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Abstract

Associative classification is a novel and powerful method
originating from association rule mining. In the previous
studies, a relatively small number of high-quality associa-
tion rules were used in the prediction. We propose a new
approach in which a large number of association rules are
generated. Then, the rules are filtered using a new method
which is equivalent to a deterministic Boosting algorithm.
Through this equivalence, our approach effectively adapts
to large-scale classification tasks such as text categoriza-
tion. Experiments with various text collections show that
our method achieves one of the best prediction performance
compared with the state-of-the-arts of this field.

1 Introduction

The associative classifier uses the association rules pro-
duced by a frequent pattern mining algorithm [1], [7]. Since
the associative classifier is a rule-based classifier, humans
can easily understand its operation, and the prediction re-
sult provides a simple and direct interpretation. Moreover,
it can exploit the combined information of multiple fea-
tures as well as a single feature, while Naı̈ve Bayes and
Support Vector Machine(SVM) classifiers only consider a
single feature. This means that text categorization can use
phrase occurrence information as well as word occurrence
information.

In text classification problems, large-scale is inevitable
due to the large number of word features, class labels and
example documents in the text corpus. Many high-order1

association rules are generated in the induction procedure
for the associative classifier. Generally, high-order rules are
more informative; hence the classification with those rules
has a better performance [15], [22]. However, as the order

1In associative rules, order means the number of words occurring in the
rule.

of the rules grows, the number of generated rules increases
very rapidly so that the computational complexity is unbear-
able.

The paradigm of the previous methods of associative
classification was to use a small number of high-quality
rules regardless of the order of rules (or preferring high-
order rules) [12], [21]. To reduce the time of rule mining,
they limited the number of word features by eliminating the
words that were estimated as not useful in the classification.
In contrast, our method uses most words in the vocabulary
except for stop-words as features. To avoid generating an
excessive number of rules, the order of the rules is limited
to less than a prescribed threshold.

Since the number of those generated rules can be sev-
eral millions, a small number of rules should be selected
for prediction in real situations. When predicting for test
instances, the selected rules votes as much as their individ-
ually weighted scores. We propose a new rule selection al-
gorithm based on validation by training examples. In addi-
tion, we show that this rule selection process is equivalent
to a deterministic AdaBoost algorithm [6]. This analogy
is utilized to filter the generated rules, which greatly im-
proves the training and generalization errors. Our method
fits well to text corpora because a large number of low-order
rules can cover the high dimensional feature space of test
instances.

This paper is structured as follows. Section 2 introduces
the associative text classification and provides the problem
formulation. Section 3 describes the classification rule min-
ing. Section 4 explains the algorithm of boosting associa-
tion rules and presents an analytical justification. Section
5 proposes our method of handling multi-label predictions.
Section 6 shows experimental results and the analyses. Fi-
nally, the paper concludes in Section 7.



2 Associative Classification

2.1 Application to Text Categorization

The overall system architecture of the associative classi-
fication for text documents is shown in Fig. 1. The left-hand
side of the figure denotes a training process and the right-
hand side a testing process.
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Figure 1. Associative Classification – Train-
ing and Testing

First, raw text data is pre-processed for rule mining.
Each document is converted into a transactional record for-
mat. From this pre-processed database, we mine frequent
patterns, i.e. classification rules. Because the number of
mined rules is very large, we filter out some useless or re-
dundant rules and select a small number of well-qualified
rules. This process is called Pruning. Finally, we construct
a classification-rule database with these selected rules.

When a new document comes in to be classified, we con-
vert it into a pattern of words and search the database for
matching rules. With matched rules, we decide which class
the test document is assigned to.

2.2 Formal Definition

The database for a classification task consists of at-
tributes and their instances. The instances of attribute val-
ues constitute training (or testing) examples. If we denote
the set of features as A = {A1, A2, ..., Ad}, where d is
the dimension of the feature space, then a set called do-
main can be represented as X = A1 × A2 × ... × Ad. Let
Y = {c1, c2, ..., c|Y |} be the set of class labels, then the set
of training examples D is

D = {(xj , yj) | xj ∈ X, yj ∈ Y }.

