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Abstract—We describe an approach for performing
entity type recognition in heterogeneous semantic graphs
in order to reduce the computational cost of performing
coreference resolution. Our research specifically addresses
the problem of working with semi-structured text that
uses ontologies that are not informative or not known.
This problem is similar to coreference resolution in un-
structured text, where entities and their types are iden-
tified using contextual information and linguistic-based
analysis. Semantic graphs are semi-structured with very
little contextual information and trivial grammars that
do not convey additional information. In the absence
of known ontologies, performing coreference resolution
can be challenging. Our work uses a supervised machine
learning algorithm and entity type dictionaries to map
attributes to a common attribute space. We evaluated
the approach in experiments using data from Wikipedia,
Freebase and Arnetminer.

I. INTRODUCTION

In natural language processing systems, coreference
resolution is the task of determining when expressions in
a document refer to the same thing, e.g., Barack Obama,
the President and he. The term is also used for the more
difficult task of linking expressions in multiple, inde-
pendent documents, often described as cross-document
coreference resolution [1]. A very similar problem arises
in processing semantic graphs, whether encoded in the
Resource Description Framework (RDF) or using some
other semantic graph representation language. Here, the
problem can be framed as determining when two nodes
representing a thing (i.e., an instance rather than a class
or property) denote the same object in the world.

The problem in a semantic graph is trivial if the
nodes have associated identifiers that are identical, but
that is typically not the case. Within a single graph,
akin to the NLP intra-document coreference resolution
case, we might hope that instances denoting the same
underlying entity have such identifiers. But in RDF

graphs this is generally not true, due to the use of
instances created as “blank nodes”. It is almost never
the case when integrating semantic graphs that have
been produced independently, whether from different
sources or even the same source. In RDF graphs, we
can assert that two nodes denote the same entity with
the owl:sameAs property, but we still have the problem
of determining when they are the same, so that asserting
their equivalence is appropriate.

Very similar problems are long standing in databases
and record processing, where the problem is referred to
as record linkage [2], [3]. The process of identifying
coreferent records is often called deduplication and is
important for such useful tasks as maintaining a high
quality mailing list for marketing purposes.

Performing coreference resolution over a collection of
instances to determine which ones represent the same
underlying entity inherently has an O

(
n2
)

cost, since
in general, the potential coreference of every pair of
instances has to be considered. In situations where the
entities may be of a different type, the problem can be
simplified by only considering pairs of the same type.
While this does not reduce the “big-O” complexity of
the task, it can result in a significant practical speed-
up. In NLP information extraction contexts, the process
of recognizing entity references typically also identifies
their basic type (e.g., person, organization, place, event,
chemical compound) and often a subtype (e.g., places
might have subtypes like geo-political entity, populated
place, facility and building).

Researchers have used different approaches to reduce
the practical cost by filtering the number of instance
evaluations by type or other features [4], [5], [6], [7],
[8]. In our previous work [9], [10] we used a pairwise
approach to determine when two people coreferred to
each other and a filter, which applied low-cost rules to
reduce the number of pairs of instances that needed to
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be evaluated. We evaluated instance data for which we
knew the ontologies used and we also constrained the
problem to data sets that were related to people. If an
instance used an ontology that was not known, we simply
ignored the information.

In our current work, we specifically address the issue
of working with heterogeneous data, data which could
originate from multiple sources and where the ontologies
may often not be known. We also extend the problem to
cover multiple types, rather than just one (i.e., people).
In an effort to reduce the number of instances that need
to be evaluated, we examine a way to distinguish entity
types. By doing so, we partition the data into discrete
groups of types and then apply a coreference resolution
algorithm to each grouping. In this work we specifically
address a way to group instances of the same type even
when we cannot determine the type from the ontological
definitions expressed in the data. Our problem then is
closely related to the entity recognition problem in infor-
mation extraction, i.e., the process of recognizing entities
and their type (e.g., a person, location or organization)
[11], [12], [13].

Typically when working with RDF data or other
formalisms, the entity types and the entity properties can
be explicitly known by means of a fairly well understood
ontology. A significant amount of research addresses
matching instances given well understood ontologies
[14], [15], [16]. When ontologies are not accessible or
not understood, or when several non-aligned ontologies
are used, determining coreference by reasoning over the
ontology is difficult and often impossible. We believe
that this problem will become more common and signif-
icant with the increased addition of semantic annotation
of big data applications.

