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Abstract 
 

Knowledge-based natural language processing sys-

tems learn by reading, i.e., they process texts to extract 

knowledge.  The performance of these systems cru-

cially depends on knowledge about the domain of lan-

guage itself, such as lexicons and ontologies to ground 

the semantics of the texts.  In this paper we describe 

the architecture of the GIBRALTAR system, which is 

based on the OntoSem semantic analyzer, which learns 

by reading by learning to read.  That is, while process-

ing texts GIBRALTAR extracts both knowledge about 

the topics of the texts and knowledge about language 

(e.g., new ontological concepts and semantic mappings 

from previously unknown words to ontological con-

cepts) that enables improved text processing.  We pre-

sent the results of initial experiments with GIBRALTAR 

and directions for future research. 

 

1. Introduction 
 

This paper addresses a problem crucial for the suc-

cess of semantic computing – automating acquisition 

of knowledge for knowledge-based systems. We are 

working on extracting knowledge from natural lan-

guage texts. Our approach is to use our current capa-

bilities for semantic analysis of texts to extract domain 

knowledge from the texts (learning by reading) and to 

feed a machine learning system to expand the knowl-

edge resources (e.g., lexicon and ontologies) used to 

semantically analyze the texts (learning to read).  The 

result is an ongoing spiral in which processing texts 

yields both domain knowledge and improved text 

processing. 

At a somewhat iner level of detail, our GIBRAL-

TAR system starts with the capabilities of semantic 

text analysis developed in the OntoSem system, an 

implementation of the theory of ontological semantics 

[1]. These capabilities are used by a learning system to 

generate, off of the meaning representations of large 

samples of text mined on the Web, knowledge struc-

tures describing the meanings of words and phrases 

that are not yet included in the knowledge resources of 

the semantic analyzer. At the next step, the newly 

learned knowledge structures (with or without a human 

validation step) are added to the semantic analyzer’s 

knowledge resources, and the entire process is re-

peated. As a result of continuous operation of the sys-

tem, the size of the knowledge base will grow, which 

will enhance the quality of the results of semantic 

analysis, which, in turn, will enhance the quality of the 

results of the learning step, and so on. In short, we are 

dealing with ongoing mutual bootstrapping of learning 

and text understanding.  

Ontology learning as a field concerns itself at this 

time with learning terms, (multilingual) synonyms, 

concepts, taxonomies (by far the most popular topic), 

relations and rules and axioms [2]. Different combina-

tions of linguistic (knowledge-based) and statistical 

methods are typically used, but mostly the latter. Work 

on extracting specific relations using largely statistical 

means has been reported – [3] for meronymy, [4] for 

the qualia of the generative lexicon approach [5], and 

causal relations [6], among others.  OntoSem, however, 

addresses the task of extracting knowledge about a 

large set of such relations using encoded knowledge as 

heuristics. Thus, our goals are closer, for example, to 

work reported in [3] that uses essentially statistical 

methods for estimating selectional restrictions. Sources 

of knowledge acquisition include machine-readable 

dictionaries (e.g., [7]), thesauri (e.g., [8]), as well as 

text (e.g., [9], [10], [11]).  

Our approach relies on a dynamically generated 

corpus of knowledge structures – text meaning repre-

sentations, or TMRs – generated by OntoSem (see Sec-

tion 2), which relies on deep linguistic analysis 

strengthened by statistical algorithms operating over an 

ontology and the nascent TMRs. At present, the quality 

of automatically generated TMRs is not optimal. A 

long-term goal of our work is to improve the quality of 

TMRs through learning new ontological and lexical 

knowledge using the current state of OntoSem, with or 

without using human validators/editors to “goldenize” 

system-produced TMRs.  



In this paper, we present a) a brief description of the 

OntoSem semantic analyzer; b) the architecture of the 

GIBRALTAR system; c) our initial learning-by-

reading experimentation and its results; and d) direc-

tions of future research and experimentation.  

