
Semantic Access to Sensor Observations through
Web APIs

Kevin R. Page, Alex J. Frazer, Bart J. Nagel, David C. De Roure, and Kirk Martinez
Intelligence, Agents, Multimedia Group, Electronics and Computer Science, University of Southampton, UK

{krp,ajf3,bjn,dder,km}@ecs.soton.ac.uk

Abstract—Sensor networks are often deployed with the pur-
pose of providing data to large-scale information management
and GIS systems, or to collect measurements for specific scientific
experiments. The benefits of such use are clear and widely
accepted. The reuse of observations in low-cost, lightweight,
web applications and mashups is a further compelling use case
for sensor networks, but requires provision of data through
simple mechanisms, readily accessible, that are quick to develop
with. To enable the latter while maintaining support for larger
applications and, to increase information utility, links to and
from other datasets, we propose a domain-driven approach that
embodies REST and Linked Data principles using a common
semantic framework that underpins a separation of concerns
between domain models, sensor observation infrastructure, and
Application Programming Interfaces (APIs) while maintaining
information consistency. We describe a reusable, reconfigurable,
web service that realises this design and can be deployed
to provide access to multiple sources of sensor information,
including databases and streaming data, with flexible semantic
configuration of the API and domain mapping.

I. INTRODUCTION

The ability to rapidly develop applications is one of the key
challenges facing the semantic sensor web [1], encompassing
the need to provide simple, consistent, interfaces to an ever
growing quantity of sensed data, available in formats that
provide enough context to be relevant and applicable to user
applications.

Lightweight web applications and mashups are now an
established phenomenon. They are typically constructed by
re-purposing as much existing functionality and data as pos-
sible, developing new code to tie current systems together in
interesting and insightful ways. This re-use relies on access to
data and services through Application Programming Interfaces
(APIs) that are easy to understand and simple to use.

That is not to say that the aggregate complexity of a mashup
is necessarily lower than other development models once the
services providing the APIs are also taken into account; it
is rare that necessary functionally can be entirely removed
(although it might be abstracted, segregated, and more effi-
ciently scaled or applied). So while a good lightweight web
API can significantly reduce the burden on an application
or mashup developer, significant planning, design, and care
during implementation must be employed by the service
provider.

Self-describing and distributable data semantics, such as
those developed for the Semantic Web, can be highly beneficial
when combining data from different sources – the defining

practice of any mashup. In this paper we explore the use
of RDF and Linked Data for publishing sensor observations,
presenting a suitable domain structure for this purpose. We
develop a generic, reconfigurable, and adaptable service to
provide high-level APIs for access to sensor observations. We
show that the semantic domain model, once captured for data,
can also be used to automate deployment of specific APIs,
reducing administrative overheads while retaining a well-
formed and structured API suitable for mashup development.

II. BACKGROUND

A. Web Architecture, REST, and Linked Data

When surveying Web architecture and the means to access
data through Web APIs, two prominent methodologies are
found which both adopt an approach centred around the notion
of resources.

The Linked Data movement has achieved considerable
success constructing a semantic Web of Data [2]. While earlier
research focussed on building a stack to enable reasoning and
logic this more recent effort makes large scale distribution and
linking a priority. Moving on from earlier assumptions that
URIs would do nothing more than uniquely identify Things,
the key thrust of Linked Data has been the re-adoption of
HTTP URIs for retrieval of resource representations. This
overloading of URIs requires a distinction between identifiers
for real-world objects (non-information resources) and web
resources containing (meta-)data (information resources), with
mechanisms such as 303 redirects and content negotiation [3]
to inform a client of a move from one to the other. The
approach is often summarised by the four Linked Data ‘rules’
[4]: use URIs as names for things; use HTTP URIs so that
people can look up those names; when someone looks up a
URI, provide useful information, using the standards (RDF*,
SPARQL); and include links to other URIs, so that they can
discover more things.

Representational State Transfer (REST) [5] is a set of design
principles which have been popularly and successfully adopted
in many (‘RESTful’) web services, and is typically framed as
an alternative to ‘heavyweight’ web services. As with Linked
Data, REST is founded upon the identification of resources for
specific things that we wish to reference, and the referencing
of these resources using URIs. Representations of resources –
encoded in a particular format – are then accessed through the
URI, usually by HTTP. In contrast to Linked Data’s focus on
a single form of data (RDF), REST encourages a plurality of



representations with semantics encoded in link relations. REST
can also be summarised by a set of principles: everything
is a resource which is addressable; resources have multiple
representations; relationships between resources are expressed
through hyperlinks; all resources share a common interface
with a limited set of operations; client server communication
is stateless.

