
Lexical and Discourse Analysis of Online Chat Dialog

Eric N. Forsyth and Craig H. Martell
Department of Computer Science, Naval Postgraduate School

enforsyt@nps.edu, cmartell@nps.edu

Abstract

One of the ultimate goals of natural language

processing (NLP) systems is understanding the
meaning of what is being transmitted, irrespective of
the medium (e.g., written versus spoken) or the form
(e.g., static documents versus dynamic dialogues).
Although much work has been done in traditional
language domains such as speech and static written
text, little has yet been done in the newer
communication domains enabled by the Internet, e.g.,
online chat and instant messaging. This is in part due
to the fact that there are no annotated chat corpora
available to the broader research community. The
purpose of this research is to build a chat corpus,
tagged with lexical (token part-of-speech labels),
syntactic (post parse tree), and discourse (post
classification) information. Such a corpus can then be
used to develop more complex, statistical-based NLP
applications that perform tasks such as author
profiling, entity identification, and social network
analysis.

1. Introduction

In 2006, Jane Lin [1] collected 475,000+ posts
made by 3200+ users from five different age-oriented
chat rooms at an Internet chat site. The chat rooms
were not limited to a specific topic, i.e. were open to
discussion of any topic. Lin’s goal was to
automatically determine the age and gender of the
poster based on their chat “style”. The features she
captured were surface details of the post, namely,
average number of words per post, vocabulary breadth,
use of emoticons, and punctuation usage. Lin relied on
the user’s profile information to establish the “truth” of
each user’s age and gender.

The data Lin captured has enormous potential, and
as such has formed the foundation of an ongoing
research effort at the Naval Postgraduate School’s

Autonomous Systems Laboratory. Specifically, the
goals related to this effort include the following: 1)
preserve the online chat dialog in an XML-based
corpus to aid in future accessibility to the data; 2)
annotate the chat corpus with lexical, syntactic, and
discourse information; and 3) use this annotated corpus
to develop, train and test higher-level NLP
applications.

There are numerous NLP applications that could
benefit from an annotated chat corpus. For example,
law enforcement and intelligence analysts could use
author profiling and entity identification applications
to help detect predatory or terrorist activities on the
Internet. On the other side of the spectrum, legitimate
chat use could be enhanced by applications that
automatically identify and group the multiple threads
of conversation that often occur within chat.

2. Building the Corpus

The Python programming language was the primary
tool we used to build the corpus. Within Python, we
used Lundh’s ElementTree module [2] to create, edit,
store, and retrieve the XML documents that comprised
the corpus. We also used Schemenauer’s back-
propagation neural network Python class [3] for our
automated post classification effort. In addition, Loper
and Bird’s Natural Language Toolkit Lite (NLTK-
Lite) Python modules [4] formed the basis for our
automated lexical analysis. Finally, we used an XML
parser for subsequent cor pus editing and validation.

One of the challenging aspects we faced in
developing the corpus was sanitizing it to protect user
privacy. If the corpus is to be made available to the
larger research community, th is must be accomplished.
It was straightforward to replace the user’s screen
name in both the session logs as well as the user
profile with a mask, for example, “killerBlonde51”
with “10-19-30sUser112.” However, more often than
not, users were referred to by variations of their screen
names in other users’ posts. For example, other users
would refer to “killerBlonde 51” as “killer”, “Blondie”,

International Conference on Semantic Computing

0-7695-2997-6 2007
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/ICSC.2007.55

19

International Conference on Semantic Computing

0-7695-2997-6 2007
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/ICSC.2007.55

19

International Conference on Semantic Computing

0-7695-2997-6 2007
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/ICSC.2007.55

19

International Conference on Semantic Computing

0-7695-2997-6 2007
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/ICSC.2007.55

19

International Conference on Semantic Computing

0-7695-2997-6 2007
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/ICSC.2007.55

19

“kb51”, etc. Although regular expressions can assist
in the masking task, ultimately 100% masking requires
hand verifying that the appropriate masks have been
applied in every post. To date, complete masking has
been accomplished on 3,507 (~700 posts/chat room) of
the 475,000+ posts.

