

Edinburgh Research Explorer

Cycle-accurate performance modelling in an ultra-fast just-in-
time dynamic binary translation instruction set simulator

Citation for published version:
Bohm, I, Franke, B & Topham, N 2010, Cycle-accurate performance modelling in an ultra-fast just-in-time
dynamic binary translation instruction set simulator. in International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS 2010). pp. 1-10.
https://doi.org/10.1109/ICSAMOS.2010.5642102

Digital Object Identifier (DOI):
10.1109/ICSAMOS.2010.5642102

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS
2010)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 06. May. 2024

https://doi.org/10.1109/ICSAMOS.2010.5642102
https://doi.org/10.1109/ICSAMOS.2010.5642102
https://www.research.ed.ac.uk/en/publications/a412b37d-0589-46a3-8761-a3430dc61f0d

Cycle-Accurate Performance Modelling in an
Ultra-Fast Just-In-Time Dynamic Binary Translation

Instruction Set Simulator
Igor Böhm

University of Edinburgh
United Kingdom

I.Bohm@sms.ed.ac.uk

Björn Franke
University of Edinburgh

United Kingdom
bfranke@inf.ed.ac.uk

Nigel Topham
University of Edinburgh

United Kingdom
npt@inf.ed.ac.uk

Abstract—Instruction set simulators (ISS) are vital tools for
compiler and processor architecture design space exploration and
verification. State-of-the-art simulators using just-in-time (JIT)
dynamic binary translation (DBT) techniques are able to simu-
late complex embedded processors at speeds above 500 MIPS.
However, these functional ISS do not provide microarchitectural
observability. In contrast, low-level cycle-accurate ISS are too slow
to simulate full-scale applications, forcing developers to revert to
FPGA-based simulations. In this paper we demonstrate that it
is possible to run ultra-high speed cycle-accurate instruction set
simulations surpassing FPGA-based simulation speeds. We extend
the JIT DBT engine of our ISS and augment JIT generated code
with a verified cycle-accurate processor model. Our approach
can model any microarchitectural configuration, does not rely on
prior profiling, instrumentation, or compilation, and works for
all binaries targeting a state-of-the-art embedded processor im-
plementing the ARCompactTM instruction set architecture (ISA).
We achieve simulation speeds up to 63 MIPS on a standard x86
desktop computer, whilst the average cycle-count deviation is less
than 1.5% for the industry standard EEMBC and COREMARK
benchmark suites.

I. INTRODUCTION

Simulators play an important role in the design of today’s
high performance microprocessors. They support design-space
exploration, where processor characteristics such as speed
and power consumption are accurately predicted for differ-
ent architectural models. The information gathered enables
designers to select the most efficient processor designs for
fabrication. On a slightly higher level instruction set simulators
provide a platform on which experimental instruction set
architectures can be tested, and new compilers and applica-
tions may be developed and verified. They help to reduce
the overall development time for new microprocessors by
allowing concurrent engineering during the design phase. This
is especially important for embedded system-on-chip (SOC)
designs, where processors may be extended to support spe-
cific applications. However, increasing size and complexity of
embedded applications challenges current ISS technology. For
example, the JPEG encode and decode EEMBC benchmarks
execute between 10∗109 and 16∗109 instructions. Similarly,
AAC (Advanced Audio Coding) decoding and playback of a
six minute excerpt of Mozart’s Requiem using a sample rate

of 44.1 kHz and a bit rate of 128 kbps results in ≈ 38 ∗ 109

executed instructions. These figures clearly demonstrate the
need for fast ISS technology to keep up with performance
demands of real-world embedded applications.

The broad introduction of multi-core systems, e.g. in the
form of multi-processor systems-on-chip (MPSOC), has exac-
erbated the strain on simulation technology and it is widely ac-
knowledged that improved single-core simulation performance
is key to making the simulation of larger multi-core systems
a viable option [1].

This paper is concerned with ultra-fast ISS using recently
developed just-in-time (JIT) dynamic binary translation (DBT)
techniques [30], [5], [17]. DBT combines interpretive and com-
piled simulation techniques in order to maintain high speed,
observability and flexibility. However, achieving accurate state
and even more so microarchitectural observability remains
in tension with high speed simulation. In fact, none of the
existing JIT DBT ISS [30], [5], [17] maintains a detailed
performance model.

In this paper we present a novel methodology for fast
and cycle-accurate performance modelling of the processor
pipeline, instruction and data caches, and memory within a
JIT DBT ISS. Our main contribution is a simple, yet powerful
software pipeline model together with an instruction operand
dependency and side-effect analysis JIT DBT pass that al-
lows to retain an ultra-fast instruction-by-instruction execution
model without compromising microarchitectural observability.
The essential idea is to reconstruct the microarchitectural
pipeline state after executing an instruction. This is less
complex in terms of runtime and implementation than a cycle-
by-cycle execution model and reduces the work for pipeline
state updates by more than an order of magnitude.

In our ISS we maintain additional data structures relating to
the processor pipeline and the caches and emit lightweight
calls to functions updating the processor state in the JIT
generated code. In order to maintain flexibility and to achieve
high simulation speed our approach decouples the performance
model in the ISS from the functional simulation, thereby
eliminating the need for extensive rewrites of the simulation
framework to accommodate microarchitectural changes. In

fact, the strict separation of concerns (functional simulation
vs. performance modelling) enables the automatic generation
of a pipeline performance model from a processor specification
written in an architecture description language (ADL) such as
LISA [28]. This is, however, beyond the scope of this paper.

We have evaluated our performance modelling methodol-
ogy against the industry standard EEMBC and COREMARK
benchmark suites for our ISS of the ENCORE [36] embedded
processor implementing the ARCompact

TM
[35] ISA. Our ISS

faithfully models the ENCORE’s 5-stage interlocked pipeline
(see Figure 3) with forwarding logic, its mixed-mode 16/32-
bit instruction set, zero overhead loops, static and dynamic
branch prediction, branch delay slots, and four-way set asso-
ciative data and instruction caches. The average deviation in
the reported cycle count compared with an interpretive ISS
calibrated against a synthesisable RTL implementation of the
ENCORE processor is less than 1.5%, and the error is not
larger than 4.5% in the worst case. At the same time the
speed of simulation reaches up to 63 MIPS on a standard x86
desktop computer and outperforms that of a speed-optimised
FPGA implementation of the ENCORE processor.

A. Motivating Example

Before we take a more detailed look at our JIT DBT engine
and the proposed JIT performance model code generation ap-
proach, we provide a motivating example in order to highlight
the key concepts.

