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Abstract 

 
One of the ultimate goals of natural language 

processing (NLP) systems is understanding the 
meaning of what is being transmitted, irrespective of 
the medium (e.g., written versus spoken) or the form 
(e.g., static documents versus dynamic dialogues).  
Although much work has been done in traditional 
language domains such as speech and static written 
text, little has yet been done in the newer 
communication domains enabled by the Internet, e.g., 
online chat and instant messaging.  This is in part due 
to the fact that there are no annotated chat corpora 
available to the broader research community.  The 
purpose of this research is to build a chat corpus, 
tagged with lexical (token part-of-speech labels), 
syntactic (post parse tree), and discourse (post 
classification) information.  Such a corpus can then be 
used to develop more complex, statistical-based NLP 
applications that perform tasks such as author 
profiling, entity identification, and social network 
analysis. 
 
 
1. Introduction 
 

In 2006, Jane Lin [1] collected 475,000+ posts 
made by 3200+ users from five different age-oriented 
chat rooms at an Internet chat site.  The chat rooms 
were not limited to a specific topic, i.e. were open to 
discussion of any topic.  Lin’s goal was to 
automatically determine the age and gender of the 
poster based on their chat “style”.  The features she 
captured were surface details of the post, namely, 
average number of words per post, vocabulary breadth, 
use of emoticons, and punctuation usage.  Lin relied on 
the user’s profile information to establish the “truth” of 
each user’s age and gender.   

The data Lin captured has enormous potential, and 
as such has formed the foundation of an ongoing 
research effort at the Naval Postgraduate School’s 

Autonomous Systems Laboratory.  Specifically, the 
goals related to this effort include the following: 1) 
preserve the online chat dialog in an XML-based 
corpus to aid in future accessibility to the data; 2) 
annotate the chat corpus with lexical, syntactic, and 
discourse information; and 3) use this annotated corpus 
to develop, train and test higher-level NLP 
applications.   

There are numerous NLP applications that could 
benefit from an annotated chat corpus.  For example, 
law enforcement and intelligence analysts could use 
author profiling and entity identification applications 
to help detect predatory or terrorist activities on the 
Internet.  On the other side of the spectrum, legitimate 
chat use could be enhanced by applications that 
automatically identify and group the multiple threads 
of conversation that often occur within chat.   
 
2. Building the Corpus 
 

The Python programming language was the primary 
tool we used to build the corpus.  Within Python, we 
used Lundh’s ElementTree module [2] to create, edit, 
store, and retrieve the XML documents that comprised 
the corpus.  We also used Schemenauer’s back-
propagation neural network Python class [3] for our 
automated post classification effort.  In addition, Loper 
and Bird’s Natural Language Toolkit Lite (NLTK-
Lite) Python modules [4] formed the basis for our 
automated lexical analysis.  Finally, we used an XML 
parser for subsequent cor pus editing and validation. 

One of the challenging aspects we faced in 
developing the corpus was sanitizing it to protect user 
privacy.  If the corpus is to be made available to the 
larger research community, th is must be accomplished.  
It was straightforward to replace the user’s screen 
name in both the session logs as well as the user 
profile with a mask, for example, “killerBlonde51” 
with “10-19-30sUser112.”  However, more often than 
not, users were referred to by variations of their screen 
names in other users’ posts.  For example, other users 
would refer to “killerBlonde 51” as “killer”, “Blondie”, 
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“kb51”, etc.  Although regular expressions can assist 
in the masking task, ultimately 100% masking requires 
hand verifying that the appropriate masks have been 
applied in every post.  To date, complete masking has 
been accomplished on 3,507 (~700 posts/chat room) of 
the 475,000+ posts.   

It should be noted that although masking is essential 
to ensure privacy, it results in a loss of information.  
For example, the way to which users are referred often 
conveys additional information, for example, 
familiarity and emotion; this information is lost in the 
masking process.  In addition, it was observed that a 
user’s screen name would become a topic of 
conversation independent from the original user; again, 
the origin of this conversation thread is lost in the 
masking process. 