An item is defined as the instance value of an attribute.
Itemset(or pattern) is a term denoting the instance of sin-
gle or combined features. Association rule mining extracts
frequent itemsets from a transactional database. We de-
fine the support of a pattern as the number of training ex-
amples in which the pattern occurs. The pattern pj ∈
Ai1 × Ai2 × ... × Aik

is called frequent if the support of
the pattern exceeds some given threshold value min sup.

A classification rule rk is a mapping from a set of fea-
tures to the set of class labels:

Ai1 × Ai2 × ... × Aik
→ Y. (1)

If the rule (1) is frequent, then it is called a class associa-
tion rule(CAR) [12]. We define the confidence of a rule as
the support of the rule divided by the support of the pattern
of the left-hand side of the rule. From application to appli-
cation, the extent of CAR may be confined to those of which
confidence values exceed a given threshold min conf.

For example, assume that in the document collection
about sports games, the following word phrase and the as-
sociated game was mined using a rule mining algorithm,

run, diamond → baseball (5, 0.71),

where the numbers within the parenthesis denote the sup-
port and confidence of the rule, respectively. This rule says
that the co-occurrence of run and diamond in a document
implies the theme of the document to be the baseball.

Let R = {r1, r2, ..., r|R|} be the final classification rule
set. When we have a test example x, we apply the rules to
x. Let sij be the score which rule ri produces supporting
that the class label of x is cj . Then, Sj , the total score for
cj when the entire rule set is considered can be written as:

Sj =
∑

ri∈R and cj∈Y

sij . (2)

Then, the final prediction label ĉ for x is determined such
that

ĉ = arg max
cj∈Y

Sj .

3 Generating Class Association Rules

3.1 Transactional Representation for Doc-
ument Examples

Most text corpora have a high-dimensional feature space.
Since they are not relational databases, there is no pre-
determined length for an example record. The average num-
ber of words in a document is far less than the vocabulary
size, which shows the sparsity of word distribution in text
collections. A document can be modeled statistically as the



Dataset msup / mconf # rules

Sick from UCI 1 / 50 71,828
e-mail 5 / 0 42,182

20 newsgroups 0.02 / 5 8,185,780

Table 1. The number of generated rules

events of the words that constitute the document. There are
two different document models: the Multi-variate Bernoulli
Model and the Multinomial Model [13]. The former ignores
the count information of words and uses only binary infor-
mation (present or not-present), while the latter includes the
information of word count.

In the multinomial model, a document d which is a se-
quence of words, 〈w1, w2, w4, w2〉, is modeled as the set
{w1, w2, w4} and their occurrence counts. But it is known
that information about the multiple occurrence of words
does not yield much additional assistance for an exact clas-
sification [4], [19]. Thus, as the input format of a docu-
ment to the mining process for association rules, we choose
a “transactional” format which has no occurrence count in-
formation.

3.2 Mining Classification Rules

The frequent pattern mining was done with the method
of Han et al. [7]. CBA [12] and CMAR [11] took 1% and
50% as threshold values of min sup and min conf respec-
tively. Such high threshold values cause a relatively small
number of generated rules, which could raise the classifying
precision. But this may miss useful information contained
in the rules which have lower confidence or support than the
thresholds.

Our approach adopts the opposite direction to the above
heuristic. We lower the values of min sup and min conf to
the lowest possible. Hence, we collect many rules that are
considered slightly better than a random guess. Table 1 lists
the thresholds in % and the numbers of rules mined from
raw texts. The first data is used in CBA, and the second is an
e-mail collection by Itskevitch [8]. With 20 newsgroups we
produced twenty times more rules compared to Itskevitch.

Lowering association mining thresholds can make it im-
possible to generate rules within a reasonable time unless
another constraint is applied. We limit the order of gener-
ated rules to less than a small number. In the case of text
corpus, the order is limited as less than or equal to 2 (or
3). Despite this limitation, the number of generated rules is
still too large. The next section considers the rule selection
process for better classification performance.