It should be noted that although masking is essential
to ensure privacy, it results in a loss of information.
For example, the way to which users are referred often
conveys additional information, for example,
familiarity and emotion; this information is lost in the
masking process. In addition, it was observed that a
user’s screen name would become a topic of
conversation independent from the original user; again,
the origin of this conversation thread is lost in the
masking process.

3. Discourse Analysis: Post Classification

A great deal of research has been performed
regarding discourse analysis of spoken language.
Stolcke, et al [5] developed over 40 tags associated
with different dialog acts used in conversational
speech. Certainly, a fundamental reason why online
chat is similar to spoken conversational speech is that a
conversation is taking place. In addition, fillers like
“you know”, “really” as well as interjections like “hey”
and “awww” occur both in speech and online chat.
However, with chat, multiple topics are being
discussed by multiple people simultaneously, and
people don’t always “wait their turn” when posting.
Finally, the stops and restarts associated with spoken
dialog do not seem to occur in chat.

Obviously, chat is also very similar to written text.
However, chat participants often spell words
phonetically, e.g. “dontcha” for “don’t you”. In
addition, they make extensive use of emoticons and
abbreviations, e.g. “:-)” and “LOL” (Laughing Out
Loud). Finally, due to the nature of the medium,
words are frequently misspelled.

Recognizing these distinctions, Wu, et al [6], used
subsets of previous dialog act tags along with chat-
specific tags to automatically classify 3,129 chat posts
over Internet Relay Chat channels into 1 of 15
categories using Transformation-Based Error Driven
learning.

As an initial annotation attempt for our online chat
corpus, we classified the 3,507 user-sanitized posts
mentioned earlier using Wu’s 15 post categories, and
investigated two different machine learning algorithms
to automatically classify the posts. Wu’s classification
categories as well as an example of each taken from
our corpus are shown below.

Table 1. Post classification examples

Classification Example

Accept yeah it does, they all do

Bye night ya'all.

Clarify i meant to write the word may.....

Continuer and thought I'd share

Emotion lol

Emphasis
Ok I'm gonna put it up ONE MORE
TIME 10-19-30sUser37

Greet hiya 10-19-40sUser43 hug

No Answer no I had a roomate who did though

Other 0

Reject u r not on meds

Statement Yay...democrats have taken the house!

System JOIN

Wh-Question
11-08-20sUser70 why do you feel that
way?

Yes Answer why yes I do 10-19-40sUser24, lol

Yes/No Question cant we all just get along

These examples highlight th e complexity of the task
at hand. First, we should note that posts were
classified into only one of the 15 categories. At times,
more than one category might apply. In addition, the
“Wh-Question” example does not start with a “wh”
token, while the “Yes Answ er” does start with a “wh”
token. Also, notice that the “Yes/No Question” does
not include a question mark. Finally, the “Statement”
example contains a token that conveys an emotion
(“yay”). Taken together, these examples highlight the
fact that more than just simple regular expression
matching is required to cla ssify these posts accurately.

The initial post classification task was assisted by
simple regular expression matching, followed by hand
correction of each post. Of these posts, various,
randomly-selected subsets were used for training (3007
posts total) and testing (500 posts total). The overall
frequencies of the post classes in our sanitized corpus
are shown below. Note that the highest occurring
category of posts was “Statement”, with more than
double the next highest classification category.

2020202020

Table 2. Post classification frequencies

Class Count Percent
Statement 1210 34.50%
System 597 17.02%
Greet 470 13.40%
Emotion 404 11.52%
Wh-Question 187 5.33%
Yes/No Question 183 5.22%
Continuer 122 3.48%
Accept 86 2.45%
Reject 75 2.14%
Bye 55 1.57%
Yes Answer 41 1.17%
No Answer 33 0.94%
Emphasis 17 0.48%
Other 15 0.43%
Clarify 12 0.34%

The machine learning algorithms we used require a

set of features on which to base their automated
classification. The definition of the set of features
used is shown below, with a brief discussion
following.

1. Number of posts ago the poster last posted
(normalized by max session length).

2. Number of posts ago that a post led with a
yes/no question or included a “?” pattern (normalized
by max session length).