Consider the block of ARCompact
TM

instructions in Figure
2 taken from the COREMARK benchmark. Our ISS identifies
this block of code as a hotspot and compiles it to native
machine code using the sequence of steps illustrated in Figure
1. Each block maps onto a function denoted by its address
(see label 1© in Figure 2), and each instruction is translated
into semantically equivalent native code faithfully modelling
the processors architectural state (see labels 2©, 3©, and 6© in
Figure 2). In order to correctly track microarchitectural state,
we augment each translated ARCompact

TM
instruction with

calls to specialised functions (see labels 3© and 7© in Figure
2) responsible for updating the underlying microarchitectural
model (see Figure 3).

Figure 3 demonstrates how the hardware pipeline microar-
chitecture is mapped onto a software model capturing its
behaviour. To improve the performance of microarchitectural
state updates we emit several versions of performance model
update functions tailored to each instruction kind (i.e. arith-
metic and logical instructions, load/store instructions, branch
instructions). Section III-A describes the microarchitectural
software model in more detail.

After code has been emitted for a batch of blocks, a JIT
compiler translates the code into shared libraries which are
then loaded using a dynamic linker. Finally, the translated
block map is updated with addresses of each newly translated
block. On subsequent encounters to a previously translated
block during simulation, it will be present in the translated
block map and can be executed directly.

 Block
Translated

New Block

End of
Epoch

Call Translated
Block Function

Add Block to
Worklist

Interpretive
Block Simulation

Increment Block
Simulation

Counter

Translate Blocks
in Worklist

Update
Translated Block

Map

Yes

Yes

PC address

No

No

No

Yes

Instruction Selection

Emit Target Instruction

Dependency Analysis

Emit Performance
Model Update

JIT DBT Engine

Compile and Load

2

1

Fig. 1. JIT Dynamic Binary Translation Flow.

B. Contributions

Among the contributions of this paper are:

1) The development of a cycle-accurate timing model for
state-of-the-art embedded processors that can be adapted
to different microarchitectures and is independent of the
implementation of a functional ISS,

2) the integration of this cycle-accurate timing model into
a JIT DBT engine of an ISS to improve the speed of
cycle-accurate instruction set simulation to a level that
is higher than a speed-optimised FPGA implementation
of the same processor core, without compromising ac-
curacy,

3) an extensive evaluation against industry standard CORE-
MARK and EEMBC benchmark suites and an interpretive
cycle-accurate mode of our ISS that has been verified
and calibrated against an actual state-of-the-art hardware
implementation of the ENCORE embedded processor
implementing the full ARCompact

TM
ISA.

C. Overview

The remainder of this paper is structured as follows. In
section II we provide a brief outline of the ENCORE embedded
processor that serves as a simulation target in this paper. In
addition, we outline the main features of our ARCSIM ISS and
describe the basic functionality of its JIT DBT engine. This is

Vendor & Model HP
TM

COMPAQ
TM

dc7900 SFF

Number CPUs 1 (dual-core)
Processor Type Intel c©Core

TM
2 Duo processor E8400

Clock Frequency 3 GHz
L1-Cache 32K Instruction/Data caches
L2-Cache 6 MB
FSB Frequency 1333 MHz

TABLE I
SIMULATION HOST CONFIGURATION.

followed by a description of our approach to decoupled, cycle-
accurate performance modelling in the JIT generated code in
section III. We present the results of our extensive, empirical
evaluation in section IV before we discuss the body of related
work in section V. Finally, we summarise and conclude in
section VI.

II. BACKGROUND

A. The ENCORE Embedded Processor

In order to demonstrate the effectiveness of our ap-
proach we use a state-of-the-art processor implementing the
ARCompact

TM
ISA, namely the ENCORE [36].

The ENCORE’s microarchitecture is based on a 5-stage
interlocked pipeline (see Figure 3) with forwarding logic,
supporting zero overhead loops (ZOL), freely intermixable 16-
and 32-bit instruction encodings, static and dynamic branch
prediction, branch delay slots, and predicated instructions.

In our configuration we use 32K 4-way set associative in-
struction and data caches with a pseudo-random block replace-
ment policy. Because cache misses are expensive, a pseudo-
random replacement policy requires us to exactly model cache
behaviour to avoid large deviations in cycle count.

Although the above configuration was used for this work,
the processor is highly configurable. Pipeline depth, cache
sizes, associativity, and block replacement policies as well as
byte order (i.e. big endian, little endian), bus widths, register-
file size, and instruction set specific options such as instruction
set extensions (ISEs) are configurable.

The processor is fully synthesisable onto an FPGA and fully
working ASIP silicon implementations have been taped-out
recently.

B. ARCSIM Instruction Set Simulator

In our work we extended ARCSIM [37], a target adaptable
simulator with extensive support of the ARCompact

TM
ISA.

It is a full-system simulator, implementing the processor, its
memory sub-system (including MMU), and sufficient interrupt-
driven peripherals to simulate the boot-up and interactive
operation of a complete Linux-based system. The simulator
provides the following simulation modes:
• Co-simulation mode working in lock-step with standard

hardware simulation tools used for hardware and perfor-
mance verification.

• Highly-optimised [30] interpretive simulation mode.

• Target microarchitecture adaptable cycle-accurate simula-
tion mode modelling the processor pipeline, caches, and
memories. This mode has been calibrated against a 5-
stage pipeline variant of the ENCORE processor.

• High-speed JIT DBT functional simulation mode [30][17]
capable of simulating an embedded system at speeds
approaching or even exceeding that of a silicon ASIP
whilst faithfully modelling the processor’s architectural
state.

• A profiling simulation mode that is orthogonal to the
above modes delivering additional statistics such as dy-
namic instruction frequencies, detailed per register access
statistics, per instruction latency distributions, detailed
cache statistics, executed delay slot instructions, as well
as various branch predictor statistics.

In common with the ENCORE processor, the ARCSIM
simulator is highly configurable. Architectural features such
as register file size, instruction set extensions, the set of
branch conditions, the auxiliary register set, as well as memory
mapped IO extensions can be specified via a set of well defined
APIs and configuration settings. Furthermore, microarchitec-
tural features such as pipeline depth, per instruction execution
latencies, cache size and associativity, cache block replacement
policies, memory subsystem layout, branch prediction strate-
gies, as well as bus and memory access latencies are fully
configurable.

