 9 30
WEND 2
WEND 5
EXECUTE 6
QUIT

M
u

lt
i-

ap
p

lic
at

io
n

K
ah

n
 P

ro
ce

ss
 N

et
w

o
rk

K
P

N
-p

ro
ce

ss

Fig. 2. Structure of the scenario database for the MP3/Video application example.

individual intra-application scenarios for each of the KPNs.
Before application scenarios can be defined and/or identi-

fied, a data structure is required for storing the application
scenarios of the system. To this end, we introduce a scenario
database for scenario storage. This database can be used as in-
put for Sesame for on-demand generation of multi-application
workloads. For example, we have deployed the database for
on-demand workload generation in our recently-proposed,
scenario-based DSE [5], [6] which simultaneously searches
for optimal MP-SoC design instances and for representative
workload scenarios to evaluate these design instances.

The structure of the scenario database is derived from the
hierarchical nature of inter and intra-application scenarios. In
this hierarchy, an inter-application scenario consists of mul-
tiple intra-application scenarios, whereas an intra-application
scenario consist of an event trace for each KPN process. An
example scenario database of the MP3 / Video applications
can be found in Figure 2.

There are three levels in the application scenario hierarchy:
the multi-application, KPN, and Kahn-process levels. The
multi-application level consists of the description of the inter-
application scenarios. The KPN level contains the individual
intra-application scenario definitions and the KPN-process
level keeps all the individual event traces.

Multi-application Level: A multi-application workload
consists of several parallel and independent KPNs. So, when
two or more applications are capable of running concurrently,
any of their intra-application scenarios can be coupled to create
a possible inter-application scenario. Consequently, the only

thing that an inter-application scenario stores is the infor-
mation about which of the KPNs are executed concurrently.
To this end, an inter-application scenario contains a list of
boolean values. A ’0’ means that the specific KPN is not
active, whereas a ’1’ stands for an active KPN. As a result, an
inter-application scenario defines all the possible scenarios of
the applications by a cartesian product of the lists of possible
intra-application scenarios for each of the applications (as
specified by the KPN level). If an application is inactive in
the inter-application scenario, then the list of intra-application
scenarios only contains the empty scenario φ. In our example
of Figure 1, there are two applications (MP3 and Video). The
entry ’1 0’ in the table at the multi-application level specifies
the workload scenario in which the MP3 application executes
in isolation, whereas the entry ’1 1’ specifies the scenario
in which both MP3 and Video applications are executed
concurrently. Since each of the intra-application scenarios of
the individual applications may be combined, the entry ’1 0’
includes the workload scenarios < 0, φ >, < 1, φ >, < 2, φ >
and < 3, φ >. Similarly, the entry ’1 1’ encodes the scenarios
which are the cartesian product of the lists {0, 1, 2, 3} and
{0, 1}, representing the intra-application scenarios of the MP3
and Video applications, respectively.

Kahn Process Network Level: For each KPN, its intra-
application scenarios are described. As a KPN typically has
multiple processes, an intra-application scenario describes
which combinations of the traces of the Kahn processes are a
valid execution trace of the KPN. In our MP3/Video example,
the MP3 application does not have a valid intra-application

scenario where each Kahn process executes trace ’1’. On the
other hand, the entry ’0 0 0’ is present in the intra-application
scenario table and thus implies that the case where each
process executes trace ’0’ is a valid intra-application scenario.

KPN-process Level: For each of the Kahn processes, all
the individual traces of the intra-application scenarios are
stored. Sesame uses linear traces of sequential events. These
linear, or unfolded, traces may contain a large number of events
and, as a result, the required memory space can be extensive.
As the scenario database contains multiple of these traces, we
have optimized the trace tables in the scenario database to
reduce their total memory space as much as possible, as will
be explained in detail later on. The first memory reduction can
be achieved by loop detection, i.e., folding the event traces.
All the consecutive repeated sequences of events are detected
and replaced by a loop. The loop will be enclosed by WHILE
and WEND events. As loops are very common in programs,
this already enormously reduces the memory requirement.

The second memory reduction tries to reduce the number of
stored traces. Quite often, a loop within a Kahn process is ex-
ecuted a varying number of times during different invocations
of the process. In this case, repeatedly storing the complete
trace of a loop can be avoided by separating the loop’s event
trace and the number of times a loop is executed. As a result,
the loop’s event trace can be stored only once while the varying
number of loop iterations are stored in a separate list.