 
3. Discourse Analysis:  Post Classification 
 

A great deal of research has been performed 
regarding discourse analysis of spoken language.  
Stolcke, et al [5] developed over 40 tags associated 
with different dialog acts used in conversational 
speech.  Certainly, a fundamental reason why online 
chat is similar to spoken conversational speech is that a 
conversation is taking place.  In addition, fillers like 
“you know”, “really” as well as interjections like “hey” 
and “awww” occur both in speech and online chat.  
However, with chat, multiple topics are being 
discussed by multiple people simultaneously, and 
people don’t always “wait their turn” when posting.  
Finally, the stops and restarts associated with spoken 
dialog do not seem to occur in chat.   

Obviously, chat is also very similar to written text.  
However, chat participants often spell words 
phonetically, e.g. “dontcha” for “don’t you”.  In 
addition, they make extensive use of emoticons and 
abbreviations, e.g. “:-)” and “LOL” (Laughing Out 
Loud).  Finally, due to the nature of the medium, 
words are frequently misspelled.   

Recognizing these distinctions, Wu, et al [6], used 
subsets of previous dialog act tags along with chat-
specific tags to automatically classify 3,129 chat posts 
over Internet Relay Chat channels into 1 of 15 
categories using Transformation-Based Error Driven 
learning. 

As an initial annotation attempt for our online chat 
corpus, we classified the 3,507 user-sanitized posts 
mentioned earlier using Wu’s 15 post categories, and 
investigated two different machine learning algorithms 
to automatically classify the posts.  Wu’s classification 
categories as well as an example of each taken from 
our corpus are shown below. 

 
Table 1. Post classification examples  

 
Classification Example

Accept yeah it does, they all do

Bye night ya'all.

Clarify i meant to write the word may.....

Continuer and thought I'd share

Emotion lol

Emphasis
Ok I'm gonna put it up ONE MORE 
TIME 10-19-30sUser37

Greet hiya 10-19-40sUser43 hug

No Answer no I had a roomate who did though

Other 0

Reject u r not on meds 

Statement Yay...democrats have taken the house!

System JOIN

Wh-Question
11-08-20sUser70 why do you feel that 
way?

Yes Answer why yes I do 10-19-40sUser24, lol

Yes/No Question cant we all just get along  
 

These examples highlight th e complexity of the task 
at hand.  First, we should note that posts were 
classified into only one of the 15 categories.  At times, 
more than one category might apply.  In addition, the 
“Wh-Question” example does not start with a “wh” 
token, while the “Yes Answ er” does start with a “wh” 
token.  Also, notice that the “Yes/No Question” does 
not include a question mark.  Finally, the “Statement” 
example contains a token that conveys an emotion 
(“yay”).  Taken together, these examples highlight the 
fact that more than just  simple regular expression 
matching is required to cla ssify these posts accurately. 

The initial post classification task was assisted by 
simple regular expression matching, followed by hand 
correction of each post.  Of these posts, various, 
randomly-selected subsets were used for training (3007 
posts total) and testing (500 posts total).  The overall 
frequencies of the post classes in our sanitized corpus 
are shown below.  Note that the highest occurring 
category of posts was “Statement”, with more than 
double the next highest classification category.   
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Table 2. Post classification frequencies  

 

Class Count Percent
Statement 1210 34.50%
System 597 17.02%
Greet 470 13.40%
Emotion 404 11.52%
Wh-Question 187 5.33%
Yes/No Question 183 5.22%
Continuer 122 3.48%
Accept 86 2.45%
Reject 75 2.14%
Bye 55 1.57%
Yes Answer 41 1.17%
No Answer 33 0.94%
Emphasis 17 0.48%
Other 15 0.43%
Clarify 12 0.34%  

 
The machine learning algorithms we used require a 

set of features on which to base their automated 
classification.  The definition of the set of features 
used is shown below, with a brief discussion 
following. 

1. Number of posts ago the poster last posted 
(normalized by max session length). 

2.  Number of posts ago that a post led with a 
yes/no question or included a “?” pattern (normalized 
by max session length). 