 

2. OntoSem 
 

OntoSem is a text-processing environment that takes as 

input unrestricted raw text and carries out preprocess-

ing, morphological analysis, syntactic analysis, and 

semantic analysis, with the results of semantic analysis 

represented as formal text-meaning representations 

(TMRs) that can then be used as the basis for many 

applications. TMRs have been used as the substrate for 

question-answering (e.g., [12]), machine translation 

(e.g., [13]) and knowledge extraction, and were also 

used as the basis for reasoning in the question-

answering system AQUA, where they supplied knowl-

edge to showcase temporal reasoning capabilities of 

the JTP object-oriented reasoning system [14]. Text 

analysis relies on the following static knowledge re-

sources:  

• The OntoSem language-independent ontology, 

which currently contains around 8,500 concepts, 

each of which is described by an average of 16 

properties. The ontology is populated by concepts 

that we expect to be relevant cross-linguistically. 

The experiment reported in this paper was run on a 

subset of the ontology containing about 6,000 con-

cepts. 

• An OntoSem lexicon whose entries contain syn-

tactic and semantic information (linked through 

variables) as well as calls for procedural semantic 

routines when necessary. The current English lexi-

con contains approximately 30,000 senses, includ-

ing most closed-class items and many of the most 

frequent and polysemous verbs, as selected 

through corpus analysis. The base lexicon is ex-

panded at runtime using an inventory of lexical 

(e.g., derivational-morphological) rules. 

• An onomasticon, or lexicon of proper names, 

which contains approximately 350,000 entries.  

• A fact repository, which contains “remembered 

instances” of ontological concepts. The fact re-

pository is not used for the results reported in this 

paper but will provide valuable semantically-

annotated context information for future experi-

ments. 

• The OntoSem syntactic-semantic analyzer, which 

performs preprocessing (tokenization, named-

entity and acronym recognition, etc.), morphologi-

cal, syntactic and semantic analysis, and the crea-

tion of TMRs.  

• The TMR language, which is the metalanguage 

for representing text meaning (a converter was de-

veloped between this custom language and OWL, 

see [15]). 

OntoSem knowledge resources have been developed 

by trained acquirers using a broad variety of effi-

ciency-enhancing tools – graphical editors, enhanced 

search facilities, capabilities of automatically acquiring 

knowledge for classes of entities on the basis of manu-

ally acquired knowledge for a single representative of 

the class, etc. A high-level view of the architecture of 

the OntoSem analyzer is given in Figure 1. 

 

 
Figure 1. The Architecture of OntoSem. 

 

3. The Experiment 
 

Our research aims at automatic enhancement of both 

the ontology and the ontological-semantic lexicon. One 

goal is to mine the Web to learn the meanings of words 

unknown to OntoSem. Another goal is to mine the 

Web to provide empirical verification for the values of 

the various ontological properties that were acquired 

by human knowledge engineers. We make a simplify-

ing assumption that the meaning of a word unknown 

to the system will be expressed as a univocal mapping 

to an ontological concept. This decision does not con-

strain the results, though it influences the interrelation-

ship between the ontology and the lexicons in Onto-

Sem – under the current assumption, the meaning of a 

word, as recorded in the sem-struc zone of its lexicon 

entry, will be simply a pointer to an ontological con-

cept. This univocal mapping is just one of several types 

of lexical meaning specification in OntoSem (see [1], 

Chapter 8 for details).  

    In order to learn an ontological concept by mining 

the Web to establish the meaning of a(n unknown) 

word, one must a) determine a set of ontological prop-



erties relevant to the newly acquired concept; b) de-

termine the ranges of values of these properties; and c) 

find an appropriate place in the ontological hierarchy 

to add the new concept. Unknown words can be 

polysemous, in which case it would also be necessary 

to d) determine the appropriate number of senses for 

the unknown word and create a new ontological con-

cept for each of them. Determining the number of 

senses is a difficult task in itself (practically no two 

dictionaries have the same number of senses for a 

word). Note that whatever process is used for deter-

mining the number of senses for an unknown word can 

also be applied to words already in the lexicon, as it is 

quite possible that in the existing lexicon there are 

words with missing senses. 