4 Boosting Association Rules

4.1 Analogy to Boosting

According to PAC-learning theory [9], a strong PAC-
learning algorithm is an algorithm that, given ε, δ > 0 and
access to random examples, outputs with probability 1−δ a
hypothesis with error at most ε. A weak PAC-learning algo-
rithm satisfies the same conditions but only for ε ≤ 1/2−γ
where γ > 0.

Schapire [17] proved that any weak learning algorithm
can be efficiently transformed or boosted into a strong learn-
ing algorithm. Generally, Boosting refers to producing a
very accurate prediction rule by combining rough and mod-
erately inaccurate rules-of-thumb. AdaBoost [6] is a very
effective and efficient boosting algorithm, where the weak
learner produces the hypotheses with any εt ∈ [0, 1] and the
hypotheses are boosted adaptively.

A class association rule with a low confidence value may
fall under the class of weak classifiers. The pruning pro-
cedure of our classification method can be thought as the
boosting procedure where the weak classifiers are not re-
trained but selected from the set of association rules accord-
ing to the modified distribution of training examples.

4.2 A New Algorithm based on Boosting

Fig. 2 represents our new algorithm to boost weak as-
sociation rules. This algorithm is a modification of the
database coverage pruning [12] based on the principle of
Boosting. To simplify our analysis, we begin with a binary
classification problem where Y = {0, 1}. A class asso-
ciation rule in Fig. 2 corresponds to a weak hypothesis of
AdaBoost.

In Fig. 2, the main loop iterates for the rule index t. For
each iteration, rt is applied to all of the training examples
remained so far. If the prediction is correct, then the cover
count vi is increased as much as the confidence value of rt

at Line 2-b-ii. This is equivalent to the weight update step
of AdaBoost [6]:

wt+1
i = wt

iβ
lti = wt

i exp(lti ln β),

where wt
i is the weight of example xi at t round and β is a

weight update factor. lti , the loss of xi for rt, corresponds
to the confidence value which is added to vi by rt. Boost-
CARs is not an adaptive algorithm since β is fixed to some
value less than 1 for all t = 1, ..., T .

Next, if the updated vi exceeds the threshold cvth, then
the example (xi, yi) is removed from the database. This
corresponds to the modification in the distribution of the ex-
amples in AdaBoost. Finally, after all T iterations, Boost-
CARs yields a final hypothesis hf combined with the se-
lected hypotheses rt’s.



Algorithm BoostCARs
Input Class Association Rules: {r1, r2, ..., rT },

Database: {(x1, y1), (x2, y2), ..., (xN , yN )},
cvth (database coverage threshold)

Initialize the cover count: v1
i = 0 for i = 1, ..., N ,

sort the rules {rj} in the descending order of
confidence
For t = 1, 2, ..., T

1. CorrectPred = false
2. For i = 1, 2, ..., N

(a) Apply rt to xi.

(b) If rt predicts yi, then

i. CorrectPred = true
ii. vi = vi + conf(rt)

iii. If vi > cvth
then delete (xi, yi) from the database.

3. If CorrectPred = false
then conf(rt) = 0

Output the final hypothesis

hf (x) = arg max
y∈Y

∑
t:ht(x)=y

conf(rt)

Figure 2. Algorithm of Boosting weak associ-
ation rules

4.3 Training Error

It can be shown that the training error of BoostCARs
approaches to zero exponentially fast as the training pro-
gresses.

Theorem 1. Suppose BoostCARs chooses the class asso-
ciation rule whose error εt ≤ 1/2 − γ for some γ > 0 at
each round t (t = 1, ..., T ). Then, the error ε of the final
hypothesis hf output by BoostCARs is bounded above by

ε =
|{i : hf (xi) �= yi}|

N
≤ exp(−Tγ2/2). (3)

Proof Sketch. First, we convert BoostCARs into an equiv-
alent form of the deterministic version of AdaBoost, where
the weight update factor βt is the same for all t = 1, ..., T .
We choose β to be 1−γ. Also, we change rt in BoostCARs
into h′ : X → [0, 1] such that

h′
t(xi) =

{
conf(rt) if yi = 1
1 − conf(rt) if yi = 0 .

