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Abstract—Researchers have found that Word Sense Disam-
biguation (WSD) is useful for tasks such as ontology alignment.
Many other Semantic Web applications could also be enhanced
with WSD results of Semantic Web documents. A system that
can provide reusable intermediate WSD results is desirable.
Compared to the top sense or a rank of senses, an output of
meaningful scores of each possible sense informs subsequent
processes of the certainty in results, and facilitates the appli-
cation of other knowledge in choosing the correct sense. We
propose that probabilistic models, which have proved successful
in many other fields, can also be applied to WSD. Based on such
observations, we focus on the problem of calculating probability
distributions of senses for terms. In this paper we propose our
novel WSD approach with our probability model, derive the
problem formula into small computable pieces, and propose
ways to estimate the values of these pieces.
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I. INTRODUCTION

Syntactic matching based on linguistic resources is fre-

quently used in ontology alignment techniques [1]. Magnini

et al. [2] have found that understanding linguistic meaning

helps find a possible match. Castano et al. [3] rely on

linguistic interpretations to find semantic affinity between

two concepts. We believe that this work indicates that Word

Sense Disambiguation (WSD) plays a very important role

in ontology alignment. Besides, it is useful in many other

scenarios, such as, but not limited to,

• Interactive keyword-based ontology search engine:

When a user enters a keyword, the system returns a

list of documents that contain the exact keyword, or

contain the synonyms or related words of the keyword.

The user could then refine the results by specifying

which sense the keyword means and the system returns

the ones that match only the specified sense.

• Natural language interface to knowledge bases: The

interface tries to match users’ words to the terms in the

knowledge base (KB). The input from users and the

terms in the KB can be different. The system should

understand the meaning of words both from KB and the

users, and also check semantic constraints from KB.

In these scenarios, WSD is helpful in two directions. First,

it helps find concepts that have different syntactic forms but

should be matched. It also avoids aimless expansion of a

word to every possible synonym of its multiple senses.

Given so many use cases and applications, we want to

develop a reusable component for disambiguating the senses

of words in ontologies. WordNet is a common lexicon

reference for denoting senses. One common approach is to

annotate the target classes by adding mapping axioms to

WordNet ontologies [4], which tells what synset in WordNet

the concept of each class can be matched to. While the

mapping axioms export the senses to Resource Description

Framework (RDF) applications, there are two drawbacks.

First, there is little work on automatic generation of sense

mapping axioms. Second, the class-to-synset granularity

makes it sometimes impossible to annotate classes of com-

pound words or a single word in the compound word. In

this case, automatic WSD on single words can be useful.

Based on these observations, we address the problem of

WSD in Semantic Web documents. In addition to traditional

WSD, it involves two new problems: how to decide context

by axioms, and how to compute results that are meaningful

to subsequent processes. Without a high confidence, a good

intermediate result should not be a single top sense. A rank

or the scores within the WSD process may be useful, but

still be insufficient, because the score and rank do not tell the

exact distinctions between candidates. A probability distri-

bution for each ambiguous word provides the most complete

information. As probabilistic models have proved successful

in many other fields, we propose a novel WSD approach by

using a probability model and calculating the distribution

as the score results. We will first briefly mention the works

that inspire our idea in Section II; then in Section III we

introduce how we utilize WordNet; in Section IV we propose

our probability model and derive it to computable parts; in

Section V we continue with the formula and introduce our

approach of estimating the relatedness probability of two

senses; in Section VI we present and analyze our preliminary

experimental results; and lastly in Section VII we conclude

our work and point out future work.

II. RELATED WORK

Banek et al. [5] also stress the importance of WSD

in ontology alignment and they recommend WSD as the



primary step of ontology integration. They propose their

approach of disambiguation on class namesby using the

names of the related classes in RDFS axioms as context.

However, hey did not consider the names of properties

or names of compound words, and only used a limited

subset of axioms in the document. They only reported the

experimental results on accuracy of top senses.

WSD techniques and many ideas we use in this paper

are inspired by many previous traditional WSD works,

especially the ones that are knowledge based and exploit

information from a given lexicon. One category of these

approaches relies on the definition of senses. Lesk [6] first

invented the gloss overlap algorithm that calculates the over-

lap between the definitions of two target words. Banerjee and

Pedersen [7] developed the extended gloss overlap method

by also considering the glosses of other related senses.