3. Number of posts in the future that contain a 
yes or no pattern (normalized by max session length). 

4. Number of posts ago that a post led with a 
greet pattern (normalized by max session length). 

5. Number of posts in the future that led with a 
greet pattern (normalized by max session length). 

6. Number of posts ago that a post led with a 
bye pattern (normalized by max session length). 

7. Number of posts in the future that led with a 
bye pattern (normalized by max session length). 

8. Number of posts ago that a post was a JOIN 
(normalized by max session length). 

9. Number of posts in the future that a post is a 
PART (normalized by max session length). 

10. Total number of users currently logged on 
(normalized by max users in the session). 

11. Total number of tokens in post (normalized 
by max length post in train/test set). 

12. First token in post contains hello or variants 

13. First token in post contains goodbye or 
variants. 

14. First token in post contains wh-question start 
such as who, what, where, etc. 

15. First token in post contains yes/no-question 
start such as is, are, does, etc. 

16. First token in post contains conjunction start 
such as and, but, or, etc. 

17. Number of tokens in the post containing one 
or more “?” (normalized by maximum number of ? 
found in a single post in train/test set). 

18. Number of tokens in the post containing one 
or more “!” (normalized by max number of “!” found a 
single post in train/test set). 

19. Number of tokens in the post containing yes 
or variants (normalized by max number of yes variants 
found in a single post in train/test set). 

20. Number of tokens in the post containing no or 
variants (normalized by max number of no variants 
found in a single post in train/test set). 

21. Number of tokens in the post containing 
emotion variants such as lo l, ;-), etc (normalized by 
max number of emotions found in a single post in 
train/test set). 

22. Number of token(s) in the post in all caps, e.g. 
JOIN (normalized by max number of tokens in caps 
found in a single post in train/test set). 

Features 1-9 of a post are based on the posts 
surrounding it, specifically, the distance to posts with 
particular features, with the rationale that surrounding 
posts should give a hint to the nature of the post itself.  
For example, “Continuer” posts should be more likely 
to follow fairly closely to when the user last posted, 
and “Yes/No Answers” should follow fairly closely to 
posts with yes/no question characteristics.  Feature 10 
(current number of users logged on) was selected 
because it might help normalize the distances 
associated with Features 1 through 9 (with the 
rationale that more users currently logged on might 
increase those distances).  Feature 11 is based on the 
post itself, with the rationale that the number of tokens 
will give a good initial hint at what the post is, e.g., 
longer posts being perhaps “Statements”, and shorter 
posts being perhaps “Emotions” or “Yes/No Answers”.  
Finally, Features 12-22 are also based on the post 
itself, but are looking for specific patterns which 
should give a clue on the nature of the post.  For 
example, “Greet” posts should contain a token like 
“hello”, while “Yes/No Questions” and “Wh-
Questions” might contain “?” as a token. 
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3.1. Post classification learning algorithm #1: 
Back-propagation neural network 
 

The initial machine learning method we 
investigated to classify posts was a back-propagation 
neural network.  Specifically, it employed the 
following sigmoid activation function 

 
( ) ( )arctanf x x=  

 
In addition, it consisted of input nodes, output nodes, 
and a single hidden layer of nodes, as well as learning 
rate and momentum factors.  So, for our model, we had 
22 input nodes (the number of features), 15 output 
nodes (the number of post classes), 14 hidden nodes, a 
learning rate of 0.05, and no momentum.  We did not 
perform a global optimization on the hidden layer, 
learning rate, and momentum parameters.  Instead, we 
varied them around set values and selected the 
configuration that reduced the error the most after 
twenty iterations on each configuration. 

Precision, recall, and f-scores for each of the classes 
for one instance of a training/test set are shown below.  
Note that after training, we  selected the output vector 
with the highest firing rate as the post classification of 
the test data fed into the neural net. 