     For example, if the word “elephant” appears in a 

text and is not in the lexicon, we must a) determine that 

elephants have properties SIZE, COLOR, and WEIGHT, 

but not other properties in the ontology such as OCCU-

PATION or SALARY; b) determine that adult elephants 

weight between 3,500 and 7000 kg (and find similar 

expectations for values that fill the COLOR and SIZE 

slots); c) determine if a concept with similar properties 

and values exists in the ontology, creating a new one 

otherwise; and, finally, create a lexicon entry for “ele-

phant” and link it to the ELEPHANT concept. 

    In view of the above, the experimental method that 

we use is as follows. We start with a list of words 

whose meanings will be learned by the system. This is 

done by using the OntoSem ontology as the basis for 

building search queries. Each ontological property of 

the attribute (unary) type is associated with a list of its 

possible English realizations (obtained from the sys-

tem’s lexicon). A search query is created by combining 

this list with either a word (when learning new con-

cepts and lexicon entries) or a list of words realizing in 

English the meaning of a concept (when using this 

method for empirical verification of the existing ontol-

ogy and lexicon). For example, for the concept ELE-

PHANT and the attribute WEIGHT, the following query is 

produced: (elephant) AND (weigh OR mass OR heavy 

OR heaviness). Note that since Google matches partial 

strings on queries, the search string weigh will match 

with many strings such as: weigh, weight, weighing, 

weighs, weighed, etc. 

     For the initial experiment we selected a mixture of 

words for which there was no corresponding ontologi-

cal concept in the current ontology and words for 

which an appropriate concept in the ontology existed 

but were removed for the duration of the experiment. 

Thus, for evaluation purposes, we had a “gold stan-

dard” in the latter case.  

   Next, we automatically acquire from the Web a cor-

pus of sentences containing the target word and use 

OntoSem to generate TMRs for them. OntoSem is en-

gineered to degrade gracefully in the face of unex-

pected input, so it is capable of semantically analyzing 

sentences with a number of unknown words by a) as-

suming that the unknown word’s meaning corresponds 

directly to a non-existent ontological concept and b) 

unidirectionally applying relevant constraints listed in 

the ontological interpretations of the meanings of those 

words in input that are connected with the target word 

syntactically, thus hypothesizing the constraints on the 

meaning of the latter.  

   As a result of this stage, the system produces a set of 

pairs of property instances and their values. In many 

cases OntoSem is not capable of carrying out unidirec-

tional selectional restriction matching, so that not all 

the sentences containing the candidate word that are 

found in the corpus yield useful property-value pairs. 

Next, the result set is filtered to eliminate those prop-

erty-value pairs on the empirically generated list whose 

value sets are fully covered by the value set of another 

property-value pair for the same property. In other 

words, when there exist two instances of the same 

property, say, AGENT, with different values, say OB-

JECT, and PHYSICAL-OBJECT, the property instance with 

value OBJECT will be filtered out, because being a 

PHYSICAL-OBJECT presupposes being an OBJECT (in 

other words, PHYSICAL-OBJECT is an ontological de-

scendant of OBJECT). Filters based on other heuristics 

are possible. The above process concentrates on prop-

erties with arity greater than 1. Unary properties, called 

attributes in OntoSem (e.g., MASS, COLOR, ADDRESS, as 

opposed to relations, such as AGENT or CAUSED-BY 

whose fillers are concepts, not literals), are currently 

mined from the web using the static knowledge re-

sources of OntoSem (for query expansion) but not the 

analyzer itself. In other words, this component of the 

experiment is “knowledge-lean.” Attribute values 

learned are appended to the property-value set for the 

target word. Our initial work on establishing the num-

ber of word senses for the target word as well as the 

methodology of combining the results of all experi-

mentation are described in [17]. 