3. Number of posts in the future that contain a
yes or no pattern (normalized by max session length).

4. Number of posts ago that a post led with a
greet pattern (normalized by max session length).

5. Number of posts in the future that led with a
greet pattern (normalized by max session length).

6. Number of posts ago that a post led with a
bye pattern (normalized by max session length).

7. Number of posts in the future that led with a
bye pattern (normalized by max session length).

8. Number of posts ago that a post was a JOIN
(normalized by max session length).

9. Number of posts in the future that a post is a
PART (normalized by max session length).

10. Total number of users currently logged on
(normalized by max users in the session).

11. Total number of tokens in post (normalized
by max length post in train/test set).

12. First token in post contains hello or variants

13. First token in post contains goodbye or
variants.

14. First token in post contains wh-question start
such as who, what, where, etc.

15. First token in post contains yes/no-question
start such as is, are, does, etc.

16. First token in post contains conjunction start
such as and, but, or, etc.

17. Number of tokens in the post containing one
or more “?” (normalized by maximum number of ?
found in a single post in train/test set).

18. Number of tokens in the post containing one
or more “!” (normalized by max number of “!” found a
single post in train/test set).

19. Number of tokens in the post containing yes
or variants (normalized by max number of yes variants
found in a single post in train/test set).

20. Number of tokens in the post containing no or
variants (normalized by max number of no variants
found in a single post in train/test set).

21. Number of tokens in the post containing
emotion variants such as lo l, ;-), etc (normalized by
max number of emotions found in a single post in
train/test set).

22. Number of token(s) in the post in all caps, e.g.
JOIN (normalized by max number of tokens in caps
found in a single post in train/test set).

Features 1-9 of a post are based on the posts
surrounding it, specifically, the distance to posts with
particular features, with the rationale that surrounding
posts should give a hint to the nature of the post itself.
For example, “Continuer” posts should be more likely
to follow fairly closely to when the user last posted,
and “Yes/No Answers” should follow fairly closely to
posts with yes/no question characteristics. Feature 10
(current number of users logged on) was selected
because it might help normalize the distances
associated with Features 1 through 9 (with the
rationale that more users currently logged on might
increase those distances). Feature 11 is based on the
post itself, with the rationale that the number of tokens
will give a good initial hint at what the post is, e.g.,
longer posts being perhaps “Statements”, and shorter
posts being perhaps “Emotions” or “Yes/No Answers”.
Finally, Features 12-22 are also based on the post
itself, but are looking for specific patterns which
should give a clue on the nature of the post. For
example, “Greet” posts should contain a token like
“hello”, while “Yes/No Questions” and “Wh-
Questions” might contain “?” as a token.

2121212121

3.1. Post classification learning algorithm #1:
Back-propagation neural network

The initial machine learning method we
investigated to classify posts was a back-propagation
neural network. Specifically, it employed the
following sigmoid activation function

() ()arctanf x x=

In addition, it consisted of input nodes, output nodes,
and a single hidden layer of nodes, as well as learning
rate and momentum factors. So, for our model, we had
22 input nodes (the number of features), 15 output
nodes (the number of post classes), 14 hidden nodes, a
learning rate of 0.05, and no momentum. We did not
perform a global optimization on the hidden layer,
learning rate, and momentum parameters. Instead, we
varied them around set values and selected the
configuration that reduced the error the most after
twenty iterations on each configuration.

Precision, recall, and f-scores for each of the classes
for one instance of a training/test set are shown below.
Note that after training, we selected the output vector
with the highest firing rate as the post classification of
the test data fed into the neural net.

Table 3. Example neural net results

Class Test Freq Prec Recall FScore

Accept 16 0.417 0.313 0.357
Bye 2 0.667 1.000 0.800

Clarify 5 undef 0.000 undef
Continuer 15 undef 0.000 undef

Emotion 64 0.873 0.750 0.807
Emphasis 3 undef 0.000 undef

Greet 66 0.935 0.879 0.906
nAnswer 4 undef 0.000 undef

Other 3 undef 0.000 undef
Reject 12 0.500 0.250 0.333

Statement 164 0.670 0.915 0.773
System 78 0.975 1.000 0.987

whQuestion 32 0.909 0.625 0.741
yAnswer 8 undef 0.000 undef

ynQuestion 28 0.667 0.857 0.750

Performance of this neural net was comparable to

the results obtained by Wu with Transformation-Based
Error Driven learning. As with Wu, the neural net
does not appear to be able to make a reasonable
classification unless a class a ppears in greater than 3%
of the postings. Most of the misclassifications occur in
the “Statement” class. We believe the reason for this is
the fact that the “Statement” class is the maximum
likelihood estimate (MLE) for the labeled data set. In

other words, given no other information, the most
likely label for a particular post is the Statement class
based on the overall frequency of Statements in the
data set. In particular, the frequency of Statements is
twice that of the next highest category.