 
Table 3. Example neural net results 

 
Class Test Freq Prec Recall FScore

Accept 16 0.417 0.313 0.357
Bye 2 0.667 1.000 0.800

Clarify 5 undef 0.000 undef
Continuer 15 undef 0.000 undef

Emotion 64 0.873 0.750 0.807
Emphasis 3 undef 0.000 undef

Greet 66 0.935 0.879 0.906
nAnswer 4 undef 0.000 undef

Other 3 undef 0.000 undef
Reject 12 0.500 0.250 0.333

Statement 164 0.670 0.915 0.773
System 78 0.975 1.000 0.987

whQuestion 32 0.909 0.625 0.741
yAnswer 8 undef 0.000 undef

ynQuestion 28 0.667 0.857 0.750  
 
Performance of this neural net was comparable to 

the results obtained by Wu with Transformation-Based 
Error Driven learning.  As with Wu, the neural net 
does not appear to be able to make a reasonable 
classification unless a class a ppears in greater than 3% 
of the postings.  Most of the misclassifications occur in 
the “Statement” class.  We believe the reason for this is 
the fact that the “Statement” class is the maximum 
likelihood estimate (MLE) for the labeled data set.  In 

other words, given no other information, the most 
likely label for a particular post is the Statement class 
based on the overall frequency of Statements in the 
data set.   In particular, the frequency of Statements is 
twice that of the next highest category. 
 
3.2. Post classification learning algorithm #2: 
Naïve Bayes 
 

In addition to the neural network approach, we 
investigated using the Na ïve Bayes machine-learning 
algorithm to classify posts.  By Bayes Rule 
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But by assuming independence among the variables we 
classify a post according to  
 

( ) ( ) ( ) ( )1 2arg max | | ... |i i i n i iC P f C P f C P f C P C= ⎡ ⎤⎣ ⎦  

 
 As with the neural network, we used the same 22 

features as input to the algorithm.  To estimate the 
actual probability distribution represented by our 
training data, we used “add-one”, or Laplace 
smoothing (see Mitchell’s discussion of the m-estimate 
for a fuller account [7]).  Precision, recall, and f-scores 
for each of the classes for one instance of a 
training/test set using the Naïve Bayes approach are 
shown below.   
 

Table 4. Example Naïve Bayes results 
 

Class Test Freq Prec Recall FScore
Accept 13 0.250 0.154 0.190

Bye 6 0.500 0.167 0.250
Clarify 1 undef 0.000 undef

Continuer 13 0.500 0.077 0.133
Emotion 63 0.846 0.524 0.647

Emphasis 4 undef 0.000 undef
Greet 76 0.849 0.816 0.832

nAnswer 5 undef 0.000 undef
Other 4 undef 0.000 undef

Reject 9 0.000 0.000 undef
Statement 170 0.552 0.871 0.676

System 79 0.987 0.987 0.987
whQuestion 25 0.762 0.640 0.696

yAnswer 7 undef 0.000 undef
ynQuestion 25 0.429 0.120 0.188  

 
As can be seen, Naïve Bayes as implemented 

appears to perform less well than the 22 feature neural 
network model shown earlier.  To formally compare 
the performance between the two learning approaches, 
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we randomly selected 30 train /test sets for each model, 
and calculated the mean and standard deviation of their 
f-scores.  Due to time constraints, we limited the 
number of iterations for the neural network models to 
100 for each of the 30 samples.  We then performed a 
hypothesis test on two populations to see if there is a 
significant difference in th e performance between the 
models.  For 95% confidence, we reject the null 
hypothesis that the means are equal if |z| > 1.96.  The 
results are shown below. 

 
Table 5. Learning algorithm FScore 

comparison  
 

Class Mean Std Dev Mean Std Dev z
Accept undef undef undef undef undef

Bye 0.761 0.140 undef undef undef
Clarify undef undef undef undef undef

Continuer undef undef undef undef undef
Emotion 0.802 0.042 0.615 0.061 13.950

Emphasis undef undef undef undef undef
Greet 0.890 0.022 0.831 0.026 9.612

nAnswer undef undef undef undef undef
Other undef undef undef undef undef

Reject undef undef undef undef undef
Statement 0.786 0.019 0.681 0.024 18.757

System 0.972 0.020 0.976 0.014 0.959
whQuestion 0.791 0.040 0.576 0.078 13.439

yAnswer undef undef undef undef undef
ynQuestion 0.690 0.068 0.360 0.092 15.805

NN Vector Bayes Vector

 
 