    Once the cardinality of the property-value set for the 

target word reaches an empirically set threshold, this 

set is declared to be a candidate ontological concept. 

To find the appropriate place of the candidate concept 

in the ontological hierarchy, we compare it to concepts 

already existing in the OntoSem ontology. In our initial 

experiment [18], we used the OntoSearch algorithm 

[19] for this purpose. In subsequent experimentation 

we used a concept similarity metric of our own [20].  

 

4. Evaluation 
    To evaluate the quality of a newly learned candidate 

ontological concept, we automatically produce a 



ranked list of concepts that can serve 

as the candidate’s parents or siblings 

in the ontological network and then 

compare elements of this list to the 

concept (“target concept”) deter-

mined by a human judge to be the 

appropriate parent or sibling of the 

candidate.  Bernstein [53] discusses 

two distinct methods of calculating 

similarity of concepts in an ontol-

ogy: edge-based, and node-based 

(we will be using a combination of 

the two). Edge-based comparison 

has been implemented, for example, 

in the OntoSearch algorithm [19].  

OntoSearch calculates a distance 

value between two concepts in a 

given ontology by traversing prop-

erty paths, applying a weighted pen-

alty to each crossed path.  

    Note, however, that in our case 

OntoSearch cannot be used initially 

as a basis of evaluation, as the can-

didate concept has – as yet – no 

place in the ontology, thus failing to 

meet one of the basic requirements 

for OntoSearch’s usage.  In order to 

identify a place in the ontology for 

the candidate, we carry out a pair-

wise comparison of all values de-

fined in each property of the candi-

date, and all property-value pairs in each concept in the 

ontology; in other words we must do a node-based 

comparison.  

    Once the ranked list of potential attachment-point 

concepts for a candidate concept is produced, we can 

use OntoSearch to calculate the ontological distance 

between each member of this list and the target concept 

(see Table 6, column G). This distance is used as the 

measure of the quality of our method of ontological 

concept learning (and, consequently for our approach, 

learning meanings of words unknown to the system).  

    The results of a set of 12 runs of this experiment are 

presented in Table 1.  For each of 12 words, the table 

shows the target concept to which the word should be 

mapped, the number of clauses extracted than contain 

the word, the number of property/value pairs obtained 

by analyzing the clauses, and three different similarity 

values obtained from OntoSearch.  The first of these is 

the similarity between the newly formed concept and 

the target; the second is the similarity between the 

newly formed concept and the existing ontological 

concept that is most similar to it as determined by On-

toSearch; the third is the similarity between the target 

concept and the existing concept deemed most similar 

to the newly formed concept.  In almost all cases, this 

third similarity value is quite high, and the first and 

second are quite similar, meaning that the system is 

doing a good job of finding the right place in the on-

tology for the new concept. 

   A different form of evaluation, one that we will pur-

sue in the future, is to measure the coverage and accu-

racy of the semantic analyzer on texts before and after 

acquiring new words and the concepts that ground their 

semantics.  Given these new words, the analyzer will 

have to fall back on heuristics less frequently and 

should be able to do a better job of both syntactic and 

semantic analysis.  If the new words and concepts are 

useful, this will result in better output at the level of 

TMRs, which can be assessed by humans.  If, on the 

other hand, the new words and concepts are harmful, 

the number and quality of TMRs will degrade over 

time. 