3.2. Post classification learning algorithm #2:
Naïve Bayes

In addition to the neural network approach, we
investigated using the Na ïve Bayes machine-learning
algorithm to classify posts. By Bayes Rule

() () ()
()

1 2
1 2

1 2

... |
| ...

...
n

n i i
i

n

P f f f C P C
P C f f f

P f f f

∧ ∧ ∧
∧ ∧ ∧ =

∧ ∧ ∧

But by assuming independence among the variables we
classify a post according to

() () () ()1 2arg max | | ... |i i i n i iC P f C P f C P f C P C= ⎡ ⎤⎣ ⎦

 As with the neural network, we used the same 22

features as input to the algorithm. To estimate the
actual probability distribution represented by our
training data, we used “add-one”, or Laplace
smoothing (see Mitchell’s discussion of the m-estimate
for a fuller account [7]). Precision, recall, and f-scores
for each of the classes for one instance of a
training/test set using the Naïve Bayes approach are
shown below.

Table 4. Example Naïve Bayes results

Class Test Freq Prec Recall FScore
Accept 13 0.250 0.154 0.190

Bye 6 0.500 0.167 0.250
Clarify 1 undef 0.000 undef

Continuer 13 0.500 0.077 0.133
Emotion 63 0.846 0.524 0.647

Emphasis 4 undef 0.000 undef
Greet 76 0.849 0.816 0.832

nAnswer 5 undef 0.000 undef
Other 4 undef 0.000 undef

Reject 9 0.000 0.000 undef
Statement 170 0.552 0.871 0.676

System 79 0.987 0.987 0.987
whQuestion 25 0.762 0.640 0.696

yAnswer 7 undef 0.000 undef
ynQuestion 25 0.429 0.120 0.188

As can be seen, Naïve Bayes as implemented

appears to perform less well than the 22 feature neural
network model shown earlier. To formally compare
the performance between the two learning approaches,

2222222222

we randomly selected 30 train /test sets for each model,
and calculated the mean and standard deviation of their
f-scores. Due to time constraints, we limited the
number of iterations for the neural network models to
100 for each of the 30 samples. We then performed a
hypothesis test on two populations to see if there is a
significant difference in th e performance between the
models. For 95% confidence, we reject the null
hypothesis that the means are equal if |z| > 1.96. The
results are shown below.

Table 5. Learning algorithm FScore

comparison

Class Mean Std Dev Mean Std Dev z
Accept undef undef undef undef undef

Bye 0.761 0.140 undef undef undef
Clarify undef undef undef undef undef

Continuer undef undef undef undef undef
Emotion 0.802 0.042 0.615 0.061 13.950

Emphasis undef undef undef undef undef
Greet 0.890 0.022 0.831 0.026 9.612

nAnswer undef undef undef undef undef
Other undef undef undef undef undef

Reject undef undef undef undef undef
Statement 0.786 0.019 0.681 0.024 18.757

System 0.972 0.020 0.976 0.014 0.959
whQuestion 0.791 0.040 0.576 0.078 13.439

yAnswer undef undef undef undef undef
ynQuestion 0.690 0.068 0.360 0.092 15.805

NN Vector Bayes Vector

4. Lexical Analysis: Part of Speech Tagging

As dialog act classifica tion forms the basis of
discourse analysis, part-o f-speech (POS) tagging is a
fundamental form of lexical analysis, and is a critical
input to higher order NLP tasks such as parsing. As
such, we want to build highly accurate POS taggers to
automatically annotate our online chat corpus. The
ultimate accuracy of POS taggers for a particular
domain depends on two aspects: 1) the algorithm used
to make the tagging decision; and 2) if statistically-
based, the data used to train the tagger.

