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Abstract— When sensors are redundantly deployed, a 
subset of sensors should be selected to actively monitor the 
field (referred to as a "cover"), while the rest of the sensors 
should be put to sleep to conserve their batteries. Despite of 
its potential application, wireless sensor network encounters 
resource restrictions such as low computational power, 
reduced bandwidth and specially limited power resource. In 
this paper we propose learning automata based algorithm 
for energy-efficient monitoring in wireless sensor networks. 
Learning Automata are used for choosing the nodes having 
redundant coverage contribution. The proposed monitoring 
method in comparison to existing methods uses less number 
of nodes for monitoring network area. To evaluate the 
performance of the proposed algorithm several experiments 
have been conducted. The simulation results establish that 
the monitoring of sensor nodes with the proposed technique 
shows better utilization of the resources that effectively leads 
to an energy efficient maximally covered sensor network 
topology. Experiments have also shown that the proposed 
monitoring algorithm in comparison to other existing 
methods prolongs the network lifetime. 

Keywords: Wireless sensor networks, Area coverage, energy-
efficient, Learning Automata (LA). 

I. INTRODUCTION 
Recently, the idea of wireless sensor networks has 

attracted a great deal of research attention due to wide-
ranged potential applications that will be enabled by 
wireless sensor networks, such as battlefield surveillance, 
machine failure diagnosis, biological detection, home 
security, smart spaces, inventory tracking, etc. [1]. A 
wireless sensor network consists of tiny sensing devices, 
deployed in a region of interest. Each device has 
processing and wireless communication capabilities, 
which enable it to gather information from the 
environment and to generate and deliver report messages 
to the remote base station (remote user). The base station 
aggregates and analyzes the report messages received and 
decides whether there is an unusual or concerned event 
occurrence in the deployed area. Considering the limited 
capabilities and vulnerable nature of an individual sensor, 
a wireless sensor network has a large number of sensors 
deployed in high density (high up to 20nodes/m3) and 
thus redundancy can be exploited to increase data 
accuracy and system reliability [15]. 

Several applications, such as environmental 
monitoring, require sensors be redundantly deployed to 
accommodate unexpected failures and improve the 
fidelity of received measurements. Redundancy means 
that some parts of the field are covered by more than one 
sensor at the same time. If idle sensors are not put to 
sleep, then redundant node deployment does not 
necessarily improve the coverage time of the field, 
defined as the time until the fraction of the area that is 
monitored by at least one sensor falls below a given 
threshold. This is because the sensor's radio expends a 
significant portion of its battery lifetime in idle-listening 
to support data forwarding, and thus active sensors tend to 
die at roughly the same time [17]. It was also reported in 
[14] that in the WINS Rockwell seismic sensor the power 
consumed in receive and idle-listening modes are 0.36 
mW and 0.34 mW, respectively. In contrast, the energy 
consumed in the sleep mode of the MICA2 is three orders 
of magnitude less than that during idle-listening. 

In this paper, we propose a novel method for 
addressing the problem of area coverage in wireless 
sensor networks using learning automata. In the proposed 
approach which we call it EEMLA, each node in the 
network is equipped with a learning automaton which 
learns (schedules) the proper on and off times of that node 
based on local neighbor’s information.  

This work proposes an energy efficient maximally 
covered sensor network algorithm that addresses the 
requirements of power efficient infrastructure issues for 
WSN. EEMLA runs on each node in a WSN to decide on 
the state of the node, either ACTIVE or ASLEEP, and 
thereby ensures minimal number of active nodes at a 
particular moment of time to cover the maximal area of 
the backbone network. 

The EEMLA is developed around the modeling tool of 
learning automata. It is established that the lifespan of a 
network, monitored by EEMLA, is better than that of 
other similar state-of-the-art monitoring schemes. Our 
main purpose is increase of network lifetime. 

The rest of the paper is organized as follows. Section 
II briefly surveys related work. Section III introduces an 
overview of learning automata. The problem statement is 
given in section IV. Section V presents the EEMLA 
algorithm. Section VI reports the performance of our 
proposed network monitoring scheme. Finally, Section 
VII concludes the paper. 