Another category of approaches uses semantic similarity

measures. For example, Resnik [8] and Jiang and Conrath [9]

used the notion of information content from corpus statistical

information and calculated the similarity distance between

senses. A third category of approaches explores the graph

structures and tries to find a lexical chain between target

words. Hirst and St-Onge [10] introduced the first compu-

tational model of lexical chains and counted the number of

times the chain changes direction. A comprehensive review

of WSD can be found in [11].

However, most of the previous work define their own

scores, based on their own ad hoc heuristics. If we can inte-

grate these heuristics into a more theoretical framework, we

may get the combined advantages from different approaches.

Also instead of ad hoc scores, probability distributions have

clear meanings, and should be easy to reuse. Based on this

motivation, we propose our probabilistic approach for WSD

in Semantic Web documents.

III. UTILIZING WORDNET

WordNet is a widely used lexicon for the English lan-

guage. It groups English words into sets of synonyms called

synsets, provides short, general definitions, and records

the various semantic relations between these synsets. For

convenience, we first describe several functions in WordNet.

A term is a word or a phrase that can be found in

WordNet. A term may have multiple senses, i.e. WordNet

provides a function syn which takes a term as input and

outputs a set of synsets of this term. Inversely, one could

also find the word forms of a given synset by the function

wordForm. A term bound with a synset of it is a word

sense. The gloss of a synset is the definition of this synset

in WordNet. The function gloss takes a synset as input and

produces a list of words in the glossary of it as output.

A synset is related to other synsets. WordNet defines

a set E of relation or edge types between synsets. For

example, for a noun synset, there are hypernyms (super

class), hyponyms (sub class), part holonyms (part of), etc.

Note for a given synset the available edges is a subset of

E . A function relEdge returns the available edges of a

synset, i.e. relEdge : S → P(E), where S is the set of all

synsets in WordNet, and P(·) means the power set. Given

a synset and an edge type, we could get the synsets related

via this type, which is a subset of the set S of all synsets

in WordNet. A function relSyn provides such information,

i.e. relSyn : S × E → P(S). Besides the edges defined

in WordNet, we add a new type of edge “DONE” which

links every synset to null. The usage of this edge will be

discussed later.

In addition, WordNet provides the statistical informa-

tion for synsets and terms. A function tagCount tells the

frequency of a word sense against a text corpus1. From

the corpus statistics, we can estimate different types of

probabilities. We assume the probability of a given word

sense (S, T ) is in proportion to the frequency. Thus, the

probability that some sense S is the meaning of a given term

T is the ratio of the frequency of that word sense against

the total frequency of that term, i.e.

P (S = s|T = t) =
tagCount(s, t)

∑

si∈syn(t) tagCount(si, t)
(1)

Similarly, the probability that one tends to use a term T for

a given sense S is as follows.

P (T = t|S = s) =
tagCount(s, t)

synTC(s)
(2)

where the function synTC of a synset s counts the fre-

quency by summing the tag counts of word senses including

all possible variations on the word form of S, i.e.

synTC(s) =
∑

wi∈wordForm(s)

tagCount(s, wi) (3)

Equations (1) and (2) are probabilities w.r.t. the relations

between terms and senses, which reflect our language habits.

In some scenarios, we care more about the concept fre-

quency, that is, how frequently we meet an instance of a

given concept, regardless of how frequently we might use

the exact synset of it. For example, the term “Hominidae”

is very rare in real world use, but the concept of this term

is frequently encountered because it is a generalization of

the concept of “human”. Thus we define the function cf
for counting the concept frequency of a synset S: for nouns

it is the size of the set HS that consists of its direct and

indirect hyponyms(subclasses); otherwise it is the same as

the synTC of S, i.e.

cf(S) =

{ ∑

Ss∈HS
synTC(Ss) , if S is a noun

synTC(S) , otherwise
(4)

Equations (1) and (2) are the corpus probability formula

we get from statistics against a given corpus. A domain

1We set the tag count of a word sense equal to 1 if it is 0 in WordNet.



specific corpus, if available, can provide much better prior

knowledge. Equation (1) gives us a prior probability distri-

bution for the meaning of a given term, without considering

the context. Our goal is to provide a better estimation of

such probabilities with contextual information.