B. Models and Encodings for Sensor Data

A second consideration when designing an API are any
existing services and specifications through which data can
be served and accessed. Standardised encodings and service
definitions from the Open Geospatial Consortium (OGC) are
widely adopted across the sensor network industry. Earlier
specifications introduced services to directly support Geospa-
tial Information Systems (GIS), while more recent efforts have
resulted in services defined as part of Sensor Web Enablement
(SWE). GML is the common OGC encoding framework:
an XML schema derived language in which several GML
Application Schema are defined.

Earlier OGC standards used by GIS applications include
Web Map Service (WMS) and Web Feature Service (WFS),
the former returning information as a raster layer, the latter
returning feature data as GML. Although Sensor Web En-
ablement is designed to provide for “Web-connected sensors”,
the approach taken by the included services is to run over
Web protocols but not to adopt a Web Architecture through
Resource Oriented services. While this is a valid and useful
technique to extend GIS services into a more web-like plat-
form, this specialisation of interfaces according to task (Sensor
Observation, Alert, etc.) does not provide the kind of RESTful
lightweight API desirable for mashup development.

The OGC data models and schemas (used to transfer in-
formation between server and client through interface calls)
are of more interest since they are based on a thorough and
comprehensive domain analysis without any presupposition
of architectural style. Within SWE this is manifest as two
complementary perspectives over the data:

A provider-centric approach orientated around and describ-
ing the processes undertaken by sensors, structured networks
of sensors, and constituent elements of sensors. Data is a
product of the described sensor network. In OGC standards
this approach is adopted by the SensorML GML application
schema and the SWE Sensor Planning Service.

A consumer-centric approach orientated around and primar-
ily describing the observations and measurements – i.e. the
data, the results – captured by sensors rather than the sensors
themselves (although the provenance of observations is mod-
elled through an associated process). The OGC Observations
and Measurements (O&M) [6] model and GML application
schema apply this approach, in turn used by the SWE Sensor
Observation Service (SOS).

Recent work by the W3C Semantic Sensor Networks In-
cubator Group has incorporated these perspectives, including
a derivative of the O&M Observation model, in an OWL

ontology[7] which forms the basis for the data model devel-
oped in Section IV.

C. Related Work

In addition to an early prototype of the API design revisited
in Section IV [8], there have been several proposals for
exposing of sensor related information as Linked Data, each
with differing motivations and foci: automated conversion
from OGC standards and services [9], sensor data resource
addressability [10], alignment with foundation ontologies [11],
publishing linked sensor locations and attributes [12], sensor
discovery over Linked Data [13], and integration from multiple
sensor sources into a single service [14].

While the work presented here touches on issues raised in
several of these works, our primary focus is instead on the
design and deployment of APIs that are accessible and relevant
to a developer working in the domain, on linking the semantics
of the domain to observations so they can be reused in web
applications and mashups, and on utilising the semantics of the
domain model to simplify the configuration and deployment
of services.

III. API APPROACH

The following design principles, derived from an evaluation
and comparison of REST and Linked Data [15] informs the
development of the High-Level API introduced in the next
section:

1. Agile development of lightweight mashups is best sup-
ported by Resource Oriented service architectures. Complexity
for mashup developers is reduced through the simplification of
access methods espoused by REST. To develop a good API of
this type requires careful identification and design of resources
by the service provider.

2. Identification of resources must be undertaken within
the context of the domain of the data. Use Domain Driven
Design as a flexible and suitable methodology to ensure that
the knowledge of domain experts is drawn upon during an
iterative design and development process.

3. Use Semantic Web data structures and ontologies (RDF,
RDFS, and OWL) for canonical representations of resources;
they share a common architectural heritage that makes them
particularly suitable for use with REST. This enables develop-
ment of a common domain model with self-describing link
semantics beyond the relatively simple structures found in
traditional REST deployments.

4. Identify resources to support not only the domain model,
but also the API and its use. Provide Linked Data through
content negotiation and a SPARQL endpoint, but also identify
resources to enable RESTful applications where hypertext is
the engine of application state.

5. RESTfully provide other representations, derived from
the domain model, to enrich the service for easy application
development and compatibility with existing tooling, as iden-
tified through the Domain Driven Design process.



Figure 1. Observation class from the SSN ontology and associated properties.