C. Hotspot Detection and JIT Dynamic Binary Translation

In ARCSIM simulation time is partitioned into epochs,
where each epoch is defined as the interval between two suc-
cessive JIT translations. Within an epoch frequently executed
blocks (i.e. hotspots) are detected at runtime and added to
a work list (see Figure 1). After each epoch the work list
contains a list of potential hotspots that are passed to the JIT
DBT engine for native code generation. More recently [17]
we have extended hotspot detection and JIT DBT with the
capability to find and translate large translation units (LTU)
consisting of multiple basic blocks. By increasing the size of
translation units it is possible to achieve significant speedups
in simulation performance. The simulation speedup can be
attributed to improved locality, more time is spent simulating
within a translation unit, and greater scope for optimisations
for the JIT compiler as it can optimise across multiple blocks.

III. METHODOLOGY

In this paper we describe our approach to combining cycle
accurate and high-speed JIT DBT simulation modes in order
to provide architectural and microarchitectural observability
at speeds exceeding speed-optimised FPGA implementations.
We do this by extending our JIT DBT engine with a pass
responsible for analysing instruction operand dependencies
and side-effects, and an additional code emission pass emitting
specialised code for performance model updates (see labels 1©
and 2© in Figure 1).

In the following sections we outline our generic processor
pipeline model and describe how to account for instruction

extern CpuState cpu; // global processor state
void BLK_0x00000848(void) {
 cpu.r[2] = (uint16_t)(cpu.r[9]);
 pipeline(0,cpu.avail[9],&(cpu.avail[2]),0x00000848,1,0);
 cpu.r[3] = cpu.r[12] ^ cpu.r[2];
 pipeline(cpu.avail[12],cpu.avail[2],&(cpu.avail[3]),0x0000084c,1,0);
 cpu.r[3] = cpu.r[3] & (uint32_t)15;
 pipeline(cpu.avail[3],0,&(cpu.avail[3]),0x00000850,1,0);
 cpu.r[3] = cpu.r[3] << ((sint8_t)3 & 0x1f);
 pipeline(cpu.avail[3],0,&(cpu.avail[3]),0x00000854,1,0);
 cpu.r[2] = cpu.r[2] & (uint32_t)7;
 pipeline(cpu.avail[2],0,&(cpu.avail[2]),0x00000858,1,0);
 cpu.r[3] = cpu.r[3] | cpu.r[2];
 pipeline(cpu.avail[3],cpu.avail[2],&(cpu.avail[3]),0x0000085c,1,0);
 cpu.r[4] = cpu.r[3] << ((sint8_t)8 & 0x1f);
 pipeline(cpu.avail[3],0,&(cpu.avail[4]),0x00000860,1,0);
 // compare and branch instruction with delay slot
 pipeline(cpu.avail[10],cpu.avail[13],&(ignore),0x00000864,1,0);
 if (cpu.r[10] >= cpu.r[13]) {
 cpu.pl[FE] = cpu.pl[ME] - 1; // branch penalty
 fetch(0x0000086c); // speculative fetch due to branch pred.
 cpu.auxr[BTA] = 0x00000890; // set BTA register
 cpu.D = 1; // set delay slot bit
 } else {
 cpu.pc = 0x0000086c;
 }
 cpu.r[4] = cpu.r[4] | cpu.r[3];// delay slot instruction
 pipeline(cpu.avail[4],cpu.avail[3],&(cpu.avail[4]),0x00000868,1,0);
 if (cpu.D) { // branch was taken
 cpu.D = 0; // clear delay slot bit
 cpu.pc = cpu.auxr[BTA]; // set PC
 }
 cpu.cycles = cpu.pl[WB]; // set total cycle count at end of block
 return;
}

0x00000848:
 [0x00000848] ext r2,r9

 [0x0000084c] xor r3,r12,r2

 [0x00000850] and r3,r3,0xf

 [0x00000854] asl r3,r3,0x3

 [0x00000858] and r2,r2,0x7

 [0x0000085c] or r3,r3,r2

 [0x00000860] asl r4,r3,0x8

 [0x00000864] brcc.d r10,r13,0x2c

 [0x00000868] or r4,r4,r3

5

1

2

3

4

Block of ARCompact™ Instructions JIT Translated Block with Performance Model Data Structures

// pipeline stages
typedef enum {
 FE, // fetch
 DE, // decode
 EX, // execute
 ME, // memory
 WB, // write back
 STAGES // 5 stages
} Stage;

// processor state
typedef struct {
 uint32_t pc;
 // general purpose registers
 uint32_t r[REGS];
 // auxiliary registers
 uint32_t auxr[AUXREGS];
 // status flags (H...halt bit)
 char L,Z,N,C,V,U,D,H;
 // per stage cycle count
 uint64_t pl[STAGES];
 // per register cycle count
 uint64_t avail[REGS];
 // total cycle count
 uint64_t cycles;
 // used when insn. does not
 // produce result
 uint64_t ignore;
} CpuState;

6

7

Fig. 2. JIT DBT translation of ARCompact
TM

code with CpuState structure representing architectural 6© and microarchitectural state 7©. See Figure 3 for
an implementation of the microarchitectural state update function pipeline().

operand availability and side-effect visibility timing. We also
discuss our cache and memory model and show how to
integrate control flow and branch prediction into our microar-
chitectural performance model.

A. Processor Pipeline Model

The granularity of execution on hardware and RTL simula-
tion is cycle based — cycle-by-cycle. If the designer wants to
find out how many cycles it took to execute an instruction or
program, all that is necessary is to simply count the number of
cycles. While this execution model works well for hardware
it is too detailed and slow for ISS purposes. Therefore fast
functional ISS have an instruction-by-instruction execution
model. While this execution model yields faster simulation
speeds it usually compromises microarchitectural observability
and detail.

Our main contribution consists of a simple yet powerful
software pipeline model together with an instruction operand
dependency and side-effect analysis JIT DBT pass that allows
to retain an instruction-by-instruction execution model without
compromising microarchitectural observability. The essential
idea is to reconstruct the microarchitectural pipeline state after
executing an instruction.

Thus the processor pipeline is modelled as an array with as
many elements as there are pipeline stages (see definition of
pl[STAGES] at label 7© in Figure 2). For each pipeline stage

we add up the corresponding latencies and store the cycle-
count at which the instruction is ready to leave the respective
stage. The line with label 1© in Figure 3 demonstrates this
for the fetch stage cpu.pl[FE] by adding the amount of
cycles it takes to fetch the corresponding instruction to the
current cycle count at that stage. The next line in Figure 3
with the label 2© is an invariant ensuring that an instruction
cannot leave its pipeline stage before the instruction in the
immediately following stage is ready to proceed.

B. Instruction Operand Dependencies and Side Effects

In order to determine when an instruction is ready to leave
the decode stage it is necessary to know when operands
become available. For instructions that have side-effects (i.e.
modify the contents of a register) we need to remember when
the side-effect will become visible. The avail[GPRS] array
(see label 7© in Figure 2) encodes this information for each
operand.