4. Lexical Analysis: Part of Speech Tagging 
 

As dialog act classifica tion forms the basis of 
discourse analysis, part-o f-speech (POS) tagging is a 
fundamental form of lexical analysis, and is a critical 
input to higher order NLP tasks such as parsing.  As 
such, we want to build highly accurate POS taggers to 
automatically annotate our online chat corpus.  The 
ultimate accuracy of POS taggers for a particular 
domain depends on two aspects: 1) the algorithm used 
to make the tagging decision; and 2) if statistically-
based, the data used to train the tagger.   

The basic tagging algorithm we implemented 
involved training a bigram tagger, backing off to a 
unigram tagger, backing off to the maximum 
likelihood estimate tag; we’ll subsequently refer to this 
as our bigram backoff tagger.  Working backwards, the 
maximum likelihood estimate tag is the most common 
tag within the training set. 

 

[ ]arg max count( )i tt t=  

 

A unigram tagger assigns the most common POS tag to 
a word based on its occurrence in the training data. 
 

( )arg max |i t i it P t w= ⎡ ⎤⎣ ⎦  

 
Finally, a bigram tagger assigns the most common 
POS tag to a word not only based on the current word, 
but also the previous word as well as the previous 
word’s POS tag. 
 

( )1 1arg max |i t i i i it P t w t w− −= ∧ ∧⎡ ⎤⎣ ⎦  

 
Thus, our tagging approach works as follows:  The 

tagger will first attempt to use bigram information 
from the training set.  If no such bigram information 
exists, it will then back off to unigram information 
from the training set.  If no such unigram information 
exists, it will finally back off to the MLE tag for the 
training set.   

Several POS-tagged corpora in many languages are 
available to NLP researchers.   The corpora we used to 
train various versions of our taggers are contained 
within the Linguistic Data Consortium’s Penn 
Treebank distribution [8].  Th e first corpus, referred to 
as Wall Street Journal (WSJ), contains over one 
million POS-tagged words collected in 1989 from the 
Dow Jones News Service.  The second, referred to as 
Switchboard, was originally collected in 1990 and 
contains about 2,400 transcribed, POS-tagged, two-
sided telephone conversations among 543 speakers 
from all areas of the United States.  Finally, the third, 
referred to as Brown, consists of over one million 
POS-tagged words collected from 15 genres of written 
text originally published in 1961.  All corpora were 
tagged with the Penn Treebank tag set.   

In addition to the aforementioned Penn Treebank 
corpora, 1,391 POS-tagged posts from our chat corpus 
were used to train/test various versions of our taggers.  
The posts (a subset of our 3,507 user-sanitized posts) 
were initially tagged with a bigram/regular expression 
tagger trained on Switchboard and Brown and then 
hand-corrected.  In the end, the 1,391 posts provided a 
total of 6,078 POS-tagged words (tokens).  Although 
the posts were tagged using the Penn Treebank tag set 
and associated tagging guidelines [9], we had to make 
several decisions during the process that were unique 
to the chat domain.   

The first class of decisions regarded the tagging of 
abbreviations such as “LOL” and emoticons such as  
“:-)” frequently encountered in chat.  Since these 
expressions conveyed emotion, they were treated as 
individual tokens and tagged as  interjections (“UH”).   
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The second class involved words that, although 
would be considered misspelled by traditional written 
English standards, were so frequently encountered 
within the chat domain that  they were treated as 
correctly spelled words and tagged according to the 
closest corresponding word class.  As an example, the 
token “wont” (when referring to “won’t”), if treated as 
a misspelling, would be tagged as “^MD^RB”, with 
the “^” referring to a missp elling and “MD” and “RB” 
referring to “modal” and “adverb”, respectively.  
However, since it was so frequently encountered in the 
chat domain, we tagged it as “MD”.   