The basic tagging algorithm we implemented
involved training a bigram tagger, backing off to a
unigram tagger, backing off to the maximum
likelihood estimate tag; we’ll subsequently refer to this
as our bigram backoff tagger. Working backwards, the
maximum likelihood estimate tag is the most common
tag within the training set.

[]arg max count()i tt t=

A unigram tagger assigns the most common POS tag to
a word based on its occurrence in the training data.

()arg max |i t i it P t w= ⎡ ⎤⎣ ⎦

Finally, a bigram tagger assigns the most common
POS tag to a word not only based on the current word,
but also the previous word as well as the previous
word’s POS tag.

()1 1arg max |i t i i i it P t w t w− −= ∧ ∧⎡ ⎤⎣ ⎦

Thus, our tagging approach works as follows: The

tagger will first attempt to use bigram information
from the training set. If no such bigram information
exists, it will then back off to unigram information
from the training set. If no such unigram information
exists, it will finally back off to the MLE tag for the
training set.

Several POS-tagged corpora in many languages are
available to NLP researchers. The corpora we used to
train various versions of our taggers are contained
within the Linguistic Data Consortium’s Penn
Treebank distribution [8]. Th e first corpus, referred to
as Wall Street Journal (WSJ), contains over one
million POS-tagged words collected in 1989 from the
Dow Jones News Service. The second, referred to as
Switchboard, was originally collected in 1990 and
contains about 2,400 transcribed, POS-tagged, two-
sided telephone conversations among 543 speakers
from all areas of the United States. Finally, the third,
referred to as Brown, consists of over one million
POS-tagged words collected from 15 genres of written
text originally published in 1961. All corpora were
tagged with the Penn Treebank tag set.

In addition to the aforementioned Penn Treebank
corpora, 1,391 POS-tagged posts from our chat corpus
were used to train/test various versions of our taggers.
The posts (a subset of our 3,507 user-sanitized posts)
were initially tagged with a bigram/regular expression
tagger trained on Switchboard and Brown and then
hand-corrected. In the end, the 1,391 posts provided a
total of 6,078 POS-tagged words (tokens). Although
the posts were tagged using the Penn Treebank tag set
and associated tagging guidelines [9], we had to make
several decisions during the process that were unique
to the chat domain.

The first class of decisions regarded the tagging of
abbreviations such as “LOL” and emoticons such as
“:-)” frequently encountered in chat. Since these
expressions conveyed emotion, they were treated as
individual tokens and tagged as interjections (“UH”).

2323232323

The second class involved words that, although
would be considered misspelled by traditional written
English standards, were so frequently encountered
within the chat domain that they were treated as
correctly spelled words and tagged according to the
closest corresponding word class. As an example, the
token “wont” (when referring to “won’t”), if treated as
a misspelling, would be tagged as “^MD^RB”, with
the “^” referring to a missp elling and “MD” and “RB”
referring to “modal” and “adverb”, respectively.
However, since it was so frequently encountered in the
chat domain, we tagged it as “MD”.

The final class of decisions involved words that
were just plain misspelled; in that case, they were
tagged with the misspelled version of the tag. As an
example, “intersting” (when referring to “interesting”)
was tagged as “^JJ”, a misspelled adjective.

However, before determining what the most
accurate bigram backoff tagger for the chat domain
was, we first needed a baseline comparison. To do
this, we trained and tested a bigram tagger for each of
the other domains, using the same amount of data as
we had for the chat domain. Since we had 1,391
tagged chat posts, one might be inclined to select
training/test sets consisting of 1,391 sentences from the
other domains. However, the unit of concern is at the
token-, and not sentence-level. Therefore, this would
be inappropriate, since Treebank corpora sentences
were much longer than chat posts. Since the 1,391
tagged chat posts containe d 6,078 tokens, we randomly
selected contiguous sections of the Wall Street Journal
and Switchboard corpora, each containing at least
6,078 tokens (plus the tokens necessary to complete
the last sentence) to serve as source data for those
domains. From those selections, we created 30
different training/test sets by randomly removing
~14.4% of the sentence-level units from each domain
to serve as test data with the remainder serving as
training data. Summary statistics for the corpora
selections as well as their associated bigram backoff
tagger performance are shown in the table below.