IV. DESIGN OF A HIGH-LEVEL API FOR OBSERVATIONS

In this section we introduce the design of a High-Level API
for Observations, suitable for use by lightweight semantic web
clients. The API design is illustrated in the context of the
Channel Coastal Observatory (CCO) data management centre,
which provides real-time data from the largest network of
coastal sensors in the UK. An earlier design following the
same basic structure is described in more detail by Page et al.
[8]; here we focus on those elements that reflect the principles
outlined in Section III, particularly the use of a common
semantics to link the domain model with the API.

A. Domain Model

While a provider-centric approach to sensor data might be
applicable to provisioning, deploying, and managing sensor
network devices, developers of lightweight web applications
(and their users) engage in activities which instead require
manipulation of the data collected by the sensor network. We
therefore adopt the data-(consumer-)centric approach intro-
duced in the Observations and Measurements (O&M) model,
and represented by the Observation class and associated prop-
erties in the SSN Ontology (Figure 1).

Note, in particular, observedProperty and featureOfInterest,
which provide the crucial link between the observations and
the domain concepts being observed (and therefore links to
domain resources beyond the API).

B. Resources

As a RESTful Linked Data system, the high-level API
is defined by its resources and the representations of those
resources – in this case by observations of the phenomena
measured by the CCO. In defining a resource we must create
a globally unique identifier for it – a URI – in an act frequently
referred to as “minting”. The URI for the resource should be
treated as an opaque string when it is accessed through the

API; while the implied structure within the URI is helpful
when designing and maintaining the web service (and perhaps
for developers when writing clients), client applications must
navigate to and between resources using links. Use of the API
must not rely on encoding semantics within the URI – this
clearly violates REST principles.

Identification and structuring of resources can be highly
dependent on the data (the resources) being exposed. For
example, primary observation resources for the CCO are of
the form:

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/boscombe/Hs/20110101#140500

where the individual observation is dereferenced by first
retrieving the resource (which is an observation collection):

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/boscombe/Hs/20110101

In this case, the observation of wave height (Hs) made
by the Boscombe sensor on 01/01/2011 at 2.05pm is as-
serted within an observation collection of all wave height
measurements from the Boscombe sensor on 01/01/2011. This
strikes a balance between the size of the retrieved resource
representation and the number of links the client must retrieve
for this specific data set. In this case the observations of Hs
at the Boscombe sensor are taken half-hourly, so the resource
that must be retrieved to dereference any one observation will
contain 48 observations (all the observations for the day).
This grouping of resources (and the associated dereferencing)
would not be as practical if there were many more observations
per second.

Once more, note that while semantics have been used to
structure the minting of the URIs (by our design), they are
not exposed through, or necessary for the operation of, the
API. Relationships between resources must be expressed in
the representations returned by the API, not within the syntax
of the URI. A key principle of this Resource Oriented approach
is to link to other resources within the API, and to external
resources with compatible semantic representations.

Although there must be a canonical statement of an Obser-
vation, this does not preclude its inclusion in other observation
collections – an RDF model can be declared and reused across
several resources by linking between statements. A collection
of all measurements of wave height across the sensor network
on 01/01/2011 might be identified by the resource:

http://id.semsorgrid.ecs.soton.ac.uk/observations/Hs/all/20110101

and the earlier canonical observation would be linked by
reference.

C. Representations

For each non-information observation resource (such as
the wave height observation introduced above) the API pro-
vides several representations through a common information
resource, and further (non-common) representations through
a separate information resource, e.g. for backwards compati-
bility with existing GIS systems. This is implemented through



Figure 2. Dereferencing an Observation resource.

linked data dereferencing and content negotiation as illustrated
in Figure 2.

The primary representation is RDF/XML using the ob-
servations ontology; this representation is also added to a
triplestore for provision of a SPARQL endpoint. The second
representation conforms to the O&M GML schema. While
the XML returned is very similar to that provided by the SOS
GetObservation function, here we support a RESTful interac-
tion by navigation between resources. This is made possible
by the extensive support for XLink in GML and an underlying
object-property-value model which closely resembles RDF.
The third representation is in HTML and is a human browsable
hyperlinked interface to the observation resources.

The fourth representation conforms to the WFS GML
schema (XML). This representation provides compatibility
with existing web GIS mapping tools (e.g. OpenLayers). The
nature of these tools requires all the grouped data points
(observations) to be provided in a single “layer” which can be
overlaid onto a map; this flattened data structure is incompati-
ble with a the other representations so is provided as a separate
information resource. The fifth representation, GeoJSON, is
widely accepted by client side mapping tools and widgets.

