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Abstract—Location-based services on mobile devices have 
become a key element in today’s wireless and mobile phone 
infrastructure, which due to their potential for precise personal- 
ization offer interesting opportunities for Semantic Computing. 
However, location information is mostly only available outdoors 
and current indoor localization schemes are not very accurate. In 
this paper, we therefore present a novel approach for indoor lo- 
calization using multiple modalities of information that are easily 
available indoors on handheld devices. We use the microphones 
plus the various wireless signals that are sensed by smartphones 
to serve as input for a novel localization approach. Our proposed 
approach is computationally lightweight and, by making use of 
recent machine learning techniques for integrating modalities, 
achieves greater accuracy than current work in the area. 

Index Terms: localization, indoor, audio, wifi, multimodal 
I. INTRODUCTION 
Location-based services are rapidly gaining traction in 
the online world. An extensive and rapidly growing set of 
online services is collecting, providing, and analyzing geo- 
information. Besides major players like Google and Yahoo!, 
there are many smaller start-ups in the space as well. The main 
driving force behind these services is the enabling of a very 
personalized and intuitive experience. Foursquare for example 
encourages its users to constantly “check-in” their current 
position, which they then propagate on to friends; Yowza!! 
provides an iPhone application that automatically locates dis- 
count coupons for stores in the user’s current geographical 
area; and SimpleGeo aims at being a one-stop aggregator 
for location data, making it particularly easy for others to 
find and combine information from different sources. In a 
parallel development, a growing number of sites now provide 
public APIs for structured access to their content, and many 
of these already come with geo-location functionality. Flickr, 
YouTube, and Twitter allow queries for results originating at 
a certain location. Currently, however, GPS is not available 
indoors or where there is no line of sight with the satellites. 
So the aforementioned services only work very limitedly. For 
this reason, research has recently started on inventing indoor 
localization methods to enable geo-location where it is not 
regularly available. In other words, indoor localization would 



fill an important usability gap for many Semantic Computing 
applications. 
In this paper, we present a novel approach for indoor 
localization using multiple modalities of information that are 
typically available indoors: The presence of microphones in 
the devices that we carry in connection with various wireless 
signals sensed by current smartphones serve to indicate the 
location with about +/- 3 m accuracy. Our proposed approach is 
computationally lightweight and, by making use of recent ma- 
chine learning techniques for integrating modalities, achieves 
greater accuracy than current work in the area. Also the modal- 
ities truly complement each other: wireless signal localization 
is global as it indicates location in a specific building in the 
world with about room accuracy, audio localization is local 
with sub-room accuracy. 
The article is organized as follows. We introduce and 
compare related work in Section II before Section III starts 
to introduce our proposed algorithm, which is extensively 
evaluated in Section IV. Section V finally concludes the article 
and presents future directions. 
II. BACKGROUND 
Our work is based on the fusion of two modalities that 
have previously been used for indoor localization individually: 
wireless signals and acoustics. In the following we therefore 
present related work in the two individual domains. 
A. RSSI-based localization 
Radio Signal Strength Indications (RSSIs) can be translated 
into distances from beacon points by means of theoretical or 
empirical radio propagation models. The following expression 
accounts for a general radio propagation model delivering the 
received power Pr: 
Pr = Pt 
( λ 
4πd 
)n 
GtGr 
Where Pt represents the transmitted power, λ the wave- 
length of the radio signal, Gt and Gr the gains of the transmit- 
ter and receiver antennas respectively, d the distance separating 
them, and n is the path loss coefficient, typically ranging 
from 2 to 6 depending on the environment. The two main 
approaches for the estimation of location making use of RSSI 
values are: 1) fingerprinting, where a pre-recorded radio map 
of the area of interest is leveraged to infer locations through 
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best matching, and 2) propagation-based, in which RSSI 
values are used to calculate distances through the computation 
of the path loss. Propagation-based techniques can face errors 
of up to 50% due to multipath (reverberation), non line-of- 
sight conditions, interferences and other shadowing effects, 
rendering this technique unreliable and inaccurate, especially 
for indoor environments, where multipath is very important. 
Several authors have tried to improve the efficiency of this 
technique for indoor environments, introducing new factors in 