When emitting calls to microarchitectural update functions
our JIT DBT engine passes source operand availability times
and pointers to destination operand availability locations deter-
mined during dependency analysis as parameters (see label 3©
in Figure 2). This information is subsequently used to compute
when an instruction can leave the decode stage (see label 3© in
Figure 3) and to record when side-effects become visible in the
execute and memory stage (see labels 4© and 5© in Figure 3).

ENCORE 5-Stage Pipeline JIT Generated Software Model

void pipeline(uint64_t opd1, uint64_t opd2, uint64_t* dst1, uint64_t* dst2, uint32_t faddr, uint32_t xc, uint32_t mc) {
 cpu.pl[FE] += fetch(faddr); // FETCH - account for instruction fetch latency
 if (cpu.pl[FE] < cpu.pl[DE]) cpu.pl[FE] = cpu.pl[DE]; // INVARIANT - see section 3.1 processor pipeline model
 cpu.pl[DE] = max3((cpu.pl[FE] + 1), opd1, opd2); // DECODE - determine operand availability time
 if (cpu.pl[DE] < cpu.pl[EX]) cpu.pl[DE] = cpu.pl[EX]; //
 cpu.pl[EX] = *dst1 = cpu.pl[DE] + xc; // EXECUTE - account for execution latency and destination
 if (cpu.pl[EX] < cpu.pl[ME]) cpu.pl[EX] = cpu.pl[ME]; // availability time
 cpu.pl[ME] = *dst2 = cpu.pl[EX] + mc; // MEMORY - account for memory latency and destination
 if (cpu.pl[ME] < cpu.pl[WB]) cpu.pl[ME] = cpu.pl[WB]; // availability time
 cpu.pl[WB] = cpu.pl[ME] + 1; // WRITEBACK
}

FETCH

PC ZOL
Logic

Instruction Cache
Tags Data

Hit &
Select
Logic

Next Fetch
PC

Align
Logic

Q

B

DECODE

PC

Inst

Limm

Inst
Decode
Logic

Register
File

r0

Bcc/Jcc Target
Logic

EXECUTE

PC

Bypass
Logic

ALU

Select
Result

MEMORY

PC

BRcc/BBIT Target
Logic

ABS
MIN
MAX

SELECT

WRITEBACK

PC

Exception
&

Replay
Logic

Data
Cache
Input
Select

&
Control
Logic

Hit &
Select
Logic

Load
Align

DATA MEMORY PIPELINE

Data Cache
Tags Data

Bypass
Logic

ENCORE 5-Stage Pipeline Hardware Model

2
1

3

4

5

Fig. 3. Hardware pipeline model with a sample JIT generated software model.

Because not all instructions modify general purpose registers
or have two source operands, there exist several specialised
versions of microarchitectural state update functions, and the
function outlined in Figure 3 demonstrates only one of several
possible variants.

C. Control Flow and Branch Prediction
When dealing with control flow operations (e.g. jump,

branch, branch on compare) special care must be taken to
account for various types of penalties and speculative execu-
tion. The ARCompact

TM
ISA allows for delay slot instructions

and the ENCORE processor and ARCSIM simulator support
various static and dynamic branch prediction schemes.

The code highlighted by label 4© in Figure 2 demonstrates
how a branch penalty is applied for a mis-predicted branch.
The pipeline penalty depends on the pipeline stage when
the branch outcome and target address are known (see target
address availability for BCC/JCC and BRCC/BBIT control flow
instructions in Figure 3) and the availability of a delay slot
instruction. One also must take care of speculatively fetched
and executed instructions in case of a mis-predicted branch.

D. Cache and Memory Model
Because cache misses and off-chip memory access latencies

significantly contribute towards the final cycle count, ARCSIM

maintains a 100% accurate cache and memory model.
In its default configuration the ENCORE processor imple-

ments a pseudo-random block replacement policy where the
content of a shift register is used in order to determine a
victim block for eviction. The rotation of the shift register
must be triggered at the same time and by the same events as
in hardware, requiring a faithful microarchitectural model.

Because the ARCompact
TM

ISA specifies very flexible and
powerful load/store operations, memory access simula-
tion is a critical aspect of high-speed full system simulations.
[30] describes in more detail how memory access simulation is
implemented in ARCSIM so that accurate modelling of target
memory semantics is preserved whilst simulating load and
store instructions at the highest possible rate.

IV. EMPIRICAL EVALUATION

We have extensively evaluated our cycle-accurate JIT DBT
performance modelling approach and in this section we de-
scribe our experimental setup and methodology before we
present and discuss our results.

A. Experimental Setup and Methodology

We have evaluated our cycle-accurate JIT DBT simulation
approach against the EEMBC 1.1 and COREMARK benchmark

!"#$%&

$#""&

''#()&

*&

+&

%*&

%+&

!*&

!+&

'*&

'+&

)*&

)+&

+*&

++&

(*&

(+&

,!
-.
/*
%&

,01
23*
%&

,04
35*
%&

,00
12
*%
&

,6
278
3*
*&

9,
:/
5;
*%
&

9/
<0/
3*
%&

902
.
=;
*%
&

7,
7>
/9
*%
&

7,
=3
?3
*%
&

78
=@
/=
**
&

?02
>/
3*
%&

A
02,
B**
&

12
**
&

0?7
23=
*%
&

003
C2
*%
&

.
,2
30D
*%
&

8:
;5
&

;E
FB
8G
&

;=
237
>*
%&

;6
G.

8?
*%
&

3H
97
.I
*%
&

3H
9>
;H
*%
&

3H
9I
0J*
%&

38
2,
2/
*%
&

38
62
/B8
8E
6;
&

3:;
//
?*
%&

29
B88
E*
%&

2/
D2*
%&

K:
;3
E*
%&

@02
/3
9*
*&

7L;
/H
&

?L;
/H
&

78
3/
.
,3
E&

,@
/3
,H
/&

M;//?&N;-.0:/?&OPQR& SMM&S=2/3;3/-@/&T8?/&U&VI7B/&R7763,2/& SMM&WSX&YZX&T8?/&U&VI7B/&R7763,2/&[TSPM\&&

Fig. 4. Simulation speed (in MIPS) using EEMBC and COREMARK benchmarks comparing (a) speed-optimised FPGA implementation, (b) ISS interpretive
cycle-accurate simulation mode, and (c) our novel ISS JIT DBT cycle-accurate simulation mode.

suites [39] comprising applications from the automotive, con-
sumer, networking, office, and telecom domains. All codes
have been built with the ARC port of the GCC 4.2.1 compiler
with full optimisation enabled (i.e. -O3 -mA7). Each bench-
mark has been simulated in a stand-alone manner, without an
underlying operating system, to isolate benchmark behaviour
from background interrupts and virtual memory exceptions.
Such system-related effects are measured by including a Linux
full-system simulation in the benchmarks.