This brings us to the structure of the table. Each of the
folded event traces is stored together with a unique identifier,
which is referenced in an intra-application scenario. Moreover,
for each of the intra-application scenarios using a particular
folded trace, a loop counter list is stored which contains the
number of iterations for each loop occurrence in the event
trace. As there can be inner loops involved which are executed
more than once, the loop counters for an intra-application
scenario are actually a collection of lists, tagged with the
corresponding intra-application scenario identifier. For each
of the WHILE events in the trace, a list is present. The list
records the number of iterations the loop will be executed
for every time the WHILE event is encountered. The explicit
storing of the number of iterations for each usage is required
in order to keep the number of reads and writes between
different processes in balance. If these reads and writes are
not balanced, the KPN will deadlock.

To give an example, consider trace number 0 of the decode
process of the Video application in Figure 2. The compressed
trace without the loop counter is WHILE 5; EXECUTE 6;
WHILE 2; EXECUTE 5; WRITE 9 30; WEND 2; WEND 5;
QUIT. Here, the integer parameters of the WHILE and WEND
refer to the number of events in the loop, while the parameters
of the EXECUTE and WRITE refer to the executed symbolic
event, the communication channel, and the message size,
respectively. In order to decompress the above trace, first
the set of loop counters of the scenario is inserted. The
loop counters for trace 0 are those from the intra-application
scenario 0 and are equal to {{3}, {2, 2, 3}}. The sets within
the loop counter set are inserted sequentially to the WHILE

events in the trace, so the first set {3} is inserted after WHILE
5 and {2, 2, 3} is assigned to WHILE 2. As a result, the trace
WHILE 5 (3); EXECUTE 6; WHILE 2 (2, 2, 3); EXECUTE 5;
WRITE 9 30; WEND 2; WEND 5; QUIT is obtained. This trace
needs to be unfolded before it can be used. First, the outer loop
is removed. As there is an inner loop, the loop counter of the
inner loop is split to one number per iteration. Secondly, the
inner loop is unfolded. The loop detection (folding) of a trace
is illustrated in Figure 5. Since the unfolding is the reversed
procedure, the unfolding example goes from the right to the
left image in Figure 5.

The structure of the scenario database allows us to encode
different application scenarios in a very compact manner.
Such encodings can be easily used in, for example, design
space exploration experiments based on genetic algorithms [5],
[6] (which is beyond the scope of this paper). A complete
application scenario can be encoded as a concatenation of
the inter-application scenario and the table entries of the
intra-application scenarios for each of the applications. For
uniformity, an intra-application scenario is appended for each
of the applications, even if it is inactive in the inter-application
scenario. This has the advantage that the scenario descriptor
has a static length which is a required property to e.g. describe
an individual scenario in a genetic algorithm. For example,
the MP3/Video combination contains the scenario ’11.011.10’.
The first part ’11’ is the inter-application scenario where
both the MP3 application and the Video applications are
running concurrently. The following numbers ’011’ is the
description of the intra-application scenario 1 of the MP3
application. Similarly ’10’ is the intra-application scenario 1
of the Video application. Alternatively, ’01.000.10’ also is a
scenario. In this case, the MP3 application is inactive and
the scenario identifier contains ’000’ for the unused intra-
application scenario entry of the MP3 application.

IV. APPLICATION SCENARIO DETECTION

To fill the scenario database, scenarios within applications
and between applications need to be identified. Our identi-
fication method follows a bottom up approach to detect all
the scenarios. Logically, this means that our first step is to use
the Kahn processes in a single KPN to detect intra-application
scenarios. For the scenario identification in a Kahn process, we
assume that our applications are periodic. That is, the applica-
tion has a specific structure in which it continuously iterates
a certain task. In multimedia applications, such behavior is
quite typical, like the processing of a (macro-)block of pixels
or an entire frame. The application is allowed to have some
initialization and termination code, but this code is not allowed
to dispatch any event. Intra-application scenarios are based on
single iterations of applications, so in a video application the
intra-application scenarios could e.g. summarize the ways a
frame is processed.