the path loss model to account for wall attenuation, multipath 
or noise [1], but the hardware and software requirements due to 
the complexity of the method and the overall poor accuracy 
achieved makes this approach not feasible for current state 
of the art smart phones. On the other hand, fingerprinting 
techniques have already proven to be able to deliver better 
accuracies [2]. In these techniques, the mobile terminal esti- 
mates its location through best matching between the measured 
radio signals and those corresponding to locations previously 
registered in the radio map. This process consists of two 
stages: 
1) Training phase, also called offline phase, in which a 
radio map of the area in study is built. RSSI values from 
different beacons are recorded at different locations; the 
separation between these chosen locations will depend 
on the area in study, and for instance, for indoor envi- 
ronments this separation can be of around a meter [3]. 
Each measurement consists of several readings, one for 
each radio source in range [4]. 
2) Online phase, in which the mobile terminal infers its 
location through best matching between the radio signals 
being received and those previously recorded in the 
radio map. Localization algorithms employed in this 
case generally make use of deterministic or probabilistic 
techniques. 
Deterministic techniques store scalar values of averaged 
RSSI measurements from the access points [5]. The most 
relevant techniques in this group are closest point, or nearest 
neighbor in signal space [6]; nearest neighbor in signal space- 
average [5], [7], choosing k nearest neighbors and calculating 
the centroid of that set; and smallest polygon, selecting several 
nearest neighbors which will form various polygons, and the 
centroid of the smallest polygon will be considered as the 
estimated location [5]. 
Probabilistic techniques choose the location from the radio 
map as the one with the highest probabilities, and usually 
require the storage of RSSI distributions from the different 
beacons at each location in the radio map [6]. Fingerprinting 
techniques are especially appropriate for the range of frequen- 
cies in which GSM and WiFi networks operate (aprox. 850 
MHz to 2.4 GHz) because of two main reasons [4]: the signal 
strength at those frequencies presents an important spatial 
variability, and also a reliably consistency in time (despite the 
variable nature of radio signals). 
Considering GSM as an example for cellular communi- 
cations technology, although it makes use of power control 
both at the mobile terminal and base station, the data on 
the Broadcast Control Channel (BCCH) is transmitted at 
full and constant power, making this channel suitable for 
fingerprinting [4]. Several authors have tried this approach for 
localization but it requires dedicated and complex hardware. 
In order to improve the accuracy of this approach, a selection 
among all the measured signals is recommended, rejecting 
those which are either too noisy, too stable across all areas 
or simply do not provide enough information [3]. 
Regarding WiFi technology, several research groups have 
already tried to leverage RSSI fingerprinting for localization: 
• Radar [8]: represents the first fingerprinting system 

achieving the localization of portable devices, with ac- 
curacies of 2 to meters. 
• Horus [9]: based on the Radar system, it manages a 

performance improvement making use of probabilistic 
analysis. 
• Compass [10]: applies probabilistic methods and lever- 

ages object orientation to improve precision, claiming 
errors below 1.65 meters. 
Besides cellular communications and WiFi technologies, the 



RSSI fingerprinting technique for localization can be utilized 
with other radio frequency technologies including: 
• Bluetooth, which despite the extra infrastructure require- 

ments in comparison with WiFi, it can achieve accuracies 
in the range of 1.2 meters. 
• Conventional radio, can also be used for localization. 
However, the requirement of dedicated hardware and the 
fact that devices can be located only down to a suburb, 
represent important drawbacks. 
• Digital TV signals have also proved to be suitable for 

localization, but subject to dedicated hardware require- 
ments and low resolutions. 
• Zigbee technology can also be applied for localization 

through fingerprinting [11], achieving accuracies of ap- 
proximately 2 meters. However, this technology also 
requires extra hardware for a correct implementation, 
constituting a major drawback. 
Nevertheless, all the existing approaches use dedicated 
and complex hardware, making them not feasible for direct 
implementation in current state of the art smart phones. 
B. Audio-based localization 
Different approaches have been developed to analyze a 
scene using acoustics, such as those derived from Computional 
Auditory Scene Analysis (CASA). A very important practical 
method is to measure the time-delay-of-arrival on different 
microphones and thus leveraging the travel time differences 
of the signals to microphones in different positions, such as 
the work presented in [12], [13]. The current standard method 
for computing the time-delay-of-arrival features is the so- 
called GCC PHAT algorithm [14]. The idea is to correlate the 
signals from the different microphones under the assumption 
that they are identical but phase-shifted. A very important 
advantage of the technique is that the microphone positions 
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Fig. 1. Our localization application on two different Android-based phones. 