   

5. Our Place on the NLP and ML Maps 

Our approach to knowledge acquisition is based on two 

foundations – deep semantic analysis (interpretation) 

of the meaning of texts and automating the process of 

Table 1: Results of Experiment on Twelve Unknown Concepts 
Word A B C D E F G 

Brontosaurus DINOSAUR 302 2150 0.373 0.492 9007 0.715 

Cherimoya FRUIT-

FOODSTUFF 

148 895 0.335 0.453 11546 0.637 

Deport BANISH 104

3 

4994 0.409 0.485 12503 0.679 

Depose DEPOSE 54 256 0.479 0.600 11079 0.999 

(ALL) 

Diplodocus DINOSAUR 469 2905 0.500 0.550 2290 0.546 

Obey OBEY 60 397 0.384 0.460 5370 0.518 

Pledge PROMISE 132

3 

5934 0.335 0.436 14097 0.760 

Spartan MILITARY-

ROLE 

426 2201 0.481 0.492 1409 0.754 

Stegosaurus DINOSAUR 415 3306 0.499 0.538 625 0.759 

Syrup PLANT-

DERIVED-

FOODSTUFF 

322 1377 0.423 0.465 2315 0.760 

Triceratops DINOSAUR 84 796 0.482 0.488 588 0.849 

Wigger SOCIAL-

ROLE 

57 233 0.484 0.489 702 0.849 

A: The target “correct” concept (existing in the ontology). 

B: The number of clauses extracted containing the search word. 

C: The total number of property-value pairs generated. 

D: The similarity between the candidate and target concept. 

E: The similarity between the candidate and the concept(s) the system 

determines as most similar to it. 

F: The rank of the target (out of approximately 17,000 ontological con-

cepts) in the automatically generated results 

G: The distance between the target and the concept ranked as most simi-

lar to the candidate by the system, using relations only (using Onto-

Search comparison). 



learning or acquiring this knowledge. What has been 

the attitude of the research community to meaning? 

The only commonly held opinion is that describing and 

manipulating meaning is very difficult. Different con-

clusions have been derived from this premise. Some 

people have decided to pursue NLP without meaning, 

some others have concentrated on non-NLP facets of 

intelligent systems (often assuming that NLP was al-

ready somehow available, e.g., [21] Lenat’s (1995) 

Cyc project), and still others have studied disjoint 

meaning phenomena without attempting any compre-

hensive treatment (e.g., formal computational semanti-

cists commonly study “glue” elements like quantifiers 

and conjunctions but do not pursue the rest of the lexi-

con).  

    In the spirit of avoiding meaning on the grounds that 

it is difficult (and therefore doing it will impede pro-

gress toward immediate results), NLP over the past 15 

years or so has turned toward non-representational 

methods that rely on more or less sophisticated meth-

ods for comparing text strings with the goal of estab-

lishing the distance between them in some search space 

(e.g., latent semantic indexing, as in [22] Deerwester et 

al.1990). Another recent trend is to concentrate on non-

NLP issues in the hope that they will benefit NLP in 

some way in the future: e.g., almost all work on the 

Semantic Web concerns representation languages, 

communication protocols, issues of trust, etc., com-

pletely abstracting away from the issue of the actual 

semantics of language; but without high-quality NLP, 

the Semantic Web will remain just a futuristic vision. 

A similar need for basic semantic analysis is evident in 

work on theorem-provers, which require a formal se-

mantic representation to work on; however, the auto-

mated generation of that representation has not been 

pursued.  

    It is understandable that people have turned toward 

methods that can demonstrate short-term measurable 

improvement. A side effect of this shift of emphasis 

has been the interpretation of even low-quality results 

as useful – an influential paper in the field ([23] 

Church and Hovy 1993) was tellingly entitled “Good 

Applications for Crummy Machine Translation.” 

Needless to say, the long-term goal of attaining com-

puter understanding was, for all practical purposes, 

completely abandoned. Still, while this asemantic ap-

proach has acquitted itself well in cognitively simple 

fields (e.g., computer chess), ultimately, it will prove 

insufficient for high-end NLP.  