Interoperability and integration are core problems ad-
dressed in database and ontology matching [17], [18],
[19], [20], [21], [22]. Heterogeneous data, data sets
which originate from various repositories, are typically
harder to map simply because it is harder to establish
that one attribute in a given schema is the same as an
attribute defined in another schema [23].

Interoperability has also fueled the research related to
the linked open data (LOD) [24] where heterogeneous
repositories that use custom schemas are linked to each
other by means of RDF and OWL assertions. Reposi-
tories are typically structured and formatted using RDF,
then classes and properties are linked to other classes and
properties that are represented in the LOD. The number
and size of LOD collections has grown significantly in
the past five years, however the total number of linked

datasets as of 2011 is still relatively small (about 300)
[25] and the degree of interlinking is often modest. This
implies there is still quite of bit of unlinked data and
among the data not linked it is likely a large majority
use custom schemas. Nikolov et al. [26], [27] describe
the problem of mapping heterogeneous data as it relates
to coreference resolution, where often “existing repos-
itories use their own schemas”. They discuss how this
makes coreference resolution difficult, since similarity
evaluation is harder to perform when attribute mappings
are unclear.

What we propose is a way to filter instances that need
to be evaluated by grouping instances of the same type.
Coreference resolution algorithms can then be performed
over collections of instances of the same type. Additional
filtering can also be used to reduce the cost further.
However, a key aspect of this problem is addressing
how to predict entity types given that the instance
data originates from different sources and uses different
schemas to represent the data. Again, in a structured
environment, if one had access to the schemas then
the schema could provide this information, however, we
are a specifically addressing the problem of not having
access to the schemas.

II. RELATED WORK

Recent work by Paulheim et al. [28] describes an ap-
proach for performing type inference using link analysis.
They address the problem of using RDFS reasoning to
infer types. Their work is based on the premise that
certain relations occur with particular types of entities.
They use a classification model to assign type probabil-
ities and associate weights with properties that indicate
how strongly they support particular type assertions. This
work is comparable in that they are identifying types.
Their weighting function can be compared to our use of
entropy to establish which attributes best support specific
types. However, their approach differs in that they use
link analysis to develop their model. Instead, we develop
dictionaries based on common ontologies and then map
attributes associated with an instance with attributes
found in the dictionary. We take this approach in order
to support data represented using different ontologies,
specifically when the schemas may not be known a
priori.

Named entity recognition as performed during infor-
mation extraction assumes that the text being processed
is unstructured. Nadeau and Sekine [12] specifically
address unstructured text and provide a survey of named



entity recognition that includes both supervised to unsu-
pervised approaches. In the supervised cases, rules are
often induced. A deficiency of this approach is the need
for large annotated corpus, which requires a significant
and expensive effort. They describe the features that are
typically used and categorize these features into three
groups. Word-based features include case, punctuation,
whether there are digits, morphology, parts of speech and
various functions. A second feature category is list based,
using dictionaries, stop words, common abbreviations,
synonyms, etc. A third looks at document measures, such
as occurrences, anaphora, enumerations, co-occurrences,
etc. Our work uses a subset of these features that are
relevant to semi-structured text to recognize entity types.
With semi-structured data, many of the features are
not possible to analyze because they do not exist. For
example, there is no sentence structure,specifically in the
semi-structured graph-based data.

Semantic annotation research typically performs entity
type recognition but receives its input from an informa-
tion extraction tool. This is more closely related to our
work since semantic annotation tools are working with
structured text, however the structure is based upon a
tool that processes unstructured text. A survey by [29]
defines semantic annotation as the mapping between on-
tology instances and classes. Semantic annotation tools
are typically pattern based or use machine learning. A
number of tools were benchmarked in this survey. We
highlight this work because it is most closely related
to our work, however, there is a clear distinction in
that we do not receive information from an extraction
tool but rather work directly with the RDF graphs
or other similar formalisms. This makes the problem
slightly more challenging as we are working with limited
information. They use annotation recall and precision
to compare tools, which we also use to measure our
performance.