do not have to be known. In [15] the authors present a novel 
audio-visual approach for unsupervised speaker localization. 
Using recordings from a single, low-resolution room overview 
camera and a single far-field microphone, a state-of-the-art 
audio-only speaker localization system (traditionally called 
speaker diarization) is extended so that both acoustic and 
visual models are estimated as part of a joint unsupervised 
optimization problem [16]. The speaker diarization system 
first automatically determines the speech regions, the number 
of speakers, and estimates “who spoke when”. Then, in a 
second step, the visual models are used to infer the location 
of the speakers in the video. The experiments were performed 
using 4.5hours of real-world meetings. However, the system 
assumes stationary microphones and a stationary camera. 
Like most audio and visual localization methods, this method 
focusses on a specific scenario. The idea of the work in this 
article is to enhance wireless localization to sub-room accuracy 
by adding acoustic localization, independent of a scenario. 
To the best of our knowledge, our proposed indoor lo- 
calization application is the first one to not only accurately 
leverage RSSI fingerprinting on smart phones but to also 
include acoustic processing as a second modality. 
III. PROPOSED APPROACH 
In the following section we explain our approach by modal- 
ity before discussing the multimodal integration step. 
A. Wireless 
We have studied the possibilities offered by three available 
resources in smart phones: WiFi radio, cellular communi- 
cations radio and accelerometer, with the aim to build a 



multimodal approach for localization. As will be explained 
later in this Section, the consideration of WiFi radios rep- 
resents the most reliable approach for indoor localization in 
our experimental setup in buildings across the University of 
California, Berkeley campus. In fact, RSSI information from 
WiFi beacons deployed within buildings allows us to obtain 
a radio map of different locations via fingerprinting. We can 
estimate locations through the comparison of the current RSSI 
measurements with those stored in the radio map. Different 
Fig. 2. Visualization of the result of applying acoustic-only localization as 
described in Section III-B. The numbers indicate different positions of speak- 
ers and the dots represent the localization results. Audio-only localization 
already shows promising accuracy and requires no calibration. However, it 
needs further information to infer absolute geo-location. 

attempts to obtain RSSI-based indoor localization without 
fingerprinting show an important loss of accuracy [17]. Also, 
many fingerprinting-based localization systems make use of 
dedicated hardware for the collection of data in the training 
phase. Then, in the measurement phase, the actual mobile 
device used for localization is different resulting in an error 
called signal reception bias [18] caused by differences in 
antenna characteristics and measurement acquisitions schemes 
between different equipment. Our experiments showed an av- 
erage difference of approximately 10 dB between RSSI values 
measured with a Dell Latitude laptop and those measured 
with a Motorola Droid cell-phone. Consequently, we have 
integrated both the training and measurement phases into the 
same mobile device. The feature vectors extracted consist 
of the RSSI values at each second for each of the stations 
(see Figure 1). To the best of our knowledge, our application 
is the first one following this approach with smart phones. 
Moreover, the way the fingerprints are taken in the training 
phase should reproduce as accurately as possible in the way 
the measurements will be carried out in the localization 
phase. In this sense, the orientation of the phone (obtainable 
from accelerometer and magnetometer data) helps enhance the 
localization accuracy. 
B. Audio 
The overall idea of integrating audio is that most mobile 
devices, such as cell-phones or laptops have at least one micro- 
phone. Via networking, these devices can then communicate 
and form a microphone array which can be used to aid and 
perform localization, as discussed in Section II-B. 
We have explored several possibilities to use audio for 
localization. Given several microphones distributed in a room 
and assuming the positions of the microphones are fixed, the 
first and most straightforward approach would be to measure 
the energy at each microphone, thus inferring the distance of 
the audio source to each of the microphones. However, this 
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Method 
Room 
Closest Point 
85 % 
Nearest Neighbor 
78 % 
Smallest Polygon 
84 % 
NN in signal and AP averages 
87 % 
TABLE I 
COMPARISON OF ACCURACIES OF DIFFERENT WIFI-ONLY APPROACHES 
FOR LOCATION ESTIMATION (TABLE SHOWS % SUCCESS) WITH ABOUT 