Table 6. Corpora tokens and types example

Chat WSJ Switch
Sentence-Level

Units 1391 106 412

Tokens 6078 6107 6079

Types 1477 1891 921

Tokens/Type 4.115 3.230 6.600
Bigram Accuracy

(mean) 0.737 0.722 0.802
Bigram Accuracy

(std dev) 0.014 0.013 0.015

Again, the purpose of this initial analysis was to

determine, when given an equivalent amount of data to
train and test from, how the bigram backoff tagger
trained and tested on chat compares to similar taggers
for the WSJ and Switchboard domains. Clearly, the
performance of the chat domain tagger is on par with
the other domains. However, notice the trend that as
the Tokens/Type figure incr eases, the accuracy of the
tagger also increases. For the WSJ and Switchboard
domains, this particular training/test selection is typical
when compared to the mean and standard deviations of
30 contiguous samples taken from each domain—see
Table 7 below. This makes sense from a qualitative
standpoint, since as the number of tokens for a
particular type increases, the more data there is
available for a statistical tagger to base a tagging
decision on. This, however, is not the only measure of
a domain’s linguistic variety at the lexical level.
Certainly, looking at only the types of lemmas is
something that could be taken into account when
considering lexical variety. Also, the greater the
number of POS tags for a particular type, the more
difficult it will be for a tagger with a limited context
such as the bigram tagger to make the correct tagging
decision given a limited amount of data. That being
said, it is interesting to note that, based on the
tokens/type figure alone, chat is significantly more
varied lexically than tran scribed speech, being much
closer to the WSJ written text domain. More
importantly, though, this snapshot, although based on a
specific test/training size, provides a level of
confidence that state-of-the -art statistical taggers
employed on chat should r each similar accuracy rates
given similar amounts training data.

2424242424

Table 7. Corpora tokens/type (~6078 tokens

per sample, 30 contiguous samples)

WSJ Switch
Mean Tokens/Type 3.221 6.614

Std Dev 0.180 0.308

The question here, of course, is exactly what sort of

non-chat data should we use to train our chat tagger
on. The following table provides the mean tagging
accuracy and associated standa rd deviations for 30 test
sets (200 posts/test set) for five different bigram
backoff taggers trained on the following corpora: 1)
WSJ; 2) Switchboard; 3) Brown; 4) All three Treebank
corpora; and 5) The remaining 1,191 POS-tagged chat
posts.

Table 8. Bigram backoff tagger accuracy
based on training corpus

WSJ Brown Switch Treebank Chat

Mean Accuracy 0.574 0.583 0.621 0.658 0.737

Std Dev 0.019 0.022 0.017 0.017 0.014

Clearly, the bigram backoff taggers trained on chat

perform significantly better than the other taggers,
even though the Treebank-based taggers were trained
on millions of words (compared to thousands of words
for the chat taggers). This is not surprising, since chat
has a vocabulary quite different from the other
domains, to include the extensive use of emoticons and
abbreviations which appear nowhere in the Treebank
domains. It is interesting to note how taggers trained
on Switchboard perform significantly better than those
trained on other Treebank domains. This is due in part
to the fact that Switchboard contains several
interjections used extensivel y in chat that are simply
not found in the other domains, to include “yeah”, “uh-
uh”, “hmm”, “Hi”, etc.

Given that training on chat seems to be the best
single data source for building a chat POS tagger, can
we still take advantage of the vast amount of POS data
collected from other domains? To explore this, we
modified our chat bigram backoff tagger in the
following way. Instead of backing off from chat
bigram to chat unigram to finally the chat MLE tag,
after not encountering chat unigram information, back
off instead to a bigram tagger trained on another
domain, followed by the other domain’s unigram
tagger, and finally to the chat MLE tag. Below is the
mean tagger accuracy for th is approach, with the
secondary bigram backoff taggers trained on individual

Treebank domains as well as all three Treebank
domains.