Since non-information resources are shared a client appli-
cation can move seamlessly between RDF and GML repre-
sentations, taking advantage of the semantic linking provided,
while being able to retrieve established encodings for Web GIS
applications when required. Conversely an application can use
a GML identifier as a jumping off point into the linked data
web.

D. Web API

The domain model (in RDF), resources, and representations
form the core of the High-Level API for Observations as
applied to the CCO. Thus far this presents a Linked Data inter-
face with additional representations specific to the domain, but
only exposes resources as structured by the domain model. To
complete the API, attention should be paid to resources which
might aid RESTful client use (when changing application state
by navigation between resources). The following additional
resources and links are included, and as with all resources

provided through the API semantic consistency is maintained
through the common domain model:

• /latest : relative within each observation collection, a
resource that is always the most recent observation.

• “next” and “previous” : for each observation, a reference
to the prior and following observations of that class.

• links from constituent collections to the broader col-
lections (“up”; isMemberOf in RDF) to enable better
navigation through the data.

• /summary – for each observation collection, a summary
resource containing information about that collection, e.g.
maximum/minimum values, frequency, averages, units
of measurements, and descriptive metadata (this can be
used by clients to calibrate visualisations and provide
annotations).

• /sensors – a collection of links to all sensors that generate
observations.

• For each sensor resource, links to the temporally broadest
observation collections generated by that sensor platform.

V. HLAPIO SERVICE IMPLEMENTATION

A. Overview of Design

While an earlier proof-of-concept [8] validated a limited
prototype of the RESTful Linked Observation API, the imple-
mentation was limited. A bespoke instantiation for a specific
data set, built upon a web platform originating in OGC
standards and services, the software proved brittle and difficult
to maintain. Iterative modification of the domain model and
REST interfaces to support evolving user requirements fre-
quently introduced errors in derivative representations, while
more wide-ranging changes – for example deployment over a
different dataset – were tantamount to re-implementation. The
service also lacked a Linked Data query interface.

To address these shortcomings, and to assist the design and
deployment of domain-driven semantic APIs (Section III) a
new service platform has been developed – the High-Level
API for Observations (HLAPIO).

The HLAPIO provides a flexible implementation of the API
design introduced in Section IV such than an installation can
offer web application developers RESTful access to linked
sensor data sourced from a wide variety of sensor networks.
By focussing on a core underlying semantic data structure –
the Observation model – the HLAPIO realises a domain-driven
design for this API and extends this approach into the design
and configuration of the service software.

The overall composition of the HLAPIO is shown in Figure
3. The core of the service is implemented in Java, using Jena1

RDF models throughout, and serialising to an Apache web
server with additional configuration and scripting for content
negotiation and Linked Data dereferencing. 4Store2 is used to
provide the SPARQL endpoint. The design builds upon on the
semantics of four sections of functionality within the service
and the relationships between them:

1http://jena.sourceforge.net/
2http://4store.org/



Figure 3. General structure of the HLAPIO platform with reference implementation triggers and serialisations.

1) The Observation model, a semantic backbone to the op-
erations of the HLAPIO, hard-coded into the operations
of the software and through which other data models
are created and referenced. As data is ingested into
the HLAPIO it is reconciled with the observation and
domain models to produce the resources which comprise
the API.

2) The extended domain model, which encodes the
specifics of data from the particular sensor network over
which the HLAPIO is deployed. This includes observed
properties and sensors plus links to data sources de-
scribing these (e.g. to environmental ontologies, location
information).

3) Import mechanisms through which the HLAPIO gathers
Observations, covering both the software interface and
the mapping of data from the input trigger to the
extended domain model and Observations. The current
implementation supports two of these input triggers.

4) The identification and generation of resources that con-
stitute the API following the general design principles
introduced in Section IV and using terms from the
Observation and extended domain models.

These semantics are tailored to each installation through con-
figuration, where each of model is aligned with a clear domain
of user knowledge: the subject expert (for the extended domain
model), the sensor network administrator (import trigger con-
figuration), and the service administrator (API configuration).
This separation of concerns enables a focus on each of the
distinct issues at hand and modular re-use of configuration.

The remainder of this section describes implementation de-
tails of the domain and API configuration, and their application
within the HLAPIO engine.

B. Semantic Configuration

The mechanism for using the domain model to configure
a HLAPIO instance is centred around two files: the Domain
Ontology Mapping and the API Configuration.