Our procedure to identify the scenarios in an application is
illustrated in Figure 3. Basically, the complete KPN applica-
tion is executed with a supplied dataset. After each iteration,
the generated trace events in the iteration are processed, and

Annotate
Process

Execute
Iteration

Collect
Events

Detect
Loops

Store
Trace

Store Loop
Counters

B
A
R
R
I
E
R

YES

YES

YES

New
Trace?

New Loop
Counters?

New
Scenario?

NO

NO

NO
Annotated Kahn Process

A
N

D O
R

Execute
Iteration

Wait in
Queue

Collect
Events

Detect
Loops

Store
Trace

Store Loop
Counters

YES

YES

YES

New
Trace?

New Loop
Counters?

New
Scenario?

NO

NO

NO

Unannotated Kahn Process

Fig. 3. Detecting scenarios in a Kahn Process Network.

this may lead to the identification of a new intra-application
scenario. The steps in this procedure are described in detail in
the following subsections.

A. Collecting Events

As stated earlier, each application (and thus also its pro-
cesses) must have initialization code, a main iteration and
some clean up code. These segments of the application are,
in our case, instrumented by hand. Manual instrumentation
has the advantage that the designer can perform grain size
control in case there are multiple options for choosing the
main iteration. The instrumentation is performed by intro-
ducing the special code annotations STARTSCENARIO and
ENDSCENARIO, which delimit the main iteration. These code
annotations are only performed in a single Kahn process,
namely the source process (i.e., a process without incoming
channels) of the KPN.

The main iterations of the unannotated Kahn processes will
automatically reveal themselves. After a single iteration of
the annotated process is executed, it will pause. The other
processes will continue executing until all the communication
channels are empty and all the processes are waiting for input.
The situation where all the channels in the KPN are empty and
all the unannotated processes are waiting for input is called a
scenario barrier. This scenario barrier is implemented using
a waiting queue for unannotated processes. Whenever the
annotated process encounters an ENDSCENARIO instruction,
it will temporarily lock a mutex and enable a barrier flag.
Subsequently, the annotated process will perform busy waiting
until all the unannotated processes are in the queue. When the
barrier flag is enabled, the dispatching procedure of events
in the unannotated KPN processes will try to process all the
remaining events. In the dispatching procedure, an EXECUTE
event is independent from all the other processes and can
always directly be processed. This is not the case with commu-

nication events. When dispatching a READ event, the channel
must be examined on available tokens. If a token is available,
then it can be safely processed. Otherwise, the process is
added to the waiting queue. During the time the unannotated
process is in the waiting queue, it will be blocked on a global
condition variable. When writing to a channel (i.e., dispatching
a WRITE), it is important to check if the destination process
is in the waiting queue. If the process is in the waiting queue,
then the inserted token in the communication channel enables
the execution of additional events within the receiving process.
For this reason, the writing process will in this case wake up
the receiving process. After the receiving process is woken
up, it will leave the waiting queue and continue dispatching
new events. When all the unannotated processes are in the
waiting queue, all processes have reached the scenario barrier
and the events can be collected. Each individual process will
collect its current set of dispatched events into a single trace.
The barrier flag is disabled by the annotated process. Finally,
all the unannotated processes are removed from the waiting
queue and instructed to process the next scenario.

B. Loop detection

As a next step, a loop detection algorithm is executed on
the collected event trace of a Kahn process. A loop is strictly
a contiguous repeated sequence of events. As it is far too
expensive to do a linear search for repetitions, many efficient
loop detection procedures have been proposed before. In this
paper, we use a loop detection approach based on the work of
Stoye et al. [9]. This approach provides a simple and flexible
detection of contiguous repeats using a suffix tree.

The trace on which the loops are going to be detected is
called S with length n. In this case, S[i] denotes the i-th ele-
ment (i.e. trace event) and S[i..j] is the subtrace consisting of
the events i until j. Each event has one of the six types READ,
WRITE, EXECUTE, WHILE, WEND, or QUIT. The repetition of

a certain subtrace is called a tandem array in literature. A
tandem array consists of a subtrace s = S[i..j] = (αw)k.
In this case, αw is the tandem and k ≥ 2. If the event
S[j + 1] is unequal to event α, then the tandem array is
branching, otherwise it is non-branching. A tandem repeat is
a subclass of a tandem array where k is equal to 2. The loop
detection procedure starts by identifying branching tandem
repeats. When these branching tandem repeats are found, they
can be extended to tandem arrays.