The EEMBC benchmarks were run for the default number
of iterations and COREMARK was run for 3000 iterations.
The Linux benchmark consisted of simulating the boot-up
and shut-down sequence of a Linux kernel configured to run
on a typical embedded ARC700 system with two interrupting
timers, a console UART, and a paged virtual memory system.

Our main interest has been on simulation speed, therefore
we have measured the maximum possible simulation speed in
MIPS using various simulation modes (FPGA speed vs. cycle-
accurate interpretive mode vs. cycle-accurate JIT DBT mode
and ASIC speed vs. functional interpretive mode vs. functional
JIT DBT mode - see Figures 4 and 5). In addition, we have
measured the accuracy of our novel JIT DBT performance
modelling approach by comparing it with ARCSIMs cycle-
accurate interpretive simulation mode (see Figure 6), verified
against a 5-stage pipeline variant of the ENCORE processor
(see Figure 3). Table II lists the configuration details of our
simulator and target processor. All measurements were per-
formed on a X86 desktop computer detailed in Table I under
conditions of low system load. When comparing ARCSIM
simulation speeds to FPGA and ASIP implementations shown
in Figures 4 and 5, we used a XILINX VIRTEX5 XC5 VFX70T
(speed grade 1) FPGA clocked at 50 MHz, and an ASIP

implementation of the ENCORE using UMC 90nm technology
and free foundry Faraday libraries clocked at 350 MHz.

Core ENCORE
Pipeline 5-Stage Interlocked
Execution Order In-Order
Branch Prediction Yes
ISA ARCompact

TM

Floating-Point Hardware

Memory System
L1-Cache

Instruction 32k/4-way associative
Data 32k/4-way associative
Replacement Policy Pseudo-random

L2-Cache None
Bus Width/Latency/Clock Divisor 32-bit/16 cycles/2

Simulation
Simulator Full-system, cycle-accurate
Options JIT DBT Mode using

CLANG/LLVM as JIT compiler
I/O & System Calls Emulated

TABLE II
ISS CONFIGURATION AND SETUP.

B. Simulation Speed

We initially discuss the simulation speed-up achieved by our
novel cycle-accurate JIT DBT simulation mode compared to a
verified cycle-accurate interpretive simulation mode as this has
been the primary motivation of our work. In addition we also
present performance measurements for functional JIT DBT
and functional interpretive simulation modes to demonstrate
the performance difference between full microarchitectural
observability (cycle-accurate mode) and architectural observ-
ability (functional mode). Finally, we discuss the impact of

!"#$%&'

("$)%'

)"&$%*'

"'

+""'

!""'

(""'

&""'

)""'

%""'

,""'

#""'

*""'

+"""'

-!
./
0"
+'

-12
34"
+'

-15
46"
+'

-11
23
"+
'

-7
389
4"
"'

:-
;0
6<
"+
'

:0
=10
4"
+'

:13
/
><
"+
'

8-
8?
0:
"+
'

8-
>4
@4
"+
'

89
>A
0>
""
'

@13
?0
4"
+'

B
13-
C""
'

23
""
'

1@8
34>
"+
'

114
D3
"+
'

/
-3
41E
"+
'

9;
<6
'

<F
GC
9H
'

<>
348
?"
+'

<7
H/

9@
"+
'

4I
:8
/J
"+
'

4I
:?
<I
"+
'

4I
:J
1K"
+'

49
3-
30
"+
'

49
73
0C9
9F
7<
'

4;<
00
@"
+'

3:
C99
F"
+'

30
E3
"+
'

L;
<4
F"
+'

A13
04
:"
"'

8M<
0I
'

@M<
0I
'

89
40
/
-4
F'

-A
04
-I
0'

N<00@'O<./1;0@'PNQR' QNN'Q>304<40.A0'S9@0'T'U7>8.9>-C' QNN'VQW'XYW'S9@0'T'U7>8.9>-C'ZSQRN['

Fig. 5. Simulation speed (in MIPS) using EEMBC and COREMARK benchmarks comparing (a) speed-optimised ASIP implementation, (b) ISS interpretive
functional simulation mode, and (c) ISS JIT DBT functional simulation mode.

additional profiling on simulation speed for our cycle-accurate
JIT DBT simulation mode. A summary of our results is shown
in Figures 4 and 5.

Our proposed cycle-accurate JIT DBT simulation mode is
more than three times faster on average (33.5 MIPS) than
the verified cycle-accurate interpretive mode (8.9 MIPS) and
even outperforms a speed-optimised FPGA implementation
of the ENCORE processor (29.8 MIPS) clocked at 50 MHz.
For some benchmarks (e.g. routelookup, ospf, djpeg,
autcor00) our new cycle-accurate JIT DBT mode is up to
twice as fast as the speed-optimised FPGA implementation.
This can be explained by the fact that those benchmarks
contain sequences of instructions that map particularly well
onto the simulation host ISA. Furthermore, frequently executed
blocks in these benchmarks contain instructions with fewer
dependencies resulting in the generation and execution of
simpler microarchitectural state update functions.

For the introductory sample application performing AAC de-
coding and playback of Mozart’s Requiem outlined in Section
I, our cycle-accurate JIT DBT mode is capable of simulating at
a sustained rate of > 30 MIPS, enabling real-time simulation.
For the boot-up and shutdown sequence of a Linux kernel
our fast cycle-accurate JIT DBT simulation mode achieves 31
MIPS resulting in a highly responsive interactive environment.
These examples clearly demonstrate that ARCSIM is capable
of simulating system-related effects such as interrupts and
virtual memory exceptions efficiently and still provide full
microarchitectural observability.

In order to demonstrate the impact of full microarchitectural
observability on simulation speed, we also provide simulation
speed figures for functional simulation modes in Figure 5. Our
JIT DBT functional simulation mode is more than twice as

fast on average (504.7 MIPS) than an ASIP implementation
at 350 MHz (208.6 MIPS) whilst providing full architectural
observability. When we compare cycle-accurate JIT DBT mode
to functional JIT DBT mode we see that the functional
simulation mode is still 15 times faster on average than the
cycle-accurate simulation mode. This demonstrates the price
one has to pay in terms of performance for greater simulation
detail.