Then, the remining proof procedure becomes equivalent to
that of Hedge(β) algorithm of the on-line allocation model
[6]. If we apply the analysis to BoostCARs, then the error
bound (3) can be directly derived.

The theorem says that, if we collect many weak associa-
tion rules all of which performances are slightly better than

random guessing by γ, then the error will decrease exponen-
tially fast. This analysis can be easily extended to the case
of multi-class problems if we adopt the techniques in [6].

4.4 Generalization Error

In our approach, since the min sup and min conf pa-
rameters are set to the lowest, the number of the omitted
features is minimized. Thus, these features can cover the
attributes of the test domain better. In addition, since Boost-
CARs has abundant low-order classification rules, it can
cover the word patterns of test documents better than the
approach which adopts high-order rules. This property en-
ables BoostCARs to show minimized generalization errors.

Schaprie et al. [18] defined the classification margin of
a training example to be the difference between the num-
ber of correct votes and the maximum number of votes re-
ceived by any incorrect label. They proved that maximizing
the margin can improve the generalization error of a classi-
fier and Boosting tends to increase the margins of training
examples when the final classifier is combined from weak
hypotheses. Although the final classifier becomes larger, its
test error constantly decreases.

Based on the margin theory, we adjust parameter cov-
erage threshold (cvth) in Fig. 2 so that BoostCARs can
achieve the minimum generalization error. It can be
achieved if the whole range of generated rules are selected
evenly according to the principle of Boosting and there are
no remaining rules and examples when the rule selection
process is completed. Then, the margin of the examples is
maximized and the value of cvth is selected as the value of
that case.

5 Multi-Label Classification

Our associative classifier yields the prediction scores for
all class labels at once. Thus, it is necessary to set a
threshold for the scores to determine whether the predic-
tion is right or wrong [20]. We propose a novel threshold-
ing scheme that is similar to “RCut” in [24]. RCut always
predicts k class labels with the highest scores for each test
document.

We assume that, regardless of the number of answer la-
bels, the prediction score of an answer label occupies larger
than some ratio in the total prediction score of a document.
Let ρ be such ratio threshold. If we denote Sj as the pre-
diction score of class cj as in (2), then the estimated class
labels {ĉ} is determined by this relation:

ĉ ∈ {cj | cj ∈ Y and
Sj∑

ci∈Y Si
≥ ρ}. (4)

The uneven distribution in the number of training exam-
ples of different class labels invokes another problem. In



such circumstance, the class label which has a large num-
ber of training examples will have much more classification
rules than the class label which has a small number of train-
ing examples. Thus, the prediction score of the latter would
always be less than the score of the former even when the
latter is an correct label. The sum of prediction scores Sj for
class cj in (2) would no longer denote a correct prediction
score.

We introduce a normalized prediction score model to
compensate for such uneven distribution of training exam-
ples. First, we define a weight function w of a class label cj

as

w(cj) =
1

|Y |
∑|R|

i=1 conf(ri)∑
k∈Rj

conf(rk)
, (5)

where conf(ri) is the confidence value of ri and Rj is the
set of the rules with the label cj as their consequents. When
w(cj) is multiplied to the final prediction score Sj , the score
S̃j is effectively normalized between the class labels:

S̃j = w(cj)1/2 · Sj , (6)

where the square root of w(cj) smoothes further the effect
of w. When we predict on a severely imbalanced corpus, we
replace Sj in (4) with this S̃j before judging correct labels.

6 Experiments

6.1 Test Collections

Reuters-21578 and 20 newsgroups [10] are multi-class
and slightly multi-label text collections. Reuters-21578 is a
collection of articles from Reuters newswire. We used the
ModApte split version [2] from which we further selected
the documents with the top 10 TOPICS categories, which
are earn, acq, money-fx, grain, crude, etc. This final set is
the same as the one used in HARMONY [21]. 20 news-
groups is a collection of USENET mail postings whose cat-
egory set includes the names of the 20 discussion groups,
for example, comp.os.ms-windows.misc. Some statistics on
the collections are listed in Table 2, where we can find that
20 newsgroups is larger and more complex than Reuters-
21578.