The final class of decisions involved words that 
were just plain misspelled; in that case, they were 
tagged with the misspelled version of the tag.  As an 
example, “intersting” (when referring to “interesting”) 
was tagged as “^JJ”, a misspelled adjective.   

However, before determining what the most 
accurate bigram backoff tagger for the chat domain 
was, we first needed a baseline comparison.  To do 
this, we trained and tested a bigram tagger for each of 
the other domains, using the same amount of data as 
we had for the chat domain.  Since we had 1,391 
tagged chat posts, one might be inclined to select 
training/test sets consisting of 1,391 sentences from the 
other domains.  However, the unit of concern is at the 
token-, and not sentence-level.  Therefore, this would 
be inappropriate, since Treebank corpora sentences 
were much longer than chat posts.  Since the 1,391 
tagged chat posts containe d 6,078 tokens, we randomly 
selected contiguous sections of the Wall Street Journal 
and Switchboard corpora, each containing at least 
6,078 tokens (plus the tokens necessary to complete 
the last sentence) to serve as source data for those 
domains.  From those selections, we created 30 
different training/test sets by randomly removing 
~14.4% of the sentence-level units from each domain 
to serve as test data with the remainder serving as 
training data.  Summary statistics for the corpora 
selections as well as their associated bigram backoff 
tagger performance are shown in the table below.    

 
Table 6.  Corpora tokens and types example  

 

Chat WSJ Switch
Sentence-Level 

Units 1391 106 412

Tokens 6078 6107 6079

Types 1477 1891 921

Tokens/Type 4.115 3.230 6.600
Bigram Accuracy 

(mean) 0.737 0.722 0.802
Bigram Accuracy 

(std dev) 0.014 0.013 0.015  
 
Again, the purpose of this initial analysis was to 

determine, when given an equivalent amount of data to 
train and test from, how the bigram backoff tagger 
trained and tested on chat compares to similar taggers 
for the WSJ and Switchboard domains.  Clearly, the 
performance of the chat domain tagger is on par with 
the other domains.  However, notice the trend that as 
the Tokens/Type figure incr eases, the accuracy of the 
tagger also increases.  For the WSJ and Switchboard 
domains, this particular training/test selection is typical 
when compared to the mean and standard deviations of 
30 contiguous samples taken from each domain—see 
Table 7 below.  This makes sense from a qualitative 
standpoint, since as the number of tokens for a 
particular type increases, the more data there is 
available for a statistical tagger to base a tagging 
decision on.  This, however, is not the only measure of 
a domain’s linguistic variety at the lexical level.  
Certainly, looking at only the types of lemmas is 
something that could be taken into account when 
considering lexical variety.   Also, the greater the 
number of POS tags for a particular type, the more 
difficult it will be for a tagger with a limited context 
such as the bigram tagger to make the correct tagging 
decision given a limited amount of data.  That being 
said, it is interesting to note that, based on the 
tokens/type figure alone, chat is significantly more 
varied lexically than tran scribed speech, being much 
closer to the WSJ written text domain.  More 
importantly, though, this snapshot, although based on a 
specific test/training size, provides a level of 
confidence that state-of-the -art statistical taggers 
employed on chat should r each similar accuracy rates 
given similar amounts training data.  
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Table 7.  Corpora tokens/type (~6078 tokens 

per sample, 30 contiguous samples) 
 

WSJ Switch
Mean Tokens/Type 3.221 6.614

Std Dev 0.180 0.308  
 
The question here, of course, is exactly what sort of 

non-chat data should we use to train our chat tagger 
on.  The following table provides the mean tagging 
accuracy and associated standa rd deviations for 30 test 
sets (200 posts/test set) for five different bigram 
backoff taggers trained on the following corpora: 1) 
WSJ; 2) Switchboard; 3) Brown; 4) All three Treebank 
corpora; and 5) The remaining 1,191 POS-tagged chat 
posts. 
 