With the procedure from [9] to detect tandem repeats, it is
possible to detect loops within the event trace. Our complete
iterative procedure for detecting the loops in a trace is given
in Figure 4. If this procedure is applied to a plain trace, a trace
with loops is the result. An example can be seen in Figure 5.
The plain trace is on the left and after two iterations no more
loops are found. Below, we provide a detailed description of
the steps in the procedure.

Detect tandem repeats: The first step in the iteration is to
detect branching tandem repeats. In order for two events to be
equal (i.e., to find repetitive behavior), at least their event type
must be equal. If the event type is READ, WRITE, EXECUTE
or QUIT, then all the parameters of the event must also be the
same. If the type is WHILE or WEND, then only the length of
the loop must be the same. The number of times the loop is
iterated does not matter, because this will be stored separately
in the set of loop counters. As a result, the trace becomes even
smaller as data dependent inner-loops are supported.

Remove invalid tandem repeats: As we may already have
introduced loops in a previous iteration of our loop detection
algorithm, not all tandem repeats are valid. For example, take
the trace WHILE 1; READ; WEND 1; WHILE 1; READ; WEND
1; WHILE 1; EXECUTE; WEND 1. In this trace, the sequence
READ; WEND 1; WHILE 1 is detected as a branching tandem
repeat. The WHILE and WEND events are however control
events and cannot be separated from each other. If this would
be allowed, then the removal of the branching tandem repeat
READ; WEND 1; WHILE 1 would result in WHILE 1; WHILE
3; READ; WEND 1; WHILE 1; WEND 3; EXECUTE; WEND 1,
which clearly is an invalid trace. In order to retain the coupling
of WHILE and WEND events, a tandem repeat must therefore
contain both the WHILE and the corresponding WEND event.
For a quick check, we have introduced a depth variable. The
depth variable shows in how many loops the event is contained.
An event which is not in a loop has depth 0, whereas an event
in an inner loop has depth 2. If the first and the last event
have a depth of 0, then it is certain that the branching tandem
repeat is valid. On the other hand, a branching tandem repeat is
always invalid if the depth of the starting and finishing events
are not equal. If both depths are equal and non-zero, then a
more thorough check is required. In this case, all the events in
the tandem repeat are iterated. If a WHILE event or WEND is
encountered, then we determine if the corresponding WEND or
WHILE event is also present in the branching tandem repeat.
This validity check is also the sole reason that the WEND event
is introduced. Without this WEND, the whole trace must be
analyzed to determine if the branching tandem repeat is valid.

Detect Tandem
Repeats

Plain Trace

Remove Invalid
Tandem Repeats

Extend to
Tandem Arrays

Get Longest
Tandem Arrays

Trace with loops

Insert Loop and
Update Loop Counters

|arrays| = 0

|arrays| > 0

Fig. 4. Steps taken for the detection of loops within a trace.

Extend to tandem arrays: When we have the branching
tandem repeats, they can be quickly generalized to tandem
arrays. Branching tandem repeats cannot be extended in the
forward direction of the trace because in this direction a
different event is found. So, the event trace must be analyzed
in the backward direction in order to find the tandem arrays.

Get longest tandem array: The set of detected tandem
arrays possibly contains overlapping tandem arrays. As a result
of these overlapping tandem arrays, the replacement of tandem
arrays by loops can be performed in various ways, which
subsequently can result in different compressed traces. We
have chosen for a greedy approach to select the tandem array
which is removed first. The idea is to group the tandem arrays
by equal tandems. For each of the tandems, the total number
of occurrences in the trace is retrieved. Only the tandem arrays
from the most occurring tandem in the trace are removed.