OHSUMED [16] is the collection of citations to med-
ical journals from the year 1987 to 1991. Instead of the
original OHSUMED collection, many researches have used
“Heart Diseases (HD)” subset of MeSH(Medical Subject
Headings). It is also referred to as “HD-119”. HD-119 con-
tains 16,595 documents in 107 distinct categories. We di-
vided this sub collection according to the publication year:
from 1987 to 1990 for training, 1991 for testing.

We used BOW-toolkit [14] for pre-processing of the doc-
uments. The header part except for the title was removed

Reuters-21578 20 newsgroups

# documents 9,979 19,997
# classes 10 20

vocabulary size 22,424 90,833
# words /doc 49.2 77.3
# labels /doc 1.10 1.05

Table 2. Statistics on the text databases in
our experiment

from the training documents. We filtered out general stop
words and conducted no stemming. We prepared the train-
ing input according to the document model in Section 3.1.
We implemented our associative classification system with
C++. Our codes were executed The program was run on a
Linux machine with 4GB memory and 2.8GHz CPU speed.

6.2 Parameter Selection

Fig. 3(a) represents the prediction accuracy of our asso-
ciative classifier for various min sup and min conf thresh-
olds when applied to Reuters-21578 collection. In all re-
sults shown in this paper, min sup is represented with ab-
solute numbers not with ratios. The accuracy is represented
with Breakeven point (BEP) between the recall and the pre-
cision measures from the Information Retrieval community.
As the min sup and min conf thresholds become lower, the
number of rules grows larger and the performance improves
accordingly. These results agree with our intuitions in the
previous sections.

In Fig. 3(b), the x-axis represents the highest order of
rules included in the rule set, and the y-axis BEP or F1
score. F1 is the harmonic mean of the precision and the
recall. BEP is used in the Reuters and 20 newsgroups, and
F1 in the OHSUMED collection. As the order exceeds some
number, the generalization performance starts to drop due to
overfitting. The order at which the performance decreases
differs to text corpora. Most large-scale text collections
show the best performance at the order of two. The reason
why such high-order rules do not assist in raising the pre-
diction accuracy is that high-order word phrases in the rules
have lower probability to occur in the test set than low-order
phrases.

Fig. 3(c) shows the selection process of optimal score
ratio thresholds in the multi-label associative classification.
As the average number of class labels per document be-
comes larger, the ratio decreases. We select optimal values
through validation using training examples.

Fig. 4 shows a detailed process of BoostCARs algorithm
for 20 newsgroups data. The x-axis represents the id of the
generated rules which are sorted in the descending order of
confidence values. The y-axis represents the number of re-
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maining training examples when rule rt predicts for the ex-
amples remaining at round t−1. If the coverage threshold is
low, then the training examples are exhausted prematurely.
If the coverage threshold is high, then the probability for
incorrect rules to be selected increases because inappropri-
ate training examples still remain. The coverage threshold
should be selected so that the training examples can be ef-
fectively used in the process. The selection of 100 as cvth
value shows the best performance in this case.

Fig. 5 represents the learning curve of our associative
classifier for Reuters. The x-axis represents the number of
rules included in the prediction. As the size of the combined
classifier grows, the training error decreases constantly. At
the same time, the test error continues to decrease without
overfitting to the training examples. From this, we find that
the margin theory on the generalization error also applies
well to our boosting algorithm.

6.3 Performance Comparison

Table 3 lists the classification accuracies of HARMONY
and SVM for Reuters-21578. The result of linear SVM
classifier is from [5]. The performance for each class is
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Figure 5. Learning curve of Associative Clas-
sifier

measured with BEP, and finally averaged for all the test in-
stances. BCAR with min sup threshold 5 shows the best
BEP, 93.5%. This performance is obtained when the order
of rules is set to three and the min conf threshold set to 20,
which is slightly better than random guessing.