IV. PROBABILITY WITH CONTEXT

With contextual information, we can provide better prob-

ability distributions for the meaning of terms. In this sec-

tion, we formally define the problem probabilistically, apply

some assumptions, and break down the problem into small

computable pieces.

In a Semantic Web document, there are many URI re-

sources. A URI resource could be either a class, a property,

or an instance that we want to match to something else.

Each URI resource has some kind of associated texts, such

as rdfs:label, rdfs:comment, or even a parse result of its URI,

which are the syntactic information sources. An associated

text can be further split into zero or more WordNet terms.

There might also be words that cannot be found in WordNet,

which we ignore here.

To avoid discussion of minutiae, let us simplify the

problem by only considering disambiguation within a single

ontological document. In real world applications, we might

also want to consider a set of ontological documents that

contain mappings and other alignment axioms; or even

consider the whole KB so that the associated texts of

instances are also considered and the RDF triples related to

instances are available as clues for disambiguation. Without

loss of generality, such a KB, or a set of documents can be

viewed as a virtual document.

Now we formally define our problem. Given an onto-

logical document O, and a WordNet term T appearing

in the associated text of an RDF resource U ,we want

to find the probability that this T means the sense S0,

i.e. P (S0|O,U, T ). The condition consists of three parts:

the ontology, the URI resource, and the term we want to

disambiguate. The discrete random variable S0 has a domain

of S and stands for the event that T means S0. All the

possible senses are exclusive and exhaustive, thus the sum

of all possible senses should be 1, i.e.
∑

s∈syn(T )

P (S0 = s|O,U, T ) = 1 (5)

While T constrains the possibility of values of S0, O and

U are actually the context that have effect on the distribu-

tion. Equation (5) defines an ideal probability distribution

without information loss, however we have to make some

simplifications to estimate it.

Researchers in WSD usually simplify the condition part

to some context. The context in theory could be anything,

such as very rich structured data. It is basically whatever we

want to know from the document in the process of WSD. In

traditional WSD, the context is usually defined as a bag of

Figure 1. An example of axiom distances. There are three URI resources
in this example: Paper, hasAuthor, and Peron. The axiom distance between
any two of them is 2.

words. We follow this tradition and also define the context

in our problem as a bag of terms W1,W2...Wn, i.e.

P(S0|O,U, T ) ≈ P(S0|T,W1,W2, ...,Wn) (6)

In traditional WSD, such a bag of words is usually the

neighbor words of the target word in the free text document.

A window size is set to decide how many words around the

target word are included. We shall define the axiom distance

which is similar to the window size for selecting context.

We first define the set of relation triples as all the

explicitly stated triples in the document, excluding the ones

that use a term from the RDF/RDFS/OWL namespace as

its subject or object. Based on these relation triples, we can

draw an undirected graph, the relation triple graph: each

node stands for a unique RDF resource, (which can be a

blank node in RDF graphs), and every two nodes, including

the properties, that appear together in at least one relation

triple are connected with an undirected edge. For any two

URI resources, we define the axiom distance as the number

of edges in a shortest path connecting them in this relation

triple graph 2. An example is given in Figure 1.

We define the function context as follows. It takes three

arguments. The first is the term T we want to disambiguate,

the second is the URI resource U of which the label contains

T , and the third is an integer that indicates the maximum

axiom distance. The output is a bag of words that appears

in the labels of URI resources within axiom distance of d of

U excluding the ones identical to T . There are two special

cases of this function. If we set the axiom distance d = 0, it

means we only consider the terms that appears in U ’s label.

If d = ∞, we consider the labels of every URI resource

within the connected RDF graph that contains U . 3

Banek et al. [5] use a very similar way to find context,

but they only consider class names in 4 kinds of axioms, i.e.

subclass, superclass, domain and range. Our definition tries

to obtain more context words by considering all the axioms

and all URI resources with associated texts. It is worth

pointing out that our approach of finding context does use

2We consider elements within the same parseType Collection to be
connected to an anonymous node, and the distance between any two
elements in such collections is 2

3In practice, there might also be resources that have no axioms in the
ontology. The context selection problem in such cases is out of the scope
of this paper.



the structure in RDF graphs, but does not use the semantics

in it. This makes our approach still a syntactic matching

process, and thus is not redundant with subsequent semantic

based matching processes.

Once the context is defined, we can further derive the

formula in Equation (6) to computable parts as follows.