For the sample trace of Figure 5, in the first iteration of
the loop detection, the tandem arrays consist of two different
tandems: EXECUTE 5; WRITE 9 30 and EXECUTE 6; EXECUTE
5; WRITE 9 30; EXECUTE 5; WRITE 9 30. As some of these
tandem arrays overlap, one of the tandem arrays must be
selected. The tandem arrays belonging to the first tandem start
at trace indices 2, 7 (with k = 2) and 12 (with k = 3). The total
number of tandems is in this case seven. The second tandem
is only used in one tandem array and has three occurrences.
Consequently, the most occurring tandem in the first iteration
is the tandem EXECUTE 5; WRITE 9 30. The most occurring
tandem in the second iteration then automatically is the tandem
EXECUTE 6; WHILE 2; EXECUTE 5; WRITE 9 30; WEND 2 as
there is only one tandem array. As can be seen, the greedy
approach works quite well in this particular example. If in
the first iteration the longer tandem would have been chosen,
then the second iteration would not have any tandem arrays
anymore. This would have yielded ten events rather than the
eight events in the current result.

EXECUTE 6
EXECUTE 5
WRITE 9 30
EXECUTE 5
WRITE 9 30
EXECUTE 6
EXECUTE 5
WRITE 9 30
EXECUTE 5
WRITE 9 30
EXECUTE 6
EXECUTE 5
WRITE 9 30
EXECUTE 5
WRITE 9 30
EXECUTE 5
WRITE 9 30
QUIT

EXECUTE 6
WHILE 2 (2)
EXECUTE 5
WRITE 9 30
WEND 2
EXECUTE 6
WHILE 2 (2)
EXECUTE 5
WRITE 9 30
WEND 2
EXECUTE 6
WHILE 2 (3)
EXECUTE 5
WRITE 9 30
WEND 2
QUIT

EXECUTE 5
WRITE 9 30

WHILE 5 (3)
EXECUTE 6
WHILE 2 (2, 2, 3)
EXECUTE 5
WRITE 9 30
WEND 2
WEND 5
QUIT

EXECUTE 6
WHILE 2
EXECUTE 5
WRITE 9 30
WEND 2

Iteration 1 Iteration 2 Iteration 3
Trace
index

1

5

10

15

Fig. 5. The loop detection applied to a sample trace.

Insert loop and update loop counters: The removal of a
tandem array must be done with care. Since the loop detection
performs multiple iterations, also inner loops may be present
in the tandem array. The removal starts with an analysis of the
tandem. If the tandem contains inner loops, then the multiple
loop counters of the inner loop are merged into a single list.
Subsequently, the events of the tandem array are removed from
the trace. The events are replaced by the events in the tandem,
enclosed by a WHILE event and WEND event. The number of
repetitions of the tandem in the tandem array is stored in a
new entry of the set of loop counters.

For the example in Figure 5, the insertion of loops in the
first iteration is quite straightforward, as no inner loops are
present. In the first iteration, the loops corresponding to the
tandem arrays at indices 2, 7 (k = 2) and 12 (k = 3) are
removed. First, the redundant tandems at indices 4, 9, 14 and
16 are removed. Then, the remaining tandems are enclosed by
WHILE 2 and WEND 2 events. The loop counter is initialized
on {{2}, {2}, {3}}. The resulting trace is used as input for the
second iteration. In the second iteration, the tandem contains
inner loops, so the procedure involves additional work. First,
the set of loop counters is updated. The first encountered
WHILE is from the outer loop. This outer loop iterates for three
times and thus the loop counter set starts with {3}. Next, the
WHILE event in the inner loop is encountered. The individual
loop counters were {2}, {2} and {3} and we merge these
into the list {2, 2, 3}. The resulting set of loop counters is
{{3}, {2, 2, 3}}. After the correct handling of the inner loops,
the redundant tandems can be removed and the remaining
tandem is enclosed by the WHILE 5 and WEND 5 events. The
resulting trace can be seen at the input of the third iteration
in Figure 5, where no more tandem repeats can be found. The
inability to find any new tandem repeats also ends the loop
detection. The result of the procedure is a compressed trace
where all the loops have been detected.

C. Storing Scenarios

The compressed traces, as obtained by the steps described
in the previous section, are also used for the detection of
new scenarios. The detection of a new scenario must be

done collectively by all the KPN processes. Synchronization
is already done by the scenario barrier and thus only a
coordinator is required. A KPN has no central element, but
since the annotated process initiated the scenario barrier, it is
logical that it coordinates the detection of new scenarios.