1) Domain Ontology Mapping: The domain ontology map-
ping translates between input data sources, the Observation
model, domain ontologies, and terms associated with the
observation (e.g. observed properties). It does so by mapping
input data features (for databases: row data, table names,

map:Folkestone_met_Air_pressure a d2rq:ClassMap;
d2rq:dataStorage map:database;
d2rq:class obs:observation;
d2rq:classDefinitionLabel "observation";
.
map:Folkestone_met_Air_pressure_dateTimeBeginning a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
d2rq:property time:hasBeginning;
d2rq:belongsToPropertyBridge map:Folkestone_met_Air_pressure_timeInterval;
d2rq:timestamp "envdata_Folkestone_met.0";
.
map:Folkestone_met_Air_pressure_observedProperty a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
d2rq:property obs:observedProperty;
d2rq:columnHeading "envdata_Folkestone_met.5";
d2rq:substitute "http://marinemetadata.org/2005/08/cf#air_pressure_at_sea_level";

.
Figure 4. Excerpts from a Domain Ontology Mapping file.

column headings) onto classes that form part of an observa-
tion. The mapping syntax is an extension of the D2RQ [16]
language using the Turtle RDF notation.

In the these files, ClassMap objects are used to represent
classes from the target ontology. For each ClassMap, a number
of PropertyBridges are used to express ontology properties of
the classes the ClassMap represents. In the example shown in
Figure 4, the d2rq:property predicate shows that the Property-
Bridge represents the time:hasBeginning property of its parent
ClassMap, while the d2rq:timestamp variable informs the
HLAPIO engine how to construct the value of this property.

While the mapping file format is based on the D2RQ syntax,
several additions have been made. Typically D2RQ is used
to create RDF that reflects the structure of the originating
database, however the HLAPIO must be capable of mapping
arbitrary sensor data sources into a fixed Observation structure.
Most sensor networks are engineered around producer-centric
assumptions; the HLAPIO converts these into consumer-
centric resources. For example, a database row might contain
readings for several different observed properties which the
HLAPIO must map into multiple instances of the Observation
class; this cannot be declared using standard D2RQ syntax.
This is overcome by allowing the HLAPIO engine to process
different ClassMaps to the same ontology class gracefully, and
through the addition of the belongsToPropertyBridge property
which allows assertion of relational semantics that are not
necessarily expressed by the database structure (example in
Figure 4).

The event driven nature of sensor readings, where each row
should be processed on arrival, leads to further modification.



[printsubs]
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/folkestone_met=folkestone_met
[global]
hostname="@@FORMAT.semsorgrid.ecs.soton.ac.uk"
NIR="FORMAT=id"
application/rdf+xml="FORMAT=rdf"

[canonicalValues]
type=canonical
path="/observations/cco/[obs:observedBy]/[obs:observedProperty]/

[obs:observationResultTime{yyyyMMdd}]#[obs:observationResultTime{HHmmss}]"
formats="application/rdf+xml,application/xml,application/vnd.ogc.wfs,text/html,

application/json"
[eachSensorAllProps]
type=collection
path="/observations/cco/[obs:observedBy]/all/

[obs:observationResultTime{yyyyMMddHH}]::(perDay)"
formats="application/rdf+xml,application/xml,application/vnd.ogc.wfs,text/html,

application/json"
[perDay]
type=metacollection
pathSub="[obs:observationResultTime{yyyyMMdd}]"

formats="application/rdf+xml,application/xml,text/html"

Figure 5. Excerpts from an API Configuration file.

The columnHeading and tableName properties enable the
HLAPIO engine to match column headings and table names,
which in many cases encode significant semantic information
(e.g. sensor name/location). When such values are matched,
the d2rq:substitute variable enables a second value (typically
a URI) to be inserted into the observation model. Finally,
the timestamp and alteredtimestamp variables instruct the
HLAPIO processor to translate e.g. Unix timestamps values
(often used in sensor records) into the XML dateFormat used
by the Observation model (Figure 4).

2) API Configuration: While the Domain Ontology Map-
ping provides the semantic structure that enables the HLAPIO
to manipulate data according to the domain model, the Obser-
vations created must also be granted identifiers (URIs) before
being published as Linked Data. To provide a useful API to
developers, the HLAPIO must identify which Observations
should be included in collections, create URIs for these
collection resources, and provide linking between resources
to enable RESTful state transitions for clients (Section IV).
Finally, the HLAPIO must know which resources should be
made available in which representations.