II. RELATED WORKS 
In [16], a probing-based density control algorithm is 

proposed to ensure long-lived, robust sensing coverage by 
leveraging unconstrained network scale. In this protocol, 
only a subset of nodes are  maintained in working mode to 
ensure desired sensing coverage, and other redundant 
nodes are allowed to fall asleep most of the time. Working 
nodes continue working until they run out of their energy 
or are destroyed. A sleeping node wakes up occasionally 
to probe its local neighborhood and starts working only if 
there is no working node within its probing range. 
Geometry knowledge is used to derive the relationship 
between probing range and redundancy. In this algorithm, 
desired redundancy can be obtained by choosing the 
corresponding probing range. However, this derivation is 
based on the assumption that all the nodes have exactly 
the same sensing range. It is hard to find a relationship 
between probing range and desired redundancy, if nodes 
have different sensing ranges. Furthermore, the probing-
based off-duty eligibility rule can not ensure the original 
sensing coverage and blind points may appear after 
turning off some nodes. 

In [4], [5]  authors computed a number of set covers 
that maximize the lifetime of the sensor network. They 
proposed two centralized heuristic techniques for target 
coverage; one uses linear programming and the other is a 
greedy approach.  

 Slijepcevic and Potkonjak [13] proposed a centralized 
heuristic to compute a disjoint maximal set of covers. The 
authors suggest a method to covert from area coverage 
into target coverage as being illustrated in Figure 1. The 
paper first defines the concept of field which is a set of 
points that are covered by the same set of sensors. For 
example, the sensors in Figure 1 partition the monitored 
area (the dashed-line rectangle) into eight fields. By 
considering each field as a target, the area coverage 
problem is easily and accurately transformed into the 
target problem.  

 
Figure 1. Transformation from area coverage to targets coverage [13] 

Tian and Georganas [15] devise an algorithm that 
ensures complete coverage using the concept of 
“sponsored area.” Whenever a sensor node receives a 
packet from one of its working neighbors, it calculates its 
sponsored area (defined as the maximal sector covered by 
the neighbor). If the union of all the sponsored areas of a 
sensor node covers the coverage disk of the node, the 
node turns itself off. 

Zhang and Hou [19] analyze the relationship between 
complete coverage and connectivity (i.e., if the 
transmission radio range is at least twice of the sensing 
range, then coverage implies connectivity), develop 
several optimal conditions of maintaining coverage, and 
devise, based on the optimal conditions, a localized 
method to maintain coverage and connectivity.  

Blough and Santi [3] study the upper bound of the 
network lifetime for cell-based energy conservation 
techniques. 

In [9], [10] authors proposed probabilistically 
schedules sensing activities according to the sensor’s 
contribution to the sensing coverage of the whole sensor 
network. 

Younis, Krunz, and Ramasubramanian [18] proposed 
two distributed protocols (LUC-I and LUC-P) that 
periodically select covers and switch between them to 
extend "coverage time" and tolerate unexpected failures. 

In [2] authors proposed an energy efficient method for 
monitoring wireless sensor networks using cellular auto-
mata. Cellular automata used for detecting redundant 
nodes. 

In this paper we proposed a simple method based on 
learning automata for detecting redundant nodes in given 
area and just based on neighbors information’s we detect 
redundant nodes in node sensing range.  

III. LEARNING AUTOMATA  
Learning automata is an abstract model which 

randomly selects one action out of its finite set of actions 
and performs it on a random environment. Environment 
then evaluates the selected action and responses to the 
automata with a reinforcement signal. Based on selected 
action, and received signal, the automata updates its 
internal state and selects its next action. Figure 2 depicts 
the relationship between an automata and its environment.  

 
Figure 2. Relationship between learning automata and its 

environment 

Environment can be defined by the triple { }cE ,, βα≡  
where { }rαααα ,...,2,1≡ represents finite input set, 

{ }rββββ ,...,2,1≡ represents the output set, and 

{ }rcccc ,...,2,1≡ is a set of penalty probabilities, where 

each element ic of c corresponds to one input of 

action iα . An environment in which β can take only 
binary values 0 or 1 is referred to as P-model 
environment. A further generalization of the environment 
allows finite output sets with more than two elements that 



take values in the interval [0, 1]. Such an environment is 
referred to as Q-model. Finally, when the output of the 
environment is a continuous random variable which 
assumes values in the interval [0, 1], it is referred to as an 
S-model. Learning automata are classified into fixed-
structure stochastic, and variable-structure stochastic. In 
the following, we consider only variable-structure 
automata.  