Table 9. Combined bigram backoff tagger

performance

Chat to
WSJ

Chat to
Brown

Chat to
Switch

Chat to
Treebank

Mean Accuracy 0.851 0.858 0.855 0.871

Std Dev 0.012 0.012 0.010 0.012

As can be seen, all represent significant

improvements in tagger accuracy over the bigram
backoff tagger based solely on chat training
information. It is interesting to note that the apparent
advantage of the Switchboard data disappears when
the tagger is first trained on chat. This is because the
additional interjection vocabulary is already contained
within the chat data itself, and thus the presence of it in
Switchboard adds nothing to overall tagger
performance. In the end, the 87.1% accuracy for the
chat to Treebank bigram backoff tagger is significantly
the best tagger of the entire set of taggers investigated.
We believe that a slight modification to this relatively
simple tagger can still yield accuracy dividends. For
example, before making the fi nal back off to the chat
MLE, we could incorporate a regular expression
trained on the morphology of words, e.g. tagging all
sanitized users as proper nouns (NNP, since we know
the format for the user sanitization scheme), tagging all
words ending in “ing” as gerund verbs (VBG) and all
words ending in “ed” as past tense verbs (VBD), etc.

5. Future Work

Our initial efforts in preserving and annotating the
online chat corpus appear promising. As such, we
have a number of future e fforts planned to continue
improving automated lexical and discourse annotation
performance. With regards to POS tagging, we must
first complete the hand tagging of the full 3,507 user
sanitized posts (2,116 remaining). With our current
bigram backoff tagger approaching 90%, this should
be accomplished relatively quickly. In conjunction
with this, we need to investigate more sophisticated
POS taggers, to include Hidden Markov Model and
Brill’s Transformational Based Learning tagging [10]
approaches. It is our belie f that the additional chat
training data and more sophisticated tagging
algorithms, when combined with the Treebank data,
should yield tagging accuracy performance above 90%
range. We also will revisit our decision to tag both
emoticons and chat abbreviations as “UH”, since much

2525252525

of its usage in the Switchboard corpus is reserved for
speech disfluencies (and t hus may have a different
distribution than in our chat corpus). We will
accomplish this by adding one or more tags to cover
emoticon and chat abbreviation usage, and compare
subsequent tagger performance with the original
“single tag for all interjections” approach.

Improved POS data can then be used in modifying
the feature set for the pos t classification discourse
analysis, which currently does not include any POS tag
features. Finally, more sophisticated smoothing
approaches should improve the performance of the
Naïve Bayes-based post classification performance.

6. References

[1] J. Lin, Automatic Author Profiling of Online Chat Logs,
M.S. Thesis, Naval Postgra duate School, Monterey, 2007.

[2] F. Lundh, http://effbot.org/zone/element-index.htm ,
Python ElementTree Module, 2007.

[3] N. Schemenauer, http://arctrix.com/nas/python/bpnn.py,
Python Back-Propagation Ne ural Network Class, 2007

[4] E. Loper and S. Bird, “NLTK: The Natural Language
Toolkit”, Proceedings of the ACL Workshop on Effective
Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics, Association for
Computational Linguistics So merset, NJ., 2005, pp 62-69.

[5] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D.
Jurafsky, P. Taylor, R. Martin, M. Meteer, and C. Van Ess-
Dykema, "Dialogue Act Mode ling for Automatic Tagging
and Recognition of Conversational Speech". Computational
Linguistics, 2000.

[6] T. Wu, F.M. Khan, T.A. Fisher, L.A. Shuler, & W.M.
Pottenger, “Posting Act Ta gging using Transformation-
Based Learning” The Proceedings of the Workshop on
Foundations of Data Mining and Discovery, IEEE
International Conference on Data Mining (ICDM'02),
December 2002.

[7] T.M. Mitchell, Machine Learning, McGraw Hill,
Singapore, 1997.

[8] M.P. Marcus, B. Santorin i, M. Marcinkiewicz & A.
Taylor, Treebank-3, Linguistic Data Consortium,
Philadelphia, 1999.

[9] B. Santorini, “Part of Speech Tagging Guidelines for the
Penn Treebank Project”, Treebank-3, Linguistic Data
Consortium, Philadelphia, 1999.

[10] E. Brill, “A Simple Rule-based Part of Speech Tagger”,
Proceedings of the Third Conference on Applied Natural
Language Processing, 1992, pp 152-155.

[11] R. Hwa, “Supervised Gr ammar Induction using Training
Data with Limited Constituent Information”, Proceedings of
the 37th conference on Association for Computational
Linguistics, 1999, pp 73-79.

2626262626