The API Configuration file encodes the necessary informa-
tion to achieve this by way of URI structures for the resources,
collections, and representations that are to be published. Vari-
able substitution uses terms from the domain model (via the
Domain Ontology Mapping) – the domain model and API
are inextricably linked. In this way the API Configuration
directly encodes semantics in the URI string which is, of
course, counter to both Linked Data principles and RESTful
design (Section III). It is important to note, therefore, that
while domain model semantics are used to create (“mint”)
the URIs and construct the resource representations within the
HLAPIO server, clients of the API do not make use of any
residual semantics that can be inferred from the URIs – clients
receive domain semantics and state transitions through the
representations dereferenced and retrieved from the URIs. This
separation could be completely enforced through obfuscation
of the URIs after use by the HLAPIO engine, but before
publication through the API, however this seems an necessary
removal of what can be a useful debugging reference for client
developers.

The syntax of an API Configuration, illustrated in Figure 5,
is as follows:

– a [printsubs] section containing short sub-strings to re-
place full URIs when a domain term is included within a URI.

– a [global] section, defining the hostname component of
URIs and the sub-string replacement to be used for each repre-
sentation. The hostname may be a simple string (i.e. identical
for all URIs provided by the HLAPIO) or include substitutions.
In this example the @@FORMAT substitution indicates that
the hostname component of the URI will be used to distinguish
between representations (e.g. rdf.semsorgrid.ecs.soton.ac.uk).
This substitution could equally be placed within the path. The
NIR format is a reserved configuration label used for minting
the canonical non-information URI for each resource.

– an unlimited number of named resource set sections, each
instructing the HLAPIO to generate resources for the API,
and consisting of three resource types: observation resources
(type=canonical), observation collections containing observa-
tion members (=collections) and observation collections with
members consisting of other observation collections (=meta-
collections).

– each resource set includes a path for that resource
(appended to the hostname to create a complete URI)
which can contain substitutions for terms, signified by
square brackets, retrieved from the observation model (e.g.
obs:observedProperty to substitute available observed proper-
ties).

– each resource set includes the representation formats
which should be generated for instances of that resource.

– temporal properties (e.g. result time, sample time) can be
further sub-matched using ISO 8601 syntax in curled braces.

– metacollections (indicated by ::() syntax) instruct the
HLAPIO to create secondary derivative Observation collec-
tions according to the named metacollection pattern refer-
enced. e.g. where a collection groups Observations by hour,
a metacollection can then be used to group these hourly
collections by day.

The eachSensorAllProps resource set in Figure 5 would, for
example, generate an hourly observation collection containing
all observations for all observed properties from each distinct
known sensor (obs:observedBy) with URIs of the form:

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/boscbome/all/2011021415

and metacollections grouping these collections, by day, with
a smaller number of representations, at:

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/boscbome/all/20110214

C. Service Engine

The core of the HLAPIO service engine constructs and
manipulates generic observation graphs. This is supplemented
by Input Triggers and Serialisers to handle specific data
sources and output representations respectively.

1) Input Triggers: To support the continuous flows of data
typical of sensor networks the HLAPIO implements an event
driven design which, by default, processes incoming measure-
ments into observations as and when they are received. Data



sources interface with the HLAPIO through Input Triggers,
which convert streams into RDF graphs using the observation
and domain model ontologies. The modular design of the ser-
vice allows for any number of input trigger implementations;
two have been developed and deployed for specific use cases
thus far.

The first input trigger reference implementation ingests
from database sources and was originally developed to gather
readings from the CCO sensor network. The CCO stored data
service records various observed properties (e.g. wave height,
wind speed, air temperature) from a number of different
sensing platforms. A separate database table represents each
sensing platform, and each row of a table contains the set of
all measurements recorded by the sensing platform at a given
time. The HLAPIO and its trigger are installed in parallel to
the existing database using a MySQL proxy. As an INSERT
statement is sent to the database from the sensor network,
it is caught by MySQL Proxy, and in turn forwarded to a
TriggerHandler which splits multiple inserts before sending
each one to the DBInsertTrigger. For each extracted column
value, the DBInsertTrigger checks the Domain Ontology Map-
ping file to determine whether that value is recognised by
the HLAPIO. If a match is found, the ClassMap is added
to the list of observations to be built and, once the table
name and all column values have been checked, the list of
applicable ClassMaps is sent to the Processor to be turned
into an observation RDF graph.

The second reference implementation demonstrates a
method for receiving observations generated by other semantic
components external to the HLAPIO. A Semantic Integration
Service [17] is accessed through the SemSorGrid4Env refer-
ence architecture [18] which, based upon a query, combines
multiple sensor data sources into a single observation structure,
with a mapping document aligned to the HLAPIO Domain
Ontology. The resulting graphs are passed by the Integrator-
Trigger to the HLAPIO processor.