A variable-structure automaton is defined by the 
quadruple },,,{ TPβα in which },...,1{ nααα = represents 

the action set of the automata, },...,1{ nβββ = represents 

the input set, },...,1{ nPPP = represents the action 
probability set, and finally p(n +1) =T[α(n), β(n), p(n)]  
represents the learning algorithm. This automaton 
operates as follows. Based on the action probability set p, 
automaton randomly selects an action iα , and performs it 
on the environment. After receiving the environment's 
reinforcement signal, automaton updates its action 
probability set based on equations (1) for favorable 
responses, and equations (2) for unfavorable ones.  
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In these two equations, a and b are reward and penalty 
parameters respectively. For a = b, learning algorithm is 
called PRL −

1, for b << a, it is called PRL ε
2, and for b = 0, 

it is called IRL −
3. For more information the reader may 

refer to [11][14]. The only application of learning 
automata to sensor networks has been reported in [6]. 

IV. PROBLEM STATEMENT 
The problem is to select a subset of the nodes as active 

nodes in the network which can cover the entire area of 
the network. More specifically, if the set of nodes in the 
network is V, it is required to select a subset 

 V AV ⊆ that covers the entire area covered by V (VA is 
referred to as a "cover"). The remaining set of nodes Vs= 
V -VA can be put to sleep and later activated to form new 
covers [18].  

                                                           
1 Linear Reward-Penalty 
2 Linear Reward epsilon Penalty 
3 Linear Reward Inaction 

Checking the coverage of the entire area of the 
network is not a simple task. This is because one has to 
check an infinite number of points in the area to make 
sure that all points in the area are covered. Therefore, in 
[3, 13] Authors proposed two methods for transforming 
the area coverage problem into point (target) coverage 
problem. In this paper, we use the approach given in [3] 
for transforming the area coverage into the target 
coverage problem. In this approach, the network area is 
divided into small square regions (cells), each having 
equal size. To check the coverage of the entire area, it is 
sufficient to check if each of the cells is under the 
coverage of at least on of the sensor nodes. We assume 
that sensor nodes are location-aware and are able to 
locally determine the cells they can cover. Also, we 
assume that the sensing range of all nodes is equal and the 
monitoring environment is a rectangular area and Nodes 
of the network are placed randomly on a two-dimensional 
area. 

V. PROPOSED METHOD 
Each node i in the network is equipped with a learning 

automaton LAi which helps the node in determining its 
suitable state; whether to be active or not. Learning 
automaton of each node has two actions; ACTIVE or 
ASLEEP. At the beginning of the algorithm, ACTIVE and 
ASLEEP actions have the same probability equal to 0.5. 

At the beginning of the algorithm, each node locally 
determines the regions it can cover. Then each node 
broadcasts an advertisement packet in its neighborhood 
containing its ID, position and cells it can cover. The node 
then listens to receive advertisement packets from its 
neighbors.  

Network operation is divided into rounds. Each round 
begins with a learning phase, followed by a monitoring 
phase. During the learning phase, learning automaton of 
each node i randomly selects one of its actions (ACTIVE 
or ASLEEP). Node i then broadcasts an ACTION packet 
which contains the selected action in its neighborhood. 
Node i then wait for certain duration to receive the 
ACTION packets of its neighbors. When node i receives 
all ACTION packets of its neighbors, it operates as 
follows: 

If the selected action of LAi was ACTIVE then: 
1. If all of the regions under the coverage of the node 

i are covered by those neighbors whose selected 
actions are ACTIVE then node i penalizes its 
learning automaton using (2). 

2. Otherwise, node i rewards its learning automaton 
using (1). 

If the selected action of LAi was ASLEEP then: 
1. If all of the regions under the coverage of the node 

i are covered by those neighbors whose selected 
actions are ACTIVE then node i rewards its 
learning automaton using (1). 

2. Otherwise, node i penalizes its learning automaton 
using (2).   



Each node i separately stops its learning phase if one of 
the following conditions occurred:  

[1] Action probability of one of the actions of LAi 
exceeds a specified threshold 

[2] Number of action selections by LAi exceeds 
MaxActionSelection.   