ROOM-ACCURACY (9 m2). 

is not very robust as acoustic signals tend to be fairly sparse, 
and instead we use the cross correlation between each audio 
channel, and the corresponding delay. With a sampling rate of 
48000 samples per second, and taking 340m/s as the speed 



of sound, we get that one sample of delay is approximately 
1 centimeter of displacement. Thus, we can accurately detect 
changes of fractions of a meter, which in our scenario allows 
us to achieve good accuracies. Note that since the speed 
of sound can be assumed constant, no calibration step is 
needed for this localization approach. The delays between 
each channel is computed with BeamFormIt [19], and the 
delays are treated as feature observations in a standard Hidden 
Markov Model (HMM), where each state corresponds to one 
particular position in the room. Figure 2 shows the distinct 
positions in the room, with the features from the delay features 
projected onto a 2 dimensional PCA space (note that we have 
4 microphones and, thus, our original features space of delays 
is 3 dimensional). 
C. Multimodal integration 
When integrating the WiFi measurements and the acoustic 
delay features several issues must be addressed. First, the 
sampling rate of the extracted delay features is 100 samples 
per second, whereas the wireless measurements are taken once 
every second. Thus, we consider observations every second 
by averaging the delay features to match the wireless mea- 
surements. The next consideration is offset synchronization 
between both modalities. In our case, we assume that both 
modalities are aligned (i.e. we manually align them), although 
in a fully automated system this may not be trivial as each cell 
phone and the recording devices for the microphones must be 
synchronized with precision of at least half a second. One 
possibility to add robustness to this approach is to perform 
speaker diarization [16] (see Section II-B) on the audio track, 
to smooth the state transition of the HMM according to speaker 
turns. Since in our scenario, only four positions far apart were 
considered, we did not perform this step. However, both in 
terms of complexity and integrability, this can be trivially 
added depending on the specific needs of the task. 
To leverage the information from both modalities, we con- 
sider a discriminative version of a sequence model, similar 
to a Hidden Markov Model (HMM). Even though more 
elegant solutions such as the Max Margin Markov Networks 
(M3N) [20] have been proposed, we use an approach that 
consist of two simple steps. It performs similarly and is easier 
Modality 
Accuracy (SVM) 
Accuracy (SVM+CRF) 

Random 
25% 
25% 
Audio 
86% 
91% 
Wifi1 
84% 
87% 
Wifi2 
33% 
35% 
Audio + Wifi2 
86% 
92% 
TABLE II 
COMPARISON OF THE ACCURACIES OF DIFFERENT MODALITIES FOR 
LOCATION ESTIMATION OF FOUR CORNER POINTS IN A 9 m2 ROOM 

(TABLE SHOWS % SUCCESS). 

to implement. The details are described in [21]. The first step 
is a training step using two Support Vector Machine (SVM) 
classifiers, which are trained separately on the sensor output of 
each modality. The output values of the SVMs are interpreted 
as confidence values between -1/1 for each class and are 
trained using a separate training set. Then, using the binned 
confidence values for both modalities as binary features in 
a Conditional Random Field (CRF) the sequential temporal 
behavior of the data is modeled. 
IV. EXPERIMENTAL RESULTS 