P (S0|T,W1, ...,Wn) =
P (W1, ...,Wn|T, S0) · P (S0|T )

P (W1, ...Wn|T )

=
1

P (W1, ...Wn|T )
· P (S0|T ) ·

∏

P (Wi|S0, T ) (7)

We first apply Bayes’ rule, then apply the naive Bayes

assumption that the occurrence of each Wi in the bag is

conditionally independent with others given the disambigua-

tion target word sense, and we have Equation (7). We can

interpret this equation as follows. The probability before

derivation is the chance that term T has the sense S0

when a bag of words W1, ...,Wn co-occur in the context.

In the resulting formula, P (W1, ...Wn|T ) is the probability

that the bag of words co-occur given that T occurs. Since

Equation (5) holds, this part is just a normalization factor

for estimating the probability, so we do not need to calculate

it. P (S0|T ) is the corpus probability in Equation (1). The

product of P (Wi|S0, T ), is the co-occurrence of Wi given

the word sense (S0, T ). It can be interpreted as the probabil-

ity that each term Wi is mentioned when people attempt to

define something referred by the target word sense. It tells

the relatedness between a term and a word sense. While

using WordNet, the condition that a word sense is given

is almost the same as the condition that a synset is given,

because they provide almost the same information about

relations to other synsets or terms except the “antonym”

relation. Thus we can use the approximation as follows.

P (Wi|S0, T ) = P (Wi|S0) (8)

While diverse approaches of estimating P (Wi|S0) may be

chosen, again we follow the most common one in traditional

WSD: the relatedness between synsets. Now we try to trans-

form and relate P (Wi|S0) to P (Sy = s|S0), s ∈ syn(Wi).
The intuition of estimating relatedness between synsets

is that more information from WordNet can be utilized if

we investigate synsets. P (Wi|S0) is the probability that

Wi is used in the ontology to define S0. P (Sy|S0) is the

probability that the person thinks of the synset Sy of Wi

when attempting to define S0. We can model the cognitive

process with the Bayesian Network reflecting the causal

relationships as follows.

S0 → Sy → Wi

The person first has a synset S0, or say a concept, in mind.

This S0 leads the person to think of another synset Sy , with

some probability, in the purpose of defining or explaining

this concept in the ontology. At last this Sy is represented

with the term Wi by this person. Many synsets can appear

given S0 with some probability, however only the synsets

Sy ∈ syn(Wi) have some probability to cause Wi. Note

here Sy is a hidden variable with discrete values. Following

the Bayesian Network rules, we have the following equation.

P (Wi|S0) =

∑

∀s P (S0)P (Sy = s|S0)P (Wi|Sy = s)

P (S0)

=
∑

s∈syn(Wi)

P (Sy = s|S0) · P (Wi|Sy = s) (9)

P (Wi|Sy) is the corpus probability in Equation (2). The

probability P (Sy|S0) reflects relatedness between synsets.

V. ESTIMATION OF RELATEDNESS BETWEEN SYNSETS

In order to find the relatedness between two synsets S0

and Sy , we may need to explore the synset graph in WordNet

because S0 and Sy might not be directly related but are

indirectly related via other synsets. Thus, we start the synset

expansion from the given synset S0 with the goal of finding

chains to Sy . In such expansion, the process that people think

of more synsets starting from S0 is also simulated, thus we

propose a model and algorithm that estimates P (Sy|S0).

A. Synset Expansion Model

We model the expansion as steps of exploration to neigh-

bors in the synset graph from the given synset S0, with

probabilities of deciding which synset to choose at each

step. A step of expansion consists of two decisions. First

it chooses the WordNet relation type for this step. Some

relation types such as “hypernym” have higher probabilities

than others, because the connections to other synsets often

pass their hypernyms. For example, the synset cat#n#1

is connected to paw#n#1 via its hypernym feline#n#1.

P (E1|S0) denotes such probability. In the real world, this

reflects the probability that one thinks of a WordNet relation

type E1 when he tries to think about expansion of a synset

S0 in order to define it. The event of deciding a type of

WordNet relation edge given the current synset has exclusive

and exhaustive values, i.e.
∑

e∈relEdge(S0)

P (E1 = e|S0) = 1 (10)

The second decision of expansion continues with a synset

that follows the selected relation edge, and a related synset

is selected with some probability, P (S1|S0, E1). This can

be viewed as the probability that one thinks of a synset S1

when he tries to think about a synset related to S0 with a

given type of relation E1. Similarly, the event of deciding

the synset following the relation edge we have chosen also

has exclusive and exhaustive values, i.e.
∑

s∈relSyn(S0,E1)

P (S1 = s|S0, E1) = 1 (11)

Following Equation (10) and (11), we can derive

P (Sy|S0) at the first step of expansion as follows.