The detection starts by an individual check of each process
if a new local trace is found. There are two different types
of new local traces. The first is a completely new local trace,
where the trace is not yet encountered in earlier iterations of
the process. In this case, the trace and the set of loop counters
must be stored in the scenario database. The other type of new
local trace is a trace which was already encountered earlier, but
with a different set of loop counters. In this case, only the set of
loop counters is stored. All the processes will communicate to
the annotated process if a new local trace has been found. If at
least one process has a new local trace, then a new scenario is
detected. The newly detected scenario is assigned an identifier
and all the processes are notified that a new scenario is found.
A new scenario requires that each individual process separately
stores the combination of the scenario identifier and the set of
loop counters. In the case the set of loop counters was already
stored separately, only the scenario identifier is registered.

Figure 2 illustrates the scenario storage for the aforemen-
tioned MP3 / Video applications. The detection of intra-
application scenarios in the Video application is rather straight-
forward. The traces of the first frame are stored as the new
local trace 0 and the combination of all the local traces
0 becomes intra-application scenario 0. Tagged with intra-
application scenario number 0, the individual loop counters are
stored. At the second frame, the trace of the display process
is equal to its 0th local trace. For the decode process, a new
local trace 1 is introduced. Consequently, again a new intra-
application scenario is encountered consisting of local traces 1
(decode) and 0 (display). Using the intra-application scenario
number, the loop counters are stored.

The MP3 application follows the same rules to make up
the intra-application scenarios. An interesting case is found in
intra-application scenario 3. For this particular scenario, none
of the processes in the KPN detect a new trace, but they all
encounter a new local trace with different loop counters. This
means that we have a new intra-application scenario which has
exactly the same trace identifiers as intra-application scenario
2 but with different loop counter sets.

D. Inter-application Scenarios

The identification of intra-application scenarios results in a
partial scenario database, in which only the scenarios within a
KPN are present. This information still needs to be completed
with the description of inter-application scenarios. We perform
the identification of inter-application scenarios separately from
the identification of intra-application scenarios. The benefit of
this separation is that the identified intra-application scenarios
can be reused in several multi-application workload scenarios.
Without the separation, the intra-application scenarios would
have to be recalculated every time. The generation of inter-
application scenarios is done manually using a GUI-based

software tool. To this end, the designer first selects the
set of applications from the application library which will
be involved in the inter-application scenarios. For each of
these applications, the intra-application scenarios are already
identified and stored on disk. The partial scenario databases of
the intra-application scenarios of the selected applications are
combined into a complete scenario database. In addition, the
designer also (manually) specifies the actual inter-application
scenarios that can occur. That is, the designer indicates specific
use cases of the target embedded system in terms of which of
the applications are allowed to run concurrently.

V. EXPERIMENTS

We have performed several experiments to evaluate the
effectivity of the scenario database in terms of storage size.
Specifically, we have compared the storage size of the database
to the storage size of the plain traces. As mentioned before,
actual deployment of the database in real system-level MP-
SoC simulations and DSE is beyond the scope of this paper,
but the interested reader is referred to [5], [6] for a study on
scenario-aware DSE using the scenario database.

The experiments presented in this section have been per-
formed using two applications: a Motion-JPEG (M-JPEG)
encoder and a Simple Profile MPEG4 decoder from [10].
Before any (intra) application scenarios can be identified
for the applications, the grain size of the intra-application
scenarios needs to be determined first. In our case, the grain
size of the intra-application scenarios has been defined at
the granularity of individual frames. This means that in the
case of e.g. the M-JPEG encoder a single intra-application
scenario describes the compression of a raw image into a JPEG
image. For the input dataset of the M-JPEG encoder, we use
eleven different raw images. The MPEG4 decoder from [10]
is executed for 30 frames and contains ten intra-application
scenarios. The trace events in MPEG4 are more coarse grained
than those in M-JPEG, and as a result of this, the MPEG4
traces are smaller than those from M-JPEG.

As a first step, the plain traces of both applications have
been generated. These plain traces store the (uncompressed)
individual traces for all the processes in the KPN. Our
proposed scenario database tries to significantly reduce the
required amount of storage for these traces. We note that
the accuracy of the simulations driven by the compressed
workloads from the scenario database (which are unfolded
during simulation) is exactly the same as with the original,
plain traces. In our experiments, we also compare the scenario
database with and without loop detection.