2) Model Reconciliation and Resource Generation: The
core of the service engine performs three tasks, semantically
aligning the input data and configurations, then preparing the
data structures for publication through the API:

Model Reconciliation. Graphs received from the Input Trig-
gers are reconciled with Observation instances. RDF is used
as the principle internal representation as it is the most flexible
and fully featured data model; all other output representations
are derived from RDF at the point of serialisation. All se-
rialised representations are semantically consistent, with any
changes to the underlying RDF model continuing to generate
valid secondary representations. Properties and their corre-
sponding values are retrieved from the incoming graphs and
asserted against the Observation; temporal values are adjusted
according to any timestamp or alteredtimestamp modifiers. In
preparation for WFS serialisation co-ordinates are retrieved
by dereferencing the sensor URI asserted by the observedBy
property.

URI Minting. URIs are minted for triples that have been
created afresh by the HLAPIO (i.e. not properties from the

Domain Ontology Map, values, or links to external resources).
Since these URIs also form part of the Linked Data interface
of the API, they are matched within the API Configuration file
and string substitutions are made to ensure uniqueness of the
Observation resources. Temporal properties of the observation
are transposed into the ISO 8601 format specified in the API
Configuration.

Resource Generation. Minting URIs completes a non-
information Observation resource, ready to form a part of
the API. The HLAPIO must also identify secondary re-
sources: Observation Collections of which the Observation
is a constituent and information resources for the secondary
representations. Once again these are generated by substituting
the Observation properties into the API Configuration structure
and generating resources for those that match. Whenever
collections are generated links to enable RESTful navigation
are also added (precedes, follows, and isMemberOf).

3) Representation Serialisation: Five reference serialisers
are provided by the HLAPIO implementation for five represen-
tations: RDF, O&M GML, GeoJSON, WFS GML, and HTML.
For each resource identified and generated in the previous step,
a serialised resource is constructed (for canonical observations)
or updated (for collections and metacollections) using the
URI minted according to the API Configuration file. The
principle internal RDF representation is serialised first, then
re-used to generate the other output formats appropriately.
The RDF representation is also added to the 4Store triplestore
which provides a SPARQL endpoint. As described in Section
IV, while some representations share a common information
resource with RDF, others require additional dereferencing of
linked resources to create a ’flattened’ representation.

The serialisations are served by an Apache web server.
Dereferencing and content negotiation is implemented using
PHP scripting automatically configured by the API Config-
uration; this also handles the “/lastest” pointer for RESTful
navigation.

VI. EXAMPLE MASHUP USE

While the deployment of an HLAPIO for the CCO sensor
network has provided observation data for GIS-sytle use cases
(e.g. flooding emergency response [18]), it is unintended re-use
of semantically enriched data in lightweight web applications
that is a strong motivation for developing and deploying the
HLAPIO.

The CCO network includes a sensor near the town of
Boscombe, Dorset, which is the location of the first artificial
surf reef to be installed in the Northern Hemisphere3. Figure 6
shows an illustrative mashup, combining linked data sources
and wave height data from the CCO HLAPIO to provide a
useful status page for surfers travelling to the reef, where:

• the current wave height (Hs) reading for the Boscombe
sensor is obtained from the HLAPIO using the “/latest”
pointer; historical wave heights are retrieved by REST-
fully navigating to preceding observations.

3http://en.wikipedia.org/wiki/Boscombe_Surf_Reef



Figure 6. An illustrative mashup comprising wave height observations and
linked data sources for surfers.

• a SPARQL query is used to find other sensor resources
that can provide wave height observations.

• the Boscombe sensor RDF representation (via ob-
servedBy) is dereferenced to provide location informa-
tion.

• linked data is then retrieved, through postcodes4 and
district information5, for local facilities6 (car parking,
food & drink) and road safety7.

VII. SUMMARY AND FUTURE WORK

Development of the High-Level API for Observations has
demonstrated how a common semantic domain model can
be applied to support two symbiotic use-cases: the simplified
configuration and deployment of lightweight, self-descriptive
APIs over varied sources of sensor data; and the rapid develop-
ment of novel web applications that re-use and combine data
in new and previously unforeseen ways. Semantic structures,
representative of the use-case domain, are key to development
of successful services and applications. Once established, RDF
and ontologies can be used to apply a common model to both
to provision the service and, through the API, drive application
state: while made explicit in the API, this domain-driven
design runs deep in the design of both server and application
software.