The concept of mapping attributes has been researched
as it relates to database matching. Early work by Berlin
et al. [17] describes research on database mapping
using machine learning. In this work, they stress how
data mapping is a labor-intensive job. Their Automatch
system automates the schema-matching process using a
machine learning approach. Their approach, in which a
classifier is built using data from having domain experts
map knowledge of attributes to a common dictionary, is
foundational to our mapping approach. They saw over a
70% harmonic mean in their evaluation. Our work builds
on this idea of mapping, however we take the approach
of automating this concept by generating mappings from

the DBpedia ontology and information gain.
There is a significant amount of work related to

schema and ontology matching. The survey by [19]
formalizes the schema/ontology matching problems and
highlights promising work. We refer to more recent work
in this area that specifically addresses heterogeneous data
and is relevant to our work.

Work by Nikolov et al. [27] addresses the issue of
automatic instance linking. They use LOD resources
and knowledge of how instances are related to perform
schema-level mappings. However, it is unclear how
this work would handle a repository that is not linked
to existing LOD resources or worse, how they would
support data by which they did not have access to the
schema. This is the problem we specifically address, as
without this knowledge of the schema, mappings are
harder to achieve. By mapping attributes to a known
set of attributes associated with specific entity types,
we can support instance matching without this schema
knowledge or dependence upon the resources in the LOD
cloud.

Work by [30] addresses the computational problem of
coreference resolution by proposing a candidate selection
algorithm that eliminates the need to compare each
instance with every other one. The relevance of their
work is their algorithm, which sets out to find candidate
selection keys that are discriminating. They take a subset
of instances based on some category, which could be an
entity type. From this they then calculate three metrics:
discriminability, coverage and F-Measure. They then use
these keys, which are predicates, to perform candidate
selection. The discriminability calculation is similar to
our work which uses information gain. The key distinc-
tion between this work and ours is that they assume they
have access to the knowledge needed to categorize the
instances in order to begin the key discovery. Our work
includes addressing the problem of how to learn these
categories.

Work by [31] describes a process of matching on-
tologies based on the use of an upper ontology of very
general concepts that are shared by many domains [32].
They specifically address the interoperability problem
and how databases must share some “commonly un-
derstood concepts and relationships” and describe this
common knowledge as a “semantic dictionary”. They
then describe how to use an upper ontology for ontology
matching. What is significant about this work is they
highlight the importance of having a shared set of
concepts and relationships and this description leads to
the concept of an upper ontology. We can conceptually



think of our dictionaries as ontological descriptions of
our entity types.

III. PROBLEM DEFINITION

Given data that is structured or semi-structured, when
schemas are not known or not informative enough to
determine entity types, there needs to be some other way
to determine entity types. This is particularly challenging
for heterogeneous data, where data can originate from
multiple sources and when the context from information
extraction tools is not present. We constrain this problem
by identifying instances of type person, location and
organization. The results of this work can be used to
support coreference resolution and can act as a filter,
limiting the number of instance pairs that need to be
evaluated.

Definition 3.1: Given a set of instances I , if a pair
of instances is coreferent then, coref(I1, I2). Given I1
has a set of attributes (a1, a2, ...an) where a ∈ A and
I2 has a set of attributes (b1, b2, ...bn) and b ∈ B,
then similarity(A,B) is used to establish coreferent
instances, where highly similar attributes sets would
mean there is a higher likelihood of coref(I1, I2).

In order to reduce the number of instances that need
to be evaluated, we try to establish each instance type.
Since we do not know the meaning of a or b then we
try to map a and b to a common dictionary set. We do
this by first generating a set of dictionaries.

Definition 3.2: For each of the entity types in
person, location, organization we define a set of at-
tributes (p1, p2, ...pn), (l1, l2, ...ln), (o1, o2, ...on) that
represent each type. We then use this information to
determine if person(I1)|location(I1)|organization(I1)
and person(I2)|location(I2)|organization(I2). This
information can inform the coreference resolution algo-
rithm as to whether evaluating I1 and I2 is necessary.
Based on this mapping and labeled instances, we train a
classifier to recognize which mappings belong to which
entity types and then build a model that could be used
to classify non-labeled instances.