In addition to such excellent classification accuracy, our
approach shows good efficiency in computation. Table 4
shows the time spent from mining association rules up to
predicting test instances for Reuters-21578. The comput-
ing time of BCAR grows as min sup value is lowered. Al-
though the time of BCAR with min sup of 5 is several times
of that of HARMONY, BCAR with min sup of 20 shows
comparable execution time to HARMONY while its accu-
racy is kept better than HARMONY.

Table 5 lists the prediction performances of previous
studies with 20 newsgroups. The classification accuracy
is measured with micro-averaged BEP. The BEPs are ob-
tained by 4-fold cross validation. The computing time of all
the classifiers is a single-fold time elapsed during training
and testing phase. The result of Naive Bayes is obtained
using the Rainbow tool [14]. Recently, the classifiers based



Harmony SVM BCAR
(msup=60) (linear) (msup=5)

acq 95.3 93.6 97.8
corn 78.2 90.3 82.2
crude 85.7 88.9 88.1
earn 98.1 98.0 97.4
grain 91.8 94.6 86.5

interest 77.3 77.7 83.5
money-fx 80.5 74.5 84.4

ship 86.9 85.6 92.6
trade 88.4 75.9 89.8
wheat 62.8 91.8 79.9
Total 92.0 92.0 93.5

Table 3. Classification performance of
Reuters-21578

Harmony BCAR BCAR
(msup=60) (msup=20) (msup=5)

BEP 92.0 92.8 93.5
time(sec) 73 99 333

Table 4. Computing time of Reuters-21578

on SVM have shown state-of-the-art results for text cate-
gorizations. The result of SVM-1 in the third column is
from [3]. They conducted a feature selection based on clus-
tering of the words appeared in the corpus. SVM-2 [25]
is a hierarchical model of base SVM classifiers constructed
with the 3-level hierarchy of the 20 categories. Except for
SVM-1, the rest three classifies used the same feature set
for the training and testing procedures.

BCAR of Table 5 is trained with very low support and
confidence thresholds: 3 and 5% respectively. We limit the
order of the rules k to 2. Let us consider the complexity
of generating association rules. It grows exponentially to
the number of words in the vocabulary. Thus, if we gen-
erated high-order association rules, then the computational
complexity would be unbearable. Fortunately, the classifi-
cation performance did not improve anymore for the orders
higher than two. The value of BEP 90.5 is the best ever
reported among the results for 20 newsgroups. In addition,
the computing time has also decreased compared with that
of SVM-2.

In Table 6, we compare the performances of the clas-

Naive SVM-1 SVM-2 BCARBayes clustering hier.
BEP 83.2 88.6 89.0 90.54
time 8.3 mns 4 hrs 5.3 hrs 4.9 hrs

Table 5. Classification performance of 20
newsgroups

LLSF SVM BCAR
hierarchical w/o weight w/ weight

55 58.7 53.2 61.6

Table 6. Classification performance of
OHSUMED

sifiers which have been tested on OHSUMED. The per-
formance is measured by the F1 averaged for all the class
labels. Yang [23] conducted several classification exper-
iments with various kinds of classifiers on OHSUMED.
Among them, we have put the result of Linear Least Square
Fit (LLSF) classifier in the first column. Yoon et al. [25]
reported a better classification result using the hierarchical
SVM classifier. The weighing on prediction scores in (6) is
very important to OHSUMED where the number of train-
ing examples is unevenly distributed with respect to the cat-
egories; the third column that applies no weighting shows a
poorer performance than the weighted one, the fourth col-
umn.

7 Conclusion

Our approach is different from others in that it generates
as many rules as possible including the rules whose pre-
diction accuracy is moderate or even worse than random
guessing. We proposed a new selection method that fil-
ters rules on the principle of Boosting. In addition, the new
scheme for multi-label classification was provided based on
score-ratio thresholding. By many experiments with rep-
resentative test collections, we showed that our approach
achieves excellent classification performance in the large-
scale sparse data such as text corpora.

We need to decrease the number of class association
rules to lessen the learning time while keeping the classi-
fication performance the same as the original one. In addi-
tion, the parameter setting in the associative classification
depends deeply on the distribution of the training database.
For further study it is worth investigating which aspects of
the distribution affect the performance.
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