In the monitoring phase learning automata of each 
node selects its best actions and nodes for which the 
probability of selecting ASLEEP action was more than 0.5 
switches to ASLEEP state. Rest of the nodes will be active 
and monitor the environment for the whole duration of the 
monitoring phase. In the proposed method, monitoring 
phase lasts for 100 seconds. The next round will be started 
when the current monitoring phase is over.  

VI. EXPERIMENTAL RESULTS 
 To evaluate the performance of the proposed method 

several experiments have been conducted and the 
proposed method is compared with methods given in [15, 
18]. We compare EEMLA to a LUC-I and LUC-P [18] 
and a distributed approach [15] that assume complete 
knowledge of node locations. The distributed approach in 
[15] uses a geometric test assuming that relative node 
locations are known. 

For communication energy estimation, we use a first 
order radio model given in [7]. In this model, energy 
required for running the transmitter or receiver circuitry is 

nJ/bit 50 elecE = and the transmitter amplifier 

requires 2pJ/bit/m 100ampE = . Energy required to transmit 

a data packet of size l bits from node i to node j is given 
by ij

2damplEeleclETij +=  , where ij d is the distance 
between node i and node j. Energy required to receive a l 
bit packet for any node j is given by eleclEiR = . Also for 
sleep and idle modes energy consumptions, we use the 
specifications of MEDUSA II sensor node given in [12]; 
energy consumed during the sleep and idle modes would 
be equal to 0.02 mW and 22 mW respectively. Energy 
required to switch a node from sleep to active mode is 
assumed to be negligible. 

We assume that n nodes are randomly scattered 
throughout a 50 x 50 meters field (n = 1000, unless 
otherwise specified). We assume that MaxActionSelection 
in learning phase is equal to 75. The initial energy of each 
node is selected uniformly at random from the range [0, 
1]. The comparison will be done based on the following 
criteria: (1) size of the active set VA and (2) coverage 
time (network lifetime). Results of the experiments are 
averaged over 10 runs on different random topologies. 
Coverage time is defined as the network lifetime. 

A. Experiment 1 

 This experiment considers the first comparison 
criterion; size of the active set. Number of nodes in this 
experiment is equal to 1000 and vary Rs. Figure 4 depicts 

the size of VA as a function of the sensing range. As 
expected, VA drops for all the compared protocols as Rs 
increases. VA of EEMLA always has good results 
compared to available algorithms. 
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Figure 3.    Size of VA (n= 1000) 

This experiment is repeated for different number of 
nodes. We assess the size of the active set(VA) for the 
case that nodes have same sensing range and vary number 
of deployed nodes. We fix Rs at six meters and we assume 
that each side of cells has 2.7 meter length. Figure 4 
shows the size of VA by each algorithm. It can be seen 
from this figure that size of VA in the proposed method is 
smaller than methods given in [15] and [18] respectively. 
This is because in our approach, learning automaton in 
each node helps the node to find the redundant nodes in 
its sensing range.  
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Figure 4.   Size of VA with Rs=6 meters 

B. Experiment 2  
This experiment considers the second comparison 

criterion; coverage time. Here not only the coverage 
quality of the proposed method at the end of the learning 
phase is considered, but also the coverage quality during 
the monitoring phase is taken into account. For this 
experiment we consider a simple operational scenario in 
which the energy consumed by a node's radio is computed 
both in ACTIVE and ASLEEP states. We deduct a fixed 
amount of energy from the node's battery according to its 
state. Every node starts with a full battery of 1 Joule. We 



take Rs = 6 meters and we assume that each side of cells 
has 2.7 meter length. Figure 5 shows the fraction of the 
field that is covered by active nodes when n = 500. If 
none of the nodes is allowed to sleep, the network 
becomes completely uncovered after 100 rounds. The 
figure shows that our algorithm has superior result in 
comparison to the other methods. This is due to the fact 
that in our approach, the chance of a node having more 
regions under the coverage to become an ACTIVE node is 
higher than a node having fewer regions under the 
coverage. 
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Figure 5.  Coverage time in a scenario with n=500 and Rs=6 meters 

VII. CONCLUSION 
In this paper we proposed a novel method based on 

learning automata for area coverage in wireless sensor 
networks. In this method each node in the network is 
equipped with a learning automaton. The learning 
automaton has two actions. The learning automaton for 
each node helps the node to find the redundant nodes in 
its sensing range. It was shown through simulations that 
the proposed method outperforms the existing methods in 
terms of network's lifetime. 
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