Future work might involve further automation and assistance
through use of data semantics: a frequency analysis of data

4http://publishmydata.com/datasets/postcodes
5http://api.talis.com/stores/ordnance-survey/services/sparql
6http://linkedgeodata.org/sparql/
7http://www4.wiwiss.fu-berlin.de/eurostat/sparql

sources using the Domain Ontology Mapping may produce de-
fault API configurations; a graphical representation of domain
ontologies could form the basis of visual tools for creating the
Domain Ontology Mapping.

As seen in Section VI, the utility of the Semantic Web
for writing mashups is dependent on the availability of links
between resources and their domain models. In this paper
we have demonstrated how linked sensor data and domain
models can be published using the Observation pattern; the
same approach might be successfully applied to comparable
models outside of sensor networks research.

ACKNOWLEDGEMENTS
Thanks to our colleagues in the GeoData Institute, University of Southamp-

ton, for the help developing early prototype implementations of the API and
access to the CCO data feeds. The work in this paper was supported by the
IST STREP Programme of the Commission of the European Communities as
project number FP7-223913 “SemSorGrid4Env: Semantic Sensor Grids for
Rapid Application Development for Environmental Management”.

REFERENCES

[1] O. Corcho and R. García-Castro, “Five challenges for the semantic
sensor web,” Semantic Web Journal, vol. 1, no. 1-2, pp. 121–125, 2010.

[2] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So
Far,” Special Issue on Linked Data, International Journal on Semantic
Web and Information Systems (IJSWIS), 2009.

[3] L. Sauermann and R. Cyganiak, “Cool URIs for the Semantic Web,”
W3C SWEO Interest Group Note, 2008.

[4] T. Berners-Lee, “Linked Data, Design Issues,”
http://www.w3.org/DesignIssues/LinkedData.html, 2006.

[5] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, Information and Computer
Science, University of California, Irvine, California, USA, 2000.

[6] S. Cox, “Observations and Measurements - Part 1 - Observation schema
(OpenGIS Implementation Standard OGC 07-022r1),” Open Geospatial
Consortium Inc., Tech. Rep., 8 Dec. 2007.

[7] L. Lefort and C. Henson, “Semantic sensor network incubator
report,” "http://www.w3.org/2005/Incubator/ssn/wiki/Incubator_Report",
October 2010.

[8] K. R. Page et al., “Linked sensor data: Restfully serving rdf and gml,”
in Semantic Sensor Networks 2009 (SSN09), October 2009.

[9] H. Patni, C. Henson, and A. Sheth, “Linked sensor data,” in 2010
International Symposium on Collaborative Technologies and Systems
(CTS). IEEE, 2010, pp. 362–370.

[10] K. Janowicz et al., “Towards meaningful uris for linked sensor data,” in
Towards Digital Earth: Search, Discover and Share Geospatial Data.
Workshop at Future Internet Symposium, 2010.

[11] K. Janowicz and M. Compton, “The stimulus-sensor-observation ontol-
ogy design pattern and its integration into the semantic sensor network
ontology,” in 3rd International workshop on Semantic Sensor Networks
(SSN10), 2010.

[12] P. Barnaghi, M. Presser, and K. Moessner, “Publishing linked sensor
data,” in 3rd International Workshop on Semantic Sensor Networks
(SSN10), 2010.

[13] J. Pschorr et al., “Sensor discovery on linked data,” in 7th Extended
Semantic Web Conference (ESWC2010), 2010.

[14] D. Le-Phuoc and M. Hauswirth, “Linked open data in sensor data
mashups,” in Semantic Sensor Networks 2009 (SSN09), October 2009.

[15] K. R. Page, D. C. De Roure, and K. Martinez, “REST and Linked Data:
a match made for domain driven development?” in Second International
Workshop on RESTful Design, March 2011.

[16] C. Bizer and A. Seaborne, “D2rq-treating non-rdf databases as virtual
rdf graphs,” in 3rd International Semantic Web Conference (ISWC2004),
Nov. 2004.

[17] J. Calbimonte, O. Corcho, and A. Gray, “Enabling ontology-based access
to streaming data sources,” 9th International Semantic Web Conference
(ISWC2010), pp. 96–111, 2010.

[18] A. J. G. Gray et al., “A Semantically Enabled Service Architecture for
Mashups over Streaming and Stored Data,” in 9th Extended Semantic
Web Conference (ESWC2011), May 2011.