The results can be seen in Figure 6, which shows storage
requirements of the traces (in percentages) when normalized
to the size of the plain traces. When the application is captured
in a scenario database without loop detection, the storage
requirements are already reduced by 15.6% (from 25.8 MB to
21.8 MB) for the M-JPEG encoder. For MPEG4, a reduction
of even 71.6% (from 155 Kb to 44 Kb) is obtained. These re-
ductions are achieved due to the fact that the scenario database
avoids the separate storing of the traces from all the individual

84.4!

1.4!

28.4!

0.5!
0!

20!

40!

60!

80!

100!

Plain! Database! Database + Loops!

Si
ze

 (n
or

m
al

iz
ed

 %
)!

M-JPEG!
MPEG4!

Fig. 6. The trace storage requirements for M-JPEG and MPEG4.

85.3!

39.2!

52.7!

38.3!

0!

20!

40!

60!

80!

100!

Plain! Database! Database + Loops!

Si
ze

 (n
or

m
al

iz
ed

 %
)!

M-JPEG!
MPEG4!

Fig. 7. The trace storage requirements when using Gzipped traces.

frames. If the traces of multiple frames are equal within a
process, then only a single trace is stored. As a result, the
storage requirements decrease. As the traces still contain loops,
loop detection can reduce the storage requirements even more.
When loop detection is enabled, the storage requirements are
even reduced by 98.6% for M-JPEG and 99.5% for MPEG4.
The gain of the loop detection is twofold. First, the traces of
the individual frames becomes smaller. Second, the separate
loop counter sets give us the possibility to combine more frame
traces into a single operation mode.

Storage reduction can also be achieved by compressing the
files using a Gzip algorithm. This brings up the question
what the storage reduction of our proposed database is when
additional compression techniques are involved. In order to
investigate the effect of an additional compression, we have
repeated the same experiment, but in this case we ended the
procedure by compressing the resulting traces into a Gzipped
tar archive. The results can be seen in Figure 7, which
shows again percentages but now normalized to the size of
the Gzipped plain traces. The storage reduction of the plain
traces due to the Gzipping is significant for both applications:
around 99% (i.e., a similar reduction as our database with loop
detection as shown in Figure 6). Using our scenario database
without loop detection but with Gzipping, we achieve another
storage reduction of 14.7% (M-JPEG) and 47.3% (MPEG4)
as compared to the Gzipped plain traces.

The scenario database with loop detection does not have
these repeating patterns of events anymore. As a consequence,

one can expect that the scenario database with loop detection
looses area with respect to the plain traces when using
Gzip. Surprisingly, the storage requirements of the scenario
database are still significantly smaller. In this case, reductions
of the storage requirements of 60.8% (M-JPEG) and 61.7%
(MPEG4) are obtained. These results indicate that the scenario
database is an efficient way of storing a sequence of related
traces, as multimedia applications typically contain many
loops.

A benefit of our approach is that the individual application
scenarios can directly be read from disk. Gzipped traces,
however, need to be unzipped before they can be used. This
involves an additional latency and requires additional storage
during decompression. The additional latency of Gzipping
is especially a problem given the fact that our system-level
simulations need to be extremely fast, where each of them
typically takes less than a second. Our loop detection also
involves a performance penalty, but this loop detection is a
one-time effort and is only performed at the creation of the
scenario database. But even without the loop detection, the
proposed scenario database already gained 15 to 71 percent.
The performance penalty of loop detection is, however, largely
compensated by the gain in storage reduction. Even if the
files are Gzipped afterwards, the loop detection can still
significantly reduce the storage requirements compared to a
scenario database without loop detection.

VI. RELATED WORK

System-level simulation and design space exploration is a
widely researched area, but the majority of the work in this
area still evaluates systems under a single (fixed) application
workload. Only very recently, research has been initiated on
recognizing application scenarios in the context of benchmark-
ing and system use cases [3] and in system design [4], as well
as making design space exploration scenario aware [11], [12].
A few approaches for application scenario detection have been
proposed before, both statically [13] and based on profiling of
applications [14] like we propose. In [14], the scenarios are
identified based on the automatically detected control variables
of which their values influence the application execution time
the most.

In the domain of trace-driven micro-architecture simulation,
trace compression techniques are widely studied (e.g., [15],
[16]). The efforts in this domain also include loop detection
techniques [17]. However, the traces from these simulations
typically consist of machine instructions or memory refer-
ences, instead of high-level application events like in our case.