Table 8.  Bigram backoff tagger accuracy 
based on training corpus 

 

WSJ Brown Switch Treebank Chat

Mean Accuracy 0.574 0.583 0.621 0.658 0.737

Std Dev 0.019 0.022 0.017 0.017 0.014  
 
Clearly, the bigram backoff taggers trained on chat 

perform significantly better than the other taggers, 
even though the Treebank-based taggers were trained 
on millions of words (compared to thousands of words 
for the chat taggers).  This is not surprising, since chat 
has a vocabulary quite different from the other 
domains, to include the extensive use of emoticons and 
abbreviations which appear nowhere in the Treebank 
domains.  It is interesting to note how taggers trained 
on Switchboard perform significantly better than those 
trained on other Treebank domains.  This is due in part 
to the fact that Switchboard contains several 
interjections used extensivel y in chat that are simply 
not found in the other domains, to include “yeah”, “uh-
uh”, “hmm”, “Hi”, etc. 

Given that training on chat seems to be the best 
single data source for building a chat POS tagger, can 
we still take advantage of the vast amount of POS data 
collected from other domains?  To explore this, we 
modified our chat bigram backoff tagger in the 
following way.  Instead of backing off from chat 
bigram to chat unigram to finally the chat MLE tag, 
after not encountering chat unigram information, back 
off instead to a bigram tagger trained on another 
domain, followed by the other domain’s unigram 
tagger, and finally to the chat MLE tag.  Below is the 
mean tagger accuracy for th is approach, with the 
secondary bigram backoff taggers trained on individual 

Treebank domains as well as all three Treebank 
domains. 

 
Table 9.  Combined bigram backoff tagger 

performance 
 

Chat to 
WSJ

Chat to 
Brown

Chat to 
Switch

Chat to 
Treebank

Mean Accuracy 0.851 0.858 0.855 0.871

Std Dev 0.012 0.012 0.010 0.012   
 
As can be seen, all represent significant 

improvements in tagger accuracy over the bigram 
backoff tagger based solely on chat training 
information.  It is interesting to note that the apparent 
advantage of the Switchboard data disappears when 
the tagger is first trained on chat.  This is because the 
additional interjection vocabulary is already contained 
within the chat data itself, and thus the presence of it in 
Switchboard adds nothing to overall tagger 
performance.  In the end, the 87.1% accuracy for the 
chat to Treebank bigram backoff tagger is significantly 
the best tagger of the entire set of taggers investigated.  
We believe that a slight modification to this relatively 
simple tagger can still yield accuracy dividends.  For 
example, before making the fi nal back off to the chat 
MLE, we could incorporate a regular expression 
trained on the morphology of words, e.g. tagging all 
sanitized users as proper nouns (NNP, since we know 
the format for the user sanitization scheme), tagging all 
words ending in “ing” as gerund verbs (VBG) and all 
words ending in “ed” as past tense verbs (VBD), etc.   
 
5. Future Work 
 

Our initial efforts in preserving and annotating the 
online chat corpus appear promising.  As such, we 
have a number of future e fforts planned to continue 
improving automated lexical and discourse annotation 
performance.  With regards to POS tagging, we must 
first complete the hand tagging of the full 3,507 user 
sanitized posts (2,116 remaining).  With our current 
bigram backoff tagger approaching 90%, this should 
be accomplished relatively quickly.  In conjunction 
with this, we need to investigate more sophisticated 
POS taggers, to include Hidden Markov Model and 
Brill’s Transformational Based Learning tagging [10] 
approaches.  It is our belie f that the additional chat 
training data and more sophisticated tagging 
algorithms, when combined with the Treebank data, 
should yield tagging accuracy  performance above 90% 
range.  We also will revisit our decision to tag both 
emoticons and chat abbreviations as “UH”, since much 
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of its usage in the Switchboard corpus is reserved for 
speech disfluencies (and t hus may have a different 
distribution than in our chat corpus).  We will 
accomplish this by adding one or more tags to cover 
emoticon and chat abbreviation usage, and compare 
subsequent tagger performance with the original 
“single tag for all interjections” approach.   

Improved POS data can then be used in modifying 
the feature set for the pos t classification discourse 
analysis, which currently does not include any POS tag 
features.  Finally, more sophisticated smoothing 
approaches should improve the performance of the 
Naïve Bayes-based post classification performance.   
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