IV. METHODOLOGY

Our methodology includes a way to automatically
build entity type dictionaries from existing data. We do
this by choosing a data set that is rich with the properties
found in a given ontology. For each entity type we build
the dictionary based on calculating the information gain
for each attribute. Our goal is to find attributes that define
the type, but due to noisy data sets, we introduce a
measure based on entropy that measures the uncertainty

Fig. 1: Freebase ten-fold Validation

Fig. 2: Effects of Information Gain Filtering

[33]. We then use a training set of labeled data and map
the instances in the labeled data to our dictionaries. We
do this using a set of mappers which each emit a score
that is used as a feature. The features are then used with a
supervised algorithm to create a classification model. We
then perform mappings on unlabeled data and classify
these instances using the supervised model. The results
of this classification are instances classified as person,
location or organization.

This approach enables us to map attributes from
different domains, hence supporting heterogeneous data.
We use the DBpedia ontology [34] as a basis for the
set of attributes for each entity type. We supplement
this list with attributes from other common ontologies



TABLE I: Top 13 Attributes with high Information Gain.

Attribute Name Information Gain
foundation 1.4822327945
populationdensitykm 1.4654167504
headquarters 1.4643749028
almamater 1.4511015423
latm 1.436957334
lats 1.435142071
logo 1.3989488118
owner 1.3923388965
latd 1.3851197789
founder 1.3507960305
longm 1.3420910151
residence 1.3420910151
occupation 1.3235410984

TABLE II: Top 13 Attributes with low Information Gain.

Attribute Name Information Gain
state 0.0055689232
image 0.0514882243
othername 0.0643758458
leader 0.2039877679
website 0.2099404982
language 0.2127317307
year 0.2331585486
name 0.3119579608
fullname 0.3727722093
branch 0.3864105288
area 0.4058270139
province 0.4155409915
nickname 0.4256291604

such as the Friend of a Friend ontology [35]. Using
the 2011 DBpedia infobox dataset [36], we calculate
the information gain for each attribute. Information gain
allows us to measure which attributes best distinguish a
class given our set of classes [33] and is well known for
feature selection in various domains [37]. We chose the
DBpedia infobox dataset because it is well known and
has a good representation of the three entity types we
wished to evaluate.

Assuming there are N classes (in this case we have
three classes) we calculate entropy using the following
equation:

Entropy = −
N∑
i

p(xi)log2p(xi) (1)

Since we are working with three classes, the maximum

Fig. 3: Freebase/Wikipedia Freebase/Infobox Filtering

value if the instances were equally distributed would be
1.5850[33]. Given a sample set S and attribute set A,
the gain is calculated as follows:

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

(2)
Mapping to a common set of attributes is common

among database and ontology mapping [17], [20], [21],
[31], [22]. Abstractly speaking, one could think of
this common set of attributes as an ontological repre-
sentation. To perform this mapping we use a set of
“mappers”: the first analyzes the attribute names by
using a Levenshtein [38] distance measure, the second
uses WordNet[39] synsets for expanding the attribute
name both for the dictionary and the attribute associated
with the instance being evaluated, and the third uses
a common set of patterns to map attribute values. For
example, there is a pattern that distinguishes an email
address from other attributes. The score generated by
each mapper becomes a feature in the feature vector.
We then build a classification model using a Support
Vector Machine (SVM). We perform the same mapping
process for instances to be classified and then use the
SVM model to classify the instances resulting in entity
type classifications.

V. EXPERIMENTATION

With all experiments, we randomly selected a sub-
set of instances with an equal distribution of persons,
locations and organizations except when working with
the Arnetminer dataset [40], [41], which is a dataset
about people. We tested using the Freebase [42] dataset
using 2000 instances with approximately 400 features,



Fig. 4: ArnetMiner Instances

the Wikipedia data [43] using 3000 instances with about
400 features and the Arnetminer dataset contains 4000
instances with approximately 400 features (however all
of the instances are one class). We used Weka [44] to
run the experiments and standard precision and recall
metrics for measuring performance:

Precision =
TruePositive

TruePositive+ FalsePositive
(3)

Recall =
TruePositive

TruePositive+ FalseNegative
(4)