VII. CONCLUSIONS

To address the increasingly dynamic behavior of application
workloads in modern multimedia embedded systems, this
paper has presented the concept of an application scenario
database for our Sesame system-level simulation framework.
This scenario database compactly stores all possible applica-
tion scenarios, consisting of both intra-application scenarios
and inter-application scenarios. From the scenario database,

the application workloads – in the form of event traces –
belonging to the stored scenarios can be easily generated for
the purpose of scenario-aware design space exploration using
Sesame. To fill the scenario database, we have presented a
profiling-based detection mechanism that allows for identify-
ing intra-application scenarios in applications and a manual
detection procedure for identifying inter-application scenarios.
Finally, we have demonstrated the effectivity of the scenario
database in terms of storage size of the scenarios. Our results
indicate that the storage requirements of scenarios in our
database are drastically reduced in comparison to the plain
storage of the event traces from applications.

REFERENCES

[1] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Transactions on Computers, vol. 55, no. 2, pp. 99–112, 2006.

[2] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra, “A framework
for system-level modeling and simulation of embedded systems architec-
tures,” EURASIP Journal on Embedded Systems, vol. vol. 2007, Article
ID 82123, 2007.

[3] J. M. Paul, D. E. Thomas, and A. Bobrek, “Scenario-oriented design for
single-chip heterogeneous multiprocessors,” IEEE Trans. on Very Large
Scale Integration Systems, vol. 14, no. 8, pp. 868–880, Aug. 2006.

[4] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Ma-
magkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Van-
deputte, and K. D. Bosschere, “System-scenario-based design of dy-
namic embedded systems,” ACM Transactions on Design Automation of
Electronic Systems, vol. 14, no. 1, pp. 1–45, 2009.

[5] P. van Stralen, “Scenario based design space exploration,” Master’s
thesis, University of Amsterdam, Sept. 2009.

[6] P. van Stralen and A. D. Pimentel, “Scenario-based MPSoC design space
exploration: A co-evolutionary approach,” Submitted for publication,
available at http://www.science.uva.nl/˜andy/sbDSE.pdf.

[7] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of the IFIP Congress 74, 1974.

[8] M. Thompson and A. D. Pimentel, “Towards multi-application workload
modeling in sesame for system-level design space exploration,” in Proc.
of the Int. Workshop on Embedded Computer Systems: Architectures,
MOdeling, and Simulation (SAMOS), 2007, pp. 222–232.

[9] J. Stoye and D. Gusfield, “Simple and flexible detection of contiguous
repeats using a suffix tree,” Theoretical Computer Science, vol. 270, no.
1-2, pp. 843–850, January 2002.

[10] B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk,
“A scenario-aware data flow model for combined long-run average and
worst-case performance analysis,” in Proc. of the Int. Conference on
Formal Methods and Models for Codesign, 2006, pp. 185–194.

[11] G. Palermo, C. Silvano, and V. Zaccaria, “Robust optimization of soc
architectures: A multi-scenario approach,” in Proceedings of ESTIMedia
2008 - IEEE Workshop on Embedded Systems for Real-Time Multimedia.
Atlanta, Georgia, USA, October 2008.

[12] “EU FP7 MultiCube Project, http://www.multicube.eu/.”
[13] S. V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal, “Automatic

scenario detection for improved wcet estimation,” in Proceedings of the
Design Automation (DAC), 2005, pp. 101–104.

[14] S. V. Gheorghita, T. Basten, and H. Corporaal, “Proling driven scenario
detection and prediction for multimedia applications,” in Proc. of the
Int. Conf. on Embedded Computer Systems: Architectures, MOdeling,
and Simulation (IC-SAMOS), 2006.

[15] A. Milenković and M. Milenković, “An efficient single-pass trace
compression technique utilizing instruction streams,” ACM Transactions
on Modeling and Computer Simulation, vol. 17, no. 1, 2007.

[16] E. E. Johnson, J. Ha, and M. B. Zaidi, “Lossless trace compression,”
IEEE Transactions on Computers, vol. 50, no. 2, pp. 158–173, 2001.

[17] E. Elnozahy, “Address trace compression through loop detection and
reduction,” SIGMETRICS Perform. Eval. Rev., vol. 27, no. 1, pp. 214–
215, 1999.