Our profiling simulation mode is orthogonal to all of the
above simulation modes and we have measured its impact on
simulation performance for our cycle-accurate JIT DBT mode.
Enabling profiling results in only a slight decrease of average
simulation speed from 33.5 MIPS down to 30.4 MIPS across
the EEMBC and COREMARK benchmarks. Note that even with
full profiling enabled (including dynamic instruction execution
profiling, per instruction latency distributions, detailed cache
statistics, executed delay slot instructions, as well as various
branch predictor statistics) our cycle-accurate JIT DBT mode
is faster than execution on an FPGA hardware platform.

C. Simulator Accuracy

Next we evaluate the accuracy of our JIT DBT performance
modelling approach. A summary of our results is shown in
the diagram in Figure 6.

Across the range of benchmarks our new microarchitectural
performance modelling simulation mode has an average cycle
count prediction deviation of 1.4%, using a verified cycle-
accurate interpretive simulation mode as the baseline. The
worst case cycle-count deviation is less than 5% and is due to
a performance divergence in hardware introducing a pipeline
bubble that is not yet modelled in cycle-accurate JIT DBT
mode. Our cycle-accurate cache and memory models are 100%

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

&,-.!(" &,-.!)" &,-.!*" &,-.!+"

/01234" 56234" 7089:;398"/01234" 7089:;398"56234"
<=>?2@"

<234A;BC8:">9DC0A1EF9D@"

Fig. 7. MIPS vs. number of simulated instructions for ARCSIM and
HYSIM[13] indicating scalability for applications of varying dynamic instruc-
tion counts.

accurate, thus the amount of instruction and data cache misses
as well as memory accesses faithfully model the behaviour of
the target processor.

Because the simulator runs in cycle-accurate interpretive
mode during hotspot detection, we had to ascertain that the
majority of instructions are executed in cycle-accurate JIT DBT
mode to yield representative figures for accuracy. We have
ensured that more blocks become eligible for JIT dynamic
binary translation by choosing an aggressive hotspot selection
policy, so that more than 99% of instructions per program are
executed in cycle-accurate JIT DBT mode.

D. Comparison to State-of-the-Art Hybrid Simulation

The hybrid simulation framework HYSIM [13] is most rel-
evant to our work in the realm of fast performance modelling
in ISS. HYSIM assumes a simple MIPS 4K processor. It
does not model its pipeline [13], but rather assumes fixed
costs for instructions without taking operand dependencies
into account. Furthermore, only the data cache is modelled
while the modelling of the instruction cache is omitted in
HYSIM. Given that the microarchitecture is not modelled fully
and is much simpler than that of the full-scale ENCORE, it
seems surprising that HYSIM shows scalability issues for more
complex benchmarks. The diagram in Figure 7 shows a scatter
plot displaying the relation between the number of simulated
instructions (x-axis) and the achievable simulation speed in
MIPS (y-axis) for ARCSIM and HYSIM.

Trend lines indicate the sustained simulation speeds for
complex and long running applications. While ARCSIMs trend
line (solid line) is close to its average 33.6 MIPS, HYSIMs
trend line (dotted line) indicates scalability issues for long
running benchmarks.

V. RELATED WORK

Previous work on high-speed instruction set simulation has
tended to focus on compiled and hybrid mode simulators.
Whilst an interpretive simulator spends most of its time re-
peatedly fetching and decoding target instructions, a compiled

simulator fetches and decodes each instruction once, spending
most of its time performing the operations.

A. Fast ISS

A statically-compiled simulator [20] which employed in-
line macro expansion was shown to run up to three times
faster than an interpretive simulator. Target code is statically
translated to host machine code which is then executed directly
within a switch statement.

Dynamic translation techniques are used to overcome the
lack of flexibility inherent in statically-compiled simulators.
The MIMIC simulator [19] simulates IBM SYSTEM/370 in-
structions on the IBM RT PC and translates groups of target
basic blocks into host instructions. SHADE [8] and EM-
BRA [31] use DBT with translation caching techniques in
order to increase simulation speeds. The Ultra-fast Instruction
Set Simulator [33] improves the performance of statically-
compiled simulation by using low-level binary translation
techniques to take full advantage of the host architecture.

Just-In-Time Cache Compiled Simulation (JIT-CCS) [23]
executes and the caches pre-compiled instruction-operation
functions for each function fetched. The Instruction Set Com-
piled Simulation (IC-CS) simulator [27] was designed to
be a high performance and flexible functional simulator. To
achieve this the time-consuming instruction decode process
is performed during the compile stage, whilst interpretation is
enabled at simulation time. The SIMICS [27] full system sim-
ulator translates the target machine-code instructions into an
intermediate format before interpretation. During simulation
the intermediate instructions are processed by the interpreter
which calls the corresponding service routines. QEMU [3] is
a fast simulator which uses an original dynamic translator.
Each target instruction is divided into a simple sequence
of micro-operation, the set of micro-operations having been
pre-compiled offline into an object file. During simulation
the code generator accesses the object file and concatenates
micro-operations to form a host function that emulates the
target instructions within a block. More recent approaches
to JIT DBT ISS are presented in [26], [30], [5], [17]. Apart
from different target platforms these approaches differ in the
granularity of translation units (basic blocks vs pages or CFG
regions) and their JIT code generation target language (ANSI-
C vs LLVM IR).

The commercial simulator XISS simulator [38] employs JIT
DBT technology and targets the same ARCompact

TM
ISA that

has been used in this paper. It achieves simulation speeds of
200+ MIPS. In contrast, ARCSIM operates at 500+ MIPS in
functional simulation mode.

Common to all of the above approaches is that they imple-
ment functional ISS and do not provide a detailed performance
model.