    Much of the lexical semantics research is either ba-

sically oriented at people (WordNet, e.g., [24] Fell-

baum 1998), very narrow in its coverage (FrameNet, 

e.g., [25] Fillmore et al. 2001), very shallow in its se-

mantic treatment (e.g., Beth Levin’s [26] (1993) se-

mantic classification of verbs based on syntactic be-

havior) or interested in generalizations rather than de-

scriptions.  

   In the area of treating unexpected lexical input, a 

number of programs have attempted semantic analysis 

using scripts. Some of the first were FOUL-UP ([27] 

Granger 1977), which analyzed news stories, and 

NOMAD ([28] Granger 1983) which analyzed 

transmissions about ship and submarine activities. The 

latter produced better hypotheses regarding the 

meaning of unknown words because the narrow 

domain permitted highly specialized scripts to be 

written and leveraged. An enhancement to the strictly 

script-based approach was developed by Carbonell 

([29]) (1981) in his POLITICS system, which analyzed 

texts about U.S. foreign policy using a combination of 

script-based and goal-based expectations. Most such 

research, however, grinded to a halt because it was 

deemed impossible scale up the complex knowledge 

structures. The TRUMP system, developed at GE  [30] 

(Jacobs 1992) learns new words using productive 

derivational morphological processes and using a 

process of hypothesis and refinement to determine 

word meaning, the latter relying on finding multiple 

instances of the given word in a corpus and combining 

evidence about its co-occurrences. Like Jacobs, we 

plan to incorporate both morphological heuristics and 

hypothesis-refinement methods into our work. Other 

approaches to processing unknown words are either not 

implemented or apply to small domains (e.g., [31], [32] 

Kilbury et al. 1992; Barg and Walther 1998). A final 

aspect of research in unknown word processing is 

bypassing the need for onomasticons and gazetteers to 

understand proper nouns (e.g., [33] Bikel et al. 1999, 

[34] Mikheev et al. 1999, [35] Fleischman and Hovy 

2002), which is a facility already incorporated into 

OntoSem. Research into automating the learning of subcate-

gorization frames (e.g., [36] Carroll et al. 1998, [37] 

Brent 1991, [38] Manning 1993) will not directly in-

form our work since it typically uses few if any knowl-

edge sources and is not applicable in a broad applica-

tion domain. However, some related research that will 

be applicable to this project includes the findings that 

words occurring in certain types of syntactic configura-

tions (conjunction structures, lists, appositives, and 

noun compounds) tend to belong to the same semantic 

class, and that statistical use of this information im-

proves automated semantic class assignment [39-41] 

(Riloff and Shepherd 1997, 1999, Roark and Charniak 

1998).  

The automated learning of semantic roles incorpo-

rates available knowledge sources to varying extents. 

For example, McCarthy [42] (1997) develops stochas-

tic methods for automatically positing semantic con-

straints, paying particular attention to the prerequisite 

of semantic disambiguation, a hurdle for many similar 



systems. Stevenson and Merlo [43] (2000) have im-

plemented a system that automatically categorizes 

verbs into semantic classes, but it requires a tagged 

corpus, a resource on which we will not rely. Gildea 

and Jurafsky [44] (2002) have designed a system to 

automatically learn the semantic roles of unknown 

predicates but it makes two simplifying assumptions 

that our work will not: first, the system is provided 

with the correct syntactic frame for the verb and, sec-

ond, the inventory of roles is far more limited than the 

ones provided in our ontology. While these and other 

such experiments have shown some promise, they 

largely circumvent the deep semantic analysis that we 

seek to pursue.  

From an ML perspective, the most novel aspect of 

the proposed work is that the learner produces knowl-

edge over time (entries in the lexicon and ontology) 

that significantly impacts what it learns in the future 

and its performance on the core task of NLU. Most ML 

systems produce outputs that in no way affect the op-

eration of the underlying learning algorithm. Though 

lifelong learning has been a goal of the ML community 

for quite some time, few lifelong learning systems ex-

ist, and those that do tend do focus on transfer of 

learned knowledge across multiple, related tasks [45, 

46]. After learning to perform one task well, the learner 

moves on to the second task, using what was learned in 

the first as, for example, a starting point.  In contrast, 

our system will use learning to continuously improve 

its performance in a single task, namely, understanding 

text. 