P (Sy|S0)

=
∑

e∈relEdge(S0)

P (Sy, E1 = e|S0) (12)

=
∑

e∈relEdge(S0)

P (Sy|S0, e) · P (E1 = e|S0) (13)

=
∑

e∈relEdge(S0)

∑

s∈relSyn(S0,e)

P (S1 = s, Sy|S0, e) · P (E1 = e|S0) (14)

=
∑

e∈relEdge(S0)

∑

s∈relSyn(S0,e)

P (Sy|S0, E1 = e, S1 = s) · P (E1 = e|S0) · P (S1 = s|S0, e)

(15)

1

Equation (12) and (14) are derived by marginalization.

Equation (13) and (15) can be derived by reforming the

conditional probability. Equation (15) is the result of first

step expansion. P (Sy|S0, E1, S1) shows that we expand the

synset S0 to its 1st level neighbors, if we can further find

the relatedness between S1 and Sy , we know that S0 and Sy

are somehow indirectly related via S1. Then we can continue

the expansion at the second level between S1 and Sy .

We define a chain after the l-th expansion as Cl =
S0, E1, S1, ...El, Sl, l = 0, 1, .... We now show the formula

for the (l+1)-th expansion in general case. Note that when

l = 0, the expansion is the same as above. Deriving the

formula is similar to Equation (12)-(15).

P (Sy|Cl)

=
∑

e∈relEdge(Sl)

∑

s∈relSyn(Sl,e)

P (Sy|Cl+1) · P (El+1 = e|Cl) · P (Sl+1 = s|Cl, e)

(16)

1

Equation (16) suggests a recursive algorithm for calcu-

lating the relatedness probability for two different synsets.

We should also define the exit of recursion, i.e. at some

step we should stop expanding the chain C and assign some

value to P (Sy|C). We implement it by adding an edge type

“DONE” with a small probability at each step. This “DONE”

edge expands the last synset Sl of the current chain Cl

and links to null with probability 1. It indicates we want to

force the expansion of this branch to stop and see the direct

relatedness between synset Sl and Sy . We further make the

assumption that only the last synset in the stopped chain

affects the probability.

P (Sy|Cl, El+1 = DONE, Sl+1 = null) = P (SD
y |Sl) (17)

P (SD
y |Sl) is the probability that Sy is directly referred given

Sl. We use SD
y to denote the event that Sy is directly related,

which also has discrete values. We shall discuss estimation

of direct relatedness later.

Once we have that defined, we have a finite set of chains

CS to be expanded, then we can rewrite P (Sy|S0) as follows

in a simpler way.

P (Sy|S0) =
∑

c∈CS

P (Sy|C = c)P (C = c|S0) (18)

P (C = c|S0) is the probability of the chain c that starts

with S0. Letting L be the total steps of expansion in c, cl

be the sub chain at the l-th expansion, el and sl be the edge

and synset selected at the l-th step, we have

P (C = c|S0) =
L
∏

l=0

P (el+1|cl) · P (sl+1|cl, el+1) (19)

Equation (18) provides another way of understanding the

nature of our model. We can also model a Bayesian Network

causal graph that leads to Equation (18).

S0 → C → Sy

One intuition of exiting the expansion is that we should

stop expansion if the chain is too long. It is unlikely that

one synset will remind people of another synset if this is

only a distant indirect relation. Mathematically, it means the

chain has a very low probability, i.e. P (C|S0) < ǫ. In this

case, we ignore the further expansions that are unlikely to

happen, and force the chain to stop expansion by adding a

DONE edge with probability 1 after it. i.e.

P (Sy|Cl) = P (Sy|Cl,DONE, null) = P (SD
y |Sl) (20)

Another problem is cyclic chains. Mathematically we

have no problem in computation, because cycles make the

probability of the chain P (C|S0) decrease and as the length

of the chain approaches infinity, its probability approaches

0. However in reality, we believe people tend to avoid such

cyclic thinking in their mind when they try to associate

synsets. Thus we remove those expansions that lead to cycles

from the possible expansion branches. We shall discuss how

we decide possible edges for expansion later in Section V-C.