B. Performance Modelling in Fast ISS

A dynamic binary translation approach to architectural
simulation has been introduced in [6]. The POWERPC ISA
is dynamically mapped onto PISA in order to take advantage

!"##$%

&'$%

&#$%

&($%

&)$%

&!$%

*$%

!$%

)$%

($%

#$%

'$%

+)
,-
.*
!%

+/0
12*
!%

+/3
24*
!%

+//
01
*!
%

+5
167
2*
*%

8+
9.
4:
*!
%

8.
;/.
2*
!%

8/1
-
<:
*!
%

6+
6=
.8
*!
%

6+
<2
>2
*!
%

67
<?
.<
**
%

>/1
=.
2*
!%

@
/1+
A**
%

01
**
%

/>6
12<
*!
%

//2
B1
*!
%

-
+1
2/C
*!
%

79
:4
%

:D
EA
7F
%

:<
126
=*
!%

:5
F-

7>
*!
%

2G
86
-H
*!
%

2G
8=
:G
*!
%

2G
8H
/I*
!%

27
1+
1.
*!
%

27
51
.A7
7D
5:
%

29:
..
>*
!%

18
A77
D*
!%

1.
C1*
!%

J9
:2
D*
!%

?/1
.2
8*
*%

6K:
.G
%

>K:
.G
%

67
2.
-
+2
D%

+?
.2
+G
.%

LMM%NLO%PQO%R7>.%6H6A.%675<1%>.?/+,7<%/<%$%%&%Q+9.A/<.%/9%6H6A.%+6652+1.%L<1.2:2.,?.%LMM%R7>.%

Fig. 6. Evaluation of JIT DBT simulation mode accuracy using EEMBC and COREMARK benchmarks against calibrated interpretive cycle accurate simulation
mode.

of the underlying SIMPLESCALAR [34] timing model. While
this approach enables hardware design space exploration it
does not provide a faithful performance model for any actual
POWERPC implementation.

Most relevant to our work is the performance estimation
approach in the HYSIM hybrid simulation environment [12],
[18], [13], [14]. HYSIM merges native host execution with
detailed ISS. For this, an application is partitioned and opera-
tion cost annotations are introduced to a low-level intermediate
representation (IR). HYSIM “imitates” the operation of an
optimising compiler and applies generic code transformations
that are expected to be applied in the actual compiler targeting
the simulation platform. Furthermore, calls to stub functions
are inserted in the code that handle accesses to data managed
in the ISS where also the cache model is located. We believe
there are a number of short-comings in this approach: First,
no executable for the target platform is ever generated and,
hence, the simulated code is only an approximation of what
the actual target compiler would generate. Second, no detailed
pipeline model is maintained. Hence, cost annotations do not
reflect actual instruction latencies and dependencies between
instructions, but assume fixed average instruction latencies.
Even for relatively simple, non-superscalar processors this
assumption does not hold. Furthermore, HYSIM has only
been evaluated against an ISS that does not implement a
detailed pipeline model. Hence, accuracy figures reported in
e.g. [13] only refer to how close performance estimates come
to those obtained by this ISS, but it is unclear if these figures
accurately reflect the actual target platform. Finally, only a
very few benchmarks have been evaluated and these have
revealed scalability issues (see paragraph IV-D) for larger
applications. A similar hybrid approach targeting software
energy estimation has been proposed earlier in [21], [22].

Statistical performance estimation methodologies such as
SIMPOINT and SMARTS have been proposed in [16], [32]. The
approaches are potentially very fast, but require preprocessing
(SIMPOINT) of an application and do not accurately model the
microarchitecture (SMARTS, SIMPOINT). Unlike our accurate
pipeline modelling this introduces a statistical error that cannot
be entirely avoided.

Machine learning based performance models have been
proposed in [2], [4], [24] and, more recently, more mature
approaches have been presented in [10], [25]. After ini-
tial training these performance estimation methodologies can
achieve very high simulation rates that are only limited by the
speed of faster, functional simulators. Similar to SMARTS and
SIMPOINT, however, these approaches suffer from inherent
statistical errors and the reliable detection of statistical outliers
is still an unsolved problem.

VI. SUMMARY AND CONCLUSIONS

We have demonstrated that our approach to cycle-accurate
ISS easily surpasses speed-optimised FPGA implementations
whilst providing detailed architectural and microarchitectural
profiling feedback and statistics. Our main contribution is a
simple yet powerful software pipeline model in conjunction
with an instruction operand dependency and side-effect anal-
ysis pass integrated into a JIT DBT ISS enabling ultra-fast
simulation speeds without compromising microarchitectural
observability. Our cycle-accurate microarchitectural modelling
approach is portable and independent of the implementation
of a functional ISS. More importantly, it is capable of cap-
turing even complex interlocked processor pipelines. Because
our novel pipeline modelling approach is microarchitecture
adaptable and decouples the performance model in the ISS
from functional simulation it can be automatically generated
from ADL specifications.

In future work we plan to further align our performance
model so that if fully reflects the underlying microarchitecture
without impacting simulation speed. In addition we want
to improve and optimise JIT generated code that performs
microarchitectural performance model updates and show that
fast cycle-accurate multi-core simulation is feasible with our
approach.

REFERENCES

[1] David August, Jonathan Chang, Sylvain Girbal, Daniel Gracia Perez,
Gilles Mouchard, David Penry, Olivier Temam, and Neil Vachharajani.
UNISIM: An Open Simulation Environment and Library for Complex
Architecture Design and Collaborative Development. IEEE Computer
Architecture Letters, 20 Aug (2007).

[2] J. R. Bammi, E. Harcourt, W. Kruijtzer, L. Lavagno, and M. T.
Lazarescu. Software performance estimation strategies in a system-level
design tool. In Proceedings of CODES’00, (2000).

[3] F. Bellard. QEMU, a fast and portable dynamic translator. Proceedings
of the Annual Conference on USENIX Annual Technical Conference.
USENIX Association, Berkeley, CA, p. 41, (2005).

[4] G. Bontempi and W. Kruijtzer. A data analysis method for software
performance prediction. DATE’02: Proceedings of the Conference on
Design, Automation and Test in Europe, (2002).

[5] Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler
Fast and Accurate Simulation using the LLVM Compiler Framework.
RAPIDO’09: 1st Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools (2009) pp. 1-6.

[6] H.W. Cain, K.M. Lepak, and M.H. Lipasti. A dynamic binary translation
approach to architectural simulation. SIGARCH Computer Architecture
News, Vol. 29, No. 1, March (2001).

[7] Eric Cheung, Harry Hsieh, Felice Balarin. Framework for Fast and Ac-
curate Performance Simulation of Multiprocessor Systems. HLDTV’07:
Proceedings of the IEEE International High Level Design Validation and
Test Workshop (2007) pp. 1-8.

[8] B. Cmelik, and D. Keppel. Shade: A Fast Instruction-Set Simulator
for Execution Profiling. Proceedings of the 1994 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pp.
128–137, ACM Press, New York, (1994).

[9] Joseph D’Errico and Wei Qin. Constructing portable compiled
instruction-set simulators: an ADL-driven approach. DATE’06: Pro-
ceedings of the Conference on Design, Automation and Test in Europe,
(2006).

[10] Björn Franke. Fast cycle-approximate instruction set simulation.
SCOPES’08: Proceedings of the 11th international workshop on Soft-
ware & compilers for embedded systems (2008).