In the following section we present accuracy measurements 
that provide evidence for the accuracy of the localization, as 
well as the value gained from the multimodal integration. 
A. WiFi-only Baseline 
First, we carried out tests to measure different radio fre- 
quency signal strengths within the Cory building in the 
University of California, Berkeley campus. WiFi technology 
offers a reliable approach for indoor localization in a build- 
ing, i.e. room-accuracy, because of the important deployed 
infrastructure of WiFi access points providing coverage in 
the whole building. For the measurement of the signals and 
practical implementation of our localization application, we 
have used smart phones running on Android, in particular the 
G1 and the Droid. The sensitivities of the Android phones 
range from -45 dBm to -104 dBm. It must be noted that values 
below -85dBm are generally too inconsistent to be leveraged 
as reference. Consequently, RSSI values above -80dBm are 
desirable in order to obtain reliable results. Processing this 
information statistically, we have built an Android application 
for localization, and we have tested it in locations where 25 
WiFi radios in average were listened (approximately 40% 
of them with RSSI above -80dBm), obtaining acceptable 
accuracies to discriminate between rooms, as shown in Table I. 
It must also be noted that as the number of WiFi radios (and 
their RSSI values) that can be listened in a specific location 
decreases (e.g. only 2 WiFi radios with RSSI values above 
-75dBm), our application’s location accuracy drops. 
B. Multimodal Approach 
In our experimental setup, each WiFi access point has 5 
radios (each represented by a MAC address). RSSI values (in 
dBm) from the same access point can show important standard 
deviations in between consecutive scans (within the same 
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radio) and also in between different radios within the same 
access point. Consequently, averaging of values both within 
the same access point and over time provides much more stable 
values that can successfully be used as a fingerprint component 
of each particular location. We call this approach Nearest 
Neighbor in signal space and access point averages, and the 
results summarized in Table I show that our approach can 
outperform existing deterministic techniques (the resolution 
metric, in percentage, accounts for the number of true positives 
obtained during localization tests). 
In order to test the most demanding application, that is to de- 
tect and track people within the same room, we performed the 
audio experiments in a controlled scenario, more specifically in 
UC Berkeley’s Tele-Immersion laboratory [22]. This is a well- 
defined space of 3 meters by 3 meters with four microphones 
situated on the corners of the space. We measured the audio 
delays at the exact same points as the WiFi experiments using 
the techniques described in Section III-B. One of the main 
challenges imposed by the Wifi data is that it depends on 
external factors such atmospheric conditions or position of 
objects in the room [23]. Therefore, measurements performed 
close to each other (i.e. within the virtual space) vary greatly. 
Therefore, either the WiFi subsystem needs to be retrained or 
the accuracy drops dramatically. Adding audio to the system 
effectively help to adjust for this effect. 
In our first experiment, separate SVM classifiers were 
trained for audio and Wifi on the four corners of the vir- 
tual space. The accuracy drops from 84%, to 33% (barely 
above the baseline 25% accuracy of random choice) if the 
WiFi measurements are taken on a different day rather than 
within minutes of each other (this refers to Wifi1 and Wifi2 



respectively in Table II). We assume that calibrating the WiFi 
subsystem so often defeats the purpose of this experiment. 
Therefore we only focus on the most challenging (and there- 
fore least accurate) scenario where the test measurements 
were taken on a different day. This results in much less 
temporal correlation due to the time variance of the channel. 
In a second experiment we added the use of a Conditional 
Random Field (CRF) for temporal smoothness. This helps in 
all the cases. However, the gain of having the WiFi modality 
is quite modest since the baseline accuracy of the system 
in this accuracy range is quite low, due to the challenging 
fact that the conditions between training and testing on the 
WiFi signal strength is dependent on external, non-controllable 
factors such as weather. To better train our models, differences 
between signal strengths rather than absolute values could 
be used, as well as exploring possible adaptations/corrections 
of the models depending on varying conditions (or training 
several models for each of them). We expect the accuracy 
to drop slightly, when microphones are not stationary but as 
described in Section III-B, the audio localization does not 
require the knowledge of the positions of the microphones 
and therefore requires only limited stationarity. 
In summary one can see that the multimodal approach 
performs much better then the WiFi-only method even when 
compared to only room-accuracy. 
Fig. 3. Localization application in the Droid showing location information 
as multimedia messages. 

V. CONCLUSION AND FUTURE WORK 
This article described a novel indoor localization method 
based on the integrated use of WiFi signals and acoustic 
signals picked up through microphones. We presented an 
implementation (see also Figure 3) and compared it to related 
work. 
Our work indicates that a multimodal approach is feasible 
and that the integrated use of two modalities readily available 
on any mobile device benefits the accuracy. While for this 
initial experiment stationary microphones were used, the idea 
is to combine the microphones of different mobile devices and 
have them synchronize through network communication. Also, 
we assume that in the future RSSI fingerprints can be stored in 
central databases (as currently done in Google Maps) and/or 
communicated peer-to-peer among different handheld devices. 
We believe indoor localization will enable location-based 
services to be much more intuitive since it allows these service 
to properly work in places where GPS signals are currently not 
present. In other words, location based services could work 
in university buildings, malls, airports, and inside museums 
and enable the next generation of intuitive and personalized 
Semantic Computing experiences. 
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