While computational learning by reading has been 

posited as a goal in the field (as in the Cyc project 

[21]), no real progress has been made because this 

process presupposes the ability to robustly extract 

meaning from texts, which no extant systems apart 

from OntoSem can do. Our vision of learning by read-

ing involves dynamically and opportunistically identi-

fying examples that are relevant to extending or refin-

ing our diverse knowledge base. Compare this with 

most supervised ML systems, which are given a fixed 

set of training examples [47], and active learning sys-

tems, which ask for specific examples to focus learning 

[48]. 

     ML techniques have long been applied to develop-

ing or tuning information extraction (IE) systems, and 

more recent research has focused on learning to extract 

information from web pages [49-51]. Learning in this 

context invariably requires a fixed ontology to be 

known a priori, utilizes supervised learning techniques 

that rely on hand-labeled examples, and the output of 

the learner does not influence its future behavior. Co-

training, which is using one learner to label examples 

for another, has been applied in this domain [51]; how-

ever, it does not produce knowledge that influences the 

learning capabilities of the other learner, it simply pro-

vides additional training data. 

    Ontologies are central to most attempts to express 

the semantics of text in a machine-tractable way. Fu-

eled by interest in the Semantic Web, significant effort 

has gone into building methods for learning ontologies 

from free text. For example, the OntoWeb Consortium 

produced a survey of approaches to learning ontologies 

that contained several dozen methods [52].  Most of 

them are based primarily on statistical techniques, such 

as Latent Semantic Analysis (LSA) [22], that attempt 

to identify concepts (terms) in the text that are seman-

tically related to concepts in an existing ontology. 

Other methods perform unsupervised clustering of 

terms to produce an ontology from scratch. The result-

ing ontologies have minimal internal structure. None of 

these techniques actively identify slot fillers for induc-

tive learning to refine the ontology. 

 

6. Discussion and Future Work 
 

We will continue to seek ways of including knowl-

edge-lean (and, therefore, less labor-intensive) methods 

in the overall learning environment. However, the 

quality of the results of Experiments A and B was kept 

relatively low in a large part because we used knowl-

edge-lean methods. In fact, the entire field of NLP has 

been favoring knowledge-lean methods for over a dec-

ade. This underscores the preference for coverage over 

depth and quality of description of individual language 

phenomena. Still, in a number of applications (e.g., 

machine translation) and tasks (e.g., part of speech 

tagging) sophisticated clustering methods used with 

large corpora yield acceptable results. The task we are 

pursuing does not seem to us to lend itself to solutions 

based on comparison.  

Indeed, our goal is not to determine that the meaning of 

lexical unit A is closer to that of B than to that of C. It 

is to specify that meaning using an ontological meta-

language of properties and thus facilitate not only word 

sense disambiguation but also, using further ontologi-

cal knowledge, semantic dependency determination, 

high-quality reference resolution and in general solu-

tions to all meaning-dependent problems in NLP. At 

the same time, we will experiment with other methods 

of statistical data processing after the data is mined 

from the web, with the immediate goal of reducing the 

quality gap between concepts and lexicon entries gen-

erated by human acquirers and automatically learned 

ones. In parallel, however, we will be looking for real-

istic knowledge-rich solutions to specific problems 

(e.g., we plan to incorporate our existing module proc-

essing diathesis transformations in English into Ex-



periment B; had this been done already, only one sense 

of deport would be suggested by the system).  

In parallel to work on unsupervised learning, we also 

plan to enhance our existing knowledge acquisition 

environment DEKADE [16], to include the option of 

presenting the results of automatic learning to human 

acquirers. This way we expect our work to contribute 

to the efficiency of human knowledge acquisition at an 

early stage. 
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