[11] Lei Gao, Jia Huang, Jianjiang Ceng, Rainer Leupers, Gerd Ascheid,
and Heinrich Meyr. TotalProf: a fast and accurate retargetable source
code profiler. CODES+ISSS’09: Proceedings of the 7th IEEE/ACM
international conference on Hardware/software codesign and system
synthesis (2009).

[12] Lei Gao, Stefan Kraemer, Rainer Leupers, Gerd Ascheid, Heinrich Meyr.
A fast and generic hybrid simulation approach using C virtual machine.
CASES’07: Proceedings of the international conference on Compilers,
architecture, and synthesis for embedded systems (2007).

[13] Lei Gao, Stefan Kraemer, Kingshuk Karuri, Rainer Leupers, Gerd
Ascheid, and Heinrich Meyr. An Integrated Performance Estimation
Approach in a Hybrid Simulation Framework. MOBS’08: Annual
Workshop on Modelling, Benchmarking and Simulation (2008).

[14] Lei Gao, Kingshuk Karuri, Stefan Kraemer, Rainer Leupers, Gerd
Ascheid, and Heinrich Meyr. Multiprocessor performance estimation
using hybrid simulation. DAC’08: Proceedings of the 45th annual
Design Automation Conference (2008).

[15] Carsten Gremzow. Compiled Low-Level Virtual Instruction Set Sim-
ulation and Profiling for Code Partitioning and ASIP-Synthesis in
Hardware/Software Co-Design. SCSC’07: Proceedings of the Summer
Computer Simulation Conference (2007) pp. 741-748.

[16] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SIMPOINT 3.0:
Faster and more flexible program analysis. MOBS’05: Proceedings of
Workshop on Modelling, Benchmarking and Simulation, (2005).

[17] Daniel Jones and Nigel Topham. High Speed CPU Simulation Using
LTU Dynamic Binary Translation. Lecture Notes In Computer Science
(2009) vol. 5409.

[18] Stefan Kraemer, Lei Gao, Jan Weinstock, Rainer Leupers, Gerd As-
cheid, and Heinrich Meyr. HySim: a fast simulation framework for
embedded software development. CODES+ISSS’07: Proceedings of the
5th IEEE/ACM international conference on Hardware/software codesign
and system synthesis (2007).

[19] C. May. MIMIC: A Fast System/370 Simulator. SIGPLAN: Papers of
the Symposium on Interpreters and Interpretive Techniques, pp. 1–13,
ACM Press, Ney York, (1987).

[20] C. Mills, S.C. Ahalt, J. Fowler. Compiled Instruction Set Simulation.
Software: Practice and Experience, 21(8), pp. 877 – 889, (1991).

[21] A. Muttreja, A. Raghunathan, S. Ravi, and N.K. Jha. Hybrid simulation
for embedded software energy estimation. DAC’05: Proceedings of the
42nd Annual Conference on Design Automation, pp. 23–26, ACM Press,
New York, (2005).

[22] A. Muttreja, A. Raghunathan, S. Ravi, and N.K. Jha. Hybrid simulation
for energy estimation of embedded software. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, (2007).

[23] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A.
Hoffmann. A Universal Technique for Fast and Flexible Instruction-Set
Architecture Simulation. DAC’02: Proceedings of the 39th Conference
on Design Automation, pp. 22–27, ACM Press, New York, (2002).

[24] M. S. Oyamada, F. Zschornack, and F. R. Wagner. Accurate software
performance estimation using domain classification and neural networks.
In Proceedings of SBCCI’04, (2004).

[25] Daniel Powell and Björn Franke. Using continuous statistical ma-
chine learning to enable high-speed performance prediction in hybrid
instruction-/cycle-accurate instruction set simulators. CODES+ISSS’09:
Proceedings of the 7th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis, (2009).

[26] W. Qin, J. D’Errico, and X. Zhu. A Multiprocessing Approach to
Accelerate Retargetable and Portable Dynamic-Compiled Instruction-
Set Simulation. CODES-ISSS’06: Proceedings of the 4th International
Conference on Hardware/Software Codesign and System Synthesis, pp.
193–198, ACM Press, New York, (2006).

[27] M. Reshadi, P. Mishra, and N. Dutt. Instruction Set Compiled Simu-
lation: A Technique for Fast and Flexible Instruction Set Simulation.
Proceedings of the 40th Conference on Design Automation, pp. 758–
763, ACM Press, New York, (2003).

[28] O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun, and H. Meyr.
Architecture Implementation Using the Machine Description Language
LISA. ASP-DAC’02: Proceedings of the Asia and South Pacific Design
Automation Conference, Washington, DC, USA, (2002).

[29] Hyo-Joong Suh and Sung Woo Chung. An Accurate Architectural
Simulator for ARM1136. Lecture Notes In Computer Science (2005)
vol. 3824.

[30] Nigel Topham and Daniel Jones. High Speed CPU Simulation using
JIT Binary Translation. MOBS’07: Annual Workshop on Modelling,
Benchmarking and Simulation (2007).

[31] E. Witchel, and M. Rosenblum. Embra: Fast and Flexibile Machine
Simulation. In: Proceedings of the 1996 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems,
pp. 68–79, ACM Press, New York, (1996).

[32] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: ac-
celerating microarchitecture simulation via rigorous statistical sampling.
ISCA’03: Proceedings of the 30th Annual International Symposium on
Computer Architecture (ISCA), (2003).

[33] J. Zhu, and D.D. Gajski. A Retargetable, Ultra-Fast Instruction Set Sim-
ulator. DATE’99: Proceedings of the Conference on Design, Automation
and Test in Europe, p. 62, ACM Press, New York, (1999).

[34] Doug Burger and Todd Austin. The SimpleScalar tool set, version 2.0.
SIGARCH Computer Architecture News (1997) vol. 25 (3).

[35] ARCompact
TM

Instruction Set Architecture. Virage Logic Corporation,
47100 Bayside Parkway Fremont, CA 94538, USA. http://www.
viragelogic.com, retrieved 08 March (2010).

[36] ENCORE Embedded Processor. http://groups.inf.ed.ac.uk/
pasta/hw_encore.html, retrieved 15 March 2010.

[37] ARCSIM Instruction Set Simulator. http://groups.inf.ed.ac.
uk/pasta/tools_arcsim.html, retrieved 15 March 2010.

[38] XISS and Metaware ISS Simulators. Virage Logic Corporation,
47100 Bayside Parkway Fremont, CA 94538, USA. http://www.
viragelogic.com/render/content.asp?pageid=856, re-
trieved 10 February 2010.

[39] The Embedded Microprocessor Benchmark Consortium: EEMBC Bench-
mark Suite. http://www.eembc.org