In our first experiment we used the Freebase dataset
and ten-fold cross validation. This gave us some idea as
to the general performance of the entity typing. With the
second experiment we examined the effects of filtering
using two different data sets. In the third experiment we
looked at how well the entity typing performed using
one dataset for training and the other for testing. We
used the Freebase dataset for training and the Wikipedia
dataset from Wikipedia [43] for testing and then Freebase
for testing and Wikipedia for training. In the fourth
experiment we used a dataset that in which entity types
are inherently harder to classify. This data set specifically
represents people, however useful information is sparse
and there is a sizable amount of noisy information that
could reduce the overall performance.

VI. EVALUATION

We used the output from our information gain calcu-
lation to weight our attributes. This weighting penalizes
attributes that have low information gain across entity
types. Figure 5 shows the results of processing the
attributes and their associated gain. Table I and table II

show examples of attributes that had the highest and
lowest information gain.

In the first experiment, shown in Figure 1, we per-
formed a ten-fold cross validation using the Freebase
dataset for each entity type. The location entity type was
most successfully classified and organization had lower
success.

The second experiment, as seen in Figure 2, compares
the effects of filtering given two data sets. We trained
using the Freebase data set but then compared Wikipedia
test data sets with Infobox test data sets. The goal
with this experiment was to show that we often see
an improvement when we apply filtering. We measured
the effects of filtering on each type, using the Freebase
dataset to build the model and the Wikipedia and Infobox
dataset to test the model. Given the Wikipedia data set,
the person entity type seemed to have worse performance
when applying filtering. This was however not the case
for the rest of the types.

In the third experiment, as seen in Figure 3, we first
used Freebase for training and Wikipedia for testing then
we switched and used Wikipedia for training and Free-
base for testing. For each type we saw better performance
when we used Freebase for training, which implies the
Wikipedia data set does not generalize as well as the
Freebase data set. When we combined the two data sets
and took random samples, we saw F-measures in the
80% range.

In the fourth experiment, as seen in Figure 4, we
tested the Arnetminer dataset using the Freebase data
set to generate the model. The data set is both noisy and
offers sparse set of attributes. For example, in some cases
there is only an email and name attached to a record
representing a person. We noticed that if we reduced
the size of the training set the accuracy improved. We
believe that this is due to the fact that we are reducing
the number of negative cases.

We tested the various classifiers using these different
data sets and what we saw was in one case decision
trees performed very well, but in other cases it performed
about the same as the SVM or worse. The naive Bayesian
classifier consistently performed worse than the SVM.
The SVM performed consistently well in comparison
with the other classifier and hence this confirms that the
SVM was the best choice for this particular problem.
However, when testing non-linear kernels we saw no
change in performance in comparison with a linear
kernel.

In reviewing the benchmark described in [29], where
there were six semantic annotation approaches evaluated,



Fig. 5: We computed the information gain of attributes and used the results to weight them.

we believe that our method compares favorably. Since
they are using information extraction tools and we are
not and since their F-measure scores range from 24.9%
to 92.9%, we consider our results for this baseline
approach to be encouraging.

VII. CONCLUSIONS

We described an approach for predicting the entity
type of instances in heterogeneous semantic graphs in
order to reduce the cost of performing coreference res-
olution. The problem is similar to performing corefer-
ence resolution for unstructured text, but cannot take
advantage of the linguistic clues available in natural lan-
guage documents. In the absence of known ontologies,
performing coreference resolution can be challenging.
We use supervised machine learning and entity type
dictionaries to map attributes to a common attribute
space. We evaluated the approach in experiments on data
from Wikipedia, Freebase and Arnetminer.

Our baseline approach to performing entity type
recognition for semantic graphs provide a way to support
heterogeneous data, particularly when the ontologies
used are not accessible or prove to be not very infor-
mative. Since we map to a common set of attributes
for each type we can tolerate different data sets. Since
we automatically generate this mapping without manual
work, we provide an efficient way to support various data
sets that may use custom schemas. When performing
coreference resolution in a heterogeneous environment,
one way to partition the data is by grouping instances by
entity type. This along with other filtering mechanisms
can help reduce the overall cost of performing corefer-
ence resolution.
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