There are three probabilities we shall estimate: the direct

synsets relatedness probability P (SD
y |Sl), the conditional

edge expansion probability P (El+1|Cl), and the conditional

synset expansion probability P (Sl+1|Cl, El+1). We first

introduce our simple estimation on P (Sl+1|Cl, El+1). We

assume the probability that Cl is expanded to Sl+1 in edge

El+1 is decided by cf(Sl+1) in Equation (4), for those

synsets that are targets of that edge El+1. In consistency

with Equation (11), we have the normalized estimation.

P (Sl+1|Cl, El+1) =
cf(Sl+1)

∑

se∈AS
cf(se)

(21)

In the real world, this equation implies that people are more

likely to think of synsets that are frequently met. The set

AS is the set of available synsets that are in the set of

relSyn(Sl, El+1) but not in the current chain Cl.

B. Estimation of Direct Relatedness between Synsets

P (SD
y |Sl) tells the direct relatedness between synsets.

Here we introduce three different ways to estimate it. A

straightforward idea is that we can consider the case that Sy

is the same as Sl. Thus we have the first estimation.

P1(S
D
y |Sl) = 1 iff. Sy = Sl , 0 otherwise (22)



However in practice this may not perform well, because it

is useful only if we find a chain connecting two synsets

S0 and Sy. Since WordNet does not provide every possible

connection between synsets in its synset graph, merely de-

pending on finding explicit chains often fails. For example,

there exists no reasonable chain between person#n#1 and

name#n#1, which we know are somehow related.

One approach to overcome this problem is using the gloss

in WordNet. If some word form Ty of Sy happens to appear

in the gloss of Sl, it is evidence that they are related, or

mathematically P (SD
y |Sl) > 0. This gives us an approach

to estimate P (SD
y |Sl) with P2(S

D
y |Sl) based on gloss.

P2(S
D
y |Sl) = max

Ty∈wordForm(Sy)
p(Ty, gloss(Sl)) · P (Sy|Ty)

(23)

There are two parts in the equation. The first part

p(Ty, gloss(Sl) is a function that tells the portion of Ty in

the gloss of Sl, which will be defined soon. The second is the

corpus probability in Equation (1), which is the probability

that Ty means Sy . We try to match all possible word forms

of Sy to the gloss and use the max likelihood. In practice,

every word in either the word form or the gloss is stemmed

before matching. This allows little variations on the words

and even enables the match across different part-of-speech.

Thus it increases the chance that matches are found, but may

lower the precision.

An easy definition of the function p could be the ratio

between the numbers of words, however this makes the

estimation of P2(S
D
y |Sl) biased to common senses, because

the senses that have common word forms are much more

likely to be matched in the gloss. Thus we use the inverse

document frequency(idf) to determine the importance of the

words and compute the portion.

p(Ty, gloss(Sl)) =

{

idfSum(Ty)
idfSum(gloss(Sl))

, if Ty ∈ gloss(Sl)

0 , otherwise

(24)

We record the document frequency of all the stemmed terms

in the gloss of all synsets in WordNet. idfSum is the

function that sums the idf of words given a bag of words.

The gloss based estimation helps find the missing relat-

edness between synsets in WordNet, but still it does not

find all. Also we do not want the relatedness between

synsets at any time to be 0, a very small probability is

better. Note these direct relatedness probabilities are the

leaves in every branch of the expansion. If P (SD
y |Sl) is

0 for every chain, then according to Equation (17) and (18),

P (Sy|S0) = 0. If P (Sy|S0) = 0 for every sense Sy of Wi,

then according to Equation (9) and (7), P (Wi|S0) = 0, thus

P (S0|T,W1, ...,Wn) = 0. Thus the whole disambiguation

is very sensitive to the selection of context, which is not

desirable. Thus we define P3(S
D
y |Sl), the smooth approach
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Figure 2. An example group of functions. The x-axis is the chain
probability. During expansion, the probability goes down, the values of
ak change from right to left.

of estimating P (SD
y |Sl).

P3(S
D
y |Sl) =

synTC(Sy)
∑

∀S synTC(S)
(25)

This simply means the conditional probability is the same

as the probability of encountering the synset in the corpus.

With theses three approaches, we have three estimators

for P (SD
y |Sl). We use a simple linear combination method

as follows.

P (SD
y |Sl) =

3
∑

k=1

akPk(S
D
y |Sl) , where

3
∑

k=1

ak = 1 (26)

There are some heuristics for deciding the weights ak. The

larger ak is, the better we trust that estimation. Think of

one extreme case when a3 = 1. It will always return the

same value for the expansion given different S0, thus it

can not disambiguate at all. Making a1 > a2 > a3 seems

reasonable, because the estimations from 1 to 3 become

less reliable. However, as the chain grows longer, the first

two approaches gain larger estimation errors, thus become

less reliable. So we make these weights the functions of the

current chain probability. The initial values of both a1 and

a2 when the expansion starts decrease to some non-negative

values respectively as the chain probability goes down. The

functions can be defined very differently. If we assume that

the second estimation is more likely to accumulate errors,

we can make a2 decrease with a faster rate as the chain

probability goes down. a3 becomes dominant as both a1
and a2 decrease. This can be interpreted as when the chain

becomes long enough, the estimation that any synset can

be related becomes more accurate. An example group of

functions is given in Figure 2. We choose log functions

because the chain probability changes approximately expo-

nentially step by step, and we want the change of ak to be

approximately linear w.r.t. the steps.



C. Estimation of Conditional Edge Expansion Probability

P (El+1|Cl) can be interpreted in the real world as the

probability that one thinks of a relation type El+1 given the

current chain Cl in mind. We can predefine the weights for

different types, that is weight(E) for every relation type

E. Then we can estimate P (El+1|Cl) by normalizing the

weights of available edges.

P (El+1|Cl) =
weight(El+1)

∑

E∈ES
weight(E)

(27)

The normalization is required by Equation (10). ES is the

set of available edge types given Cl. It is a subset of edges of

the last synset Sl in Cl. To avoid cyclic chains, we prevent

edges in ES from linking Sl to some synset that is already

in the chain.

ES = relEdge(Sl)∩{E|∃S ∈ relSyn(Sl, E) and S /∈ Cl}
(28)

Following Hirst and St-Onge’s idea [10] to consider the

“number of times the chain changes direction”, we can

modify Equation (27) to “encourage” the chain to keep its

direction, which means the adjacent edge types in the chain

are the same. The function aug boosts the weight if the

chain keeps the direction.

aug(El, El+1) = α > 1 if El = El+1 , 1 otherwise (29)

P (El+1|Cl) =
aug(El, El+1)weight(El+1)

∑

E∈ES
aug(El, El+1)weight(E)

(30)

VI. PRELIMINARY EXPERIMENTS AND DISCUSSIONS

We test our approach on the dblp ontology4, which is is

adapted from the XML schema5 of the DBLP Computer

Science Bibliography6. The disambiguation targets are the

39 ambiguous noun terms (i.e. each term that has more than

one synset) from rdf:label in the ontology. The ground truth

is gained by collecting online votes from students who are

familiar with the ontology. The base line that our approach

is compared to is the corpus probability in Equation (1). We

compare two things: (1) the accuracy, i.e. the percentage

that the top sense is correct; and (2) the probabilities of the

correct sense.

Due to limited space, we cannot demonstrate the results

of every possible combination of parameters. Instead, we

set the axiom distance level for context d = 1, the constant-

direction augment factor α = 1.5, use a typical stop list for

idf and the predefined weights for every type of relation,

and use the function group of ak which combines the direct

relatedness estimation as follows.






a1 = max[0, a10(1− logǫ p)];
a2 = max[0, a20(1− log10ǫ p)];
a3 = 1− a1 − a2

(31)

4http://swat.cse.lehigh.edu/resources/onto/dblp.owl
5http://dblp.uni-trier.de/xml/dblp.dtd
6http://www.informatik.uni-trier.de/ ley/db/

Table I
ACCURACY RESULTS

(a) (a10, a20) = (0.5, 0.4)
ǫ =? 10−2 10−3 10−4 10−5

accuracy 71.8% 76.9% 82.1% 84.6%

(b) ǫ = 10−4

(a10, a20) =? (0.5, 0.4) (0.9, 0) (0, 0.9)
accuracy 82.1% 79.5% 79.5%

,where p is the chain probability, a10 and a20 are the initial

values for a1 and a2 respectively when p = 1.

We compare the accuracy when the chain probability

threshold ǫ, and a10, a20 change in Table I. In contrast, the

accuracy from WordNet top sense is 64.1%. In Table I.(a),

we can see the accuracy becomes better when we lower

the threshold ǫ, which means we are losing less possible

expansion chains. In Table I.(b), we compare the effects

by different direct relatedness estimators. When we set a10
or a20 equal to 0, it means we do not use that estimator

of direct relatedness probability (P1(S
D
y |Sl) and P2(S

D
y |Sl)

respectively). Only relying on one of them can also get good

accuracy, but not as good as combining them.

Now we examine the probability distribution of our re-

sults. Here we use the setting ǫ = 10−4, d = 1, (a10, a20) =
(0.5, 0.4). We define the Distribution Candidate Ratio

(DCR) Test as the ratio between the probability of the

correct one (from ground truth) and the probability that is

the highest among all other possible values. This ratio test

can be used to evaluate any distribution of discrete value

event. If the correct one is not the highest probability in the

distribution, this ratio is less than 1 and tells the closeness

to candidacy; if the correct one is the highest probability,

this ratio is greater than 1 and tells how well the top one

is distinguished from the others. In Figure 3 we contrast

the ratios of distribution by our approach and WordNet

(WN) corpus probability. The terms are sorted by the highest

probability output by our approach. From this result we have

two findings. First, for most of the cases, our approach has

better DCR test result. In comparison to the WN result, our

approach either makes the top sense correct, or makes the

correct sense more distinguished from the others. Second, we

were somewhat surprised that some of the distributions have

one dominate probability which is higher than 99%. This

could be good for the correct ones showing the confidence of

the judgment: the ones with extreme dominant probabilities

(also having a very high ratio) are very likely to be correct,

because it is usually the sign of finding strong relatedness

between the target term and the contexts. For example,

term #39 “publication” has the highest dominant probability,

because most of the context around it are all related to the

correct sense (since the ontology is about publications).

However, there are also exceptions that our result is worse

than WN in the ratio test. Term #34 is “master”. The correct

sense is master#n#8 which means “someone who holds
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Figure 3. An example ratio of distribution between the correct one and
the other top one. Terms are sorted by the highest probability output by
our approach.

a master’s degree from academic institution”, and the top

one in our result is master#n#5 which means “an original

creation (i.e., an audio recording) from which copies can

be made”. The context words, such as “publication”, are

found related to master#n#5, because they are hyponyms

(sub classes) of creation#n#1. On the other hand, there

is little relatedness between context and master#n#8 found

by our approach. However, by humans, it is clear that the

word “academic” in the gloss shows some relatedness to

context words. Term #9 and #11 are both “title” appearing

at different places in the ontology. A similar problem occurs

with them. Our approach cannot find the relatedness between

the correct sense title#n#2 and context. However in its gloss,

the phrase “literary composition” can be easily related to

context words such as “publication” by humans. So all these

mistakes our approach makes shows that our challenge is

to find efficient ways of estimating the relatedness between

synsets, as in Section V-B, and also to minimize the impact

of errors.

Currently we have not tried to optimize execution time.

The whole process can be very time-consuming when ǫ is

small and d is large. The average time for each pair of

synsets in P (Sy|S0) is 278 ms for ǫ = 10−3, d = 1.

VII. CONCLUSION

Based on the observation that WSD is a common and im-

portant task in the Semantic Web, we examined the problem

on making the WSD results meaningful and reusable. In this

paper, we propose a novel approach for WSD with our prob-

ability model. We first construct our probability model of

the WSD task, and derive a formula for calculating the sense

distribution, and then propose approaches of estimating each

term in this formula. Our preliminary experiments show our

approach can achieve a 84% accuracy and also make the

correct senses distinguished from other senses in the result

distribution. As for future work, we think our framework

is open to many potential improvements. For example,

currently we predefine the weights of edges manually, but

heuristic algorithms or machine learning approaches could

help generate better weights. In addition, as in our analysis

on the experiments, we will try to find other estimators for

the direct relatedness probability between synsets. We will

also test our approach on more data sets, and research for

the evaluation methods for probability distributions.
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