
Mining Semantic Structures from Syntactic
Structures in Free Text Documents

Hamid Mousavi
CSD, UCLA

hmousavi@cs.ucla.edu

Deirdre Kerr
CRESST, UCLA

dkerr@cse.ucla.edu

Markus Iseli
CRESST, UCLA

iseli@cse.ucla.edu

Carlo Zaniolo
CSD, UCLA

zaniolo@cs.ucla.edu

Abstract—The Web has made possible many advanced text-
mining applications, such as news summarization, essay grading,
question answering, and semantic search. For many of such
applications, statistical text-mining techniques are ineffective
since they do not utilize the morphological structure of the text.
Thus, many approaches use NLP-based techniques, that parse
the text and use patterns to mine and analyze the parse trees
which are often unnecessarily complex. Therefore, we propose a
weighted-graph representation of text, called TextGraphs, which
captures the grammatical and semantic relations between words
and terms in the text. TextGraphs are generated using a new
text mining framework which is the main focus of this paper.
Our framework, SemScape, uses a statistical parser to generate
few of the most probable parse trees for each sentence and
employs a novel two-step pattern-based technique to extract
from parse trees candidate terms and their grammatical relations.
Moreover, SemScape resolves coreferences by a novel technique,
generates domain-specific TextGraphs by consulting ontologies,
and provides a SPARQL-like query language and an optimized
engine for semantically querying and mining TextGraphs.

I. INTRODUCTION

The huge and fast-rising volume of free text-information
now available on the Web implies that automatic summariza-
tion of textual documents is extremely desirable. Nowadays,
people seek short summaries of long articles or news to find
important topics in the news, and hot topics in social blogs.
More importantly, structured summaries, such as Wikipedia
Infoboxes, are becoming a popular feature in (semi)curated
document corpora, enabling powerful structured searches [10],
[17], and supporting question answering systems, and au-
tomatic personal assistants (e.g., Siri and Google Now) are
getting more popular than traditional keyword-based searches.

Current text mining approaches can be divided into two
main categories: bag-of-words (a.k.a statistical or machine
learning) and NLP-based techniques. Since the first approaches
do not exploit morphological structures in the text, they are
rather ineffective and usually need to use larger data sets and
ignoring less frequently mentioned information. On the other
hand, NLP-based approaches parse the sentences in the text
and convert them into parse trees. Parse trees contain [some
of] morphological structures in the text in a more machine
readable format, and thus provide a better structure for text
analyzing. Although NLP-based approaches are much more
resource-demanding than keyword-based ones, they are proven
to be more effective in addressing the current text mining
needs, specially once combined with statistical and machine
learning techniques [27][28][30]. Moreover, recent advances

in distributed computing techniques has hugely alleviated the
time performance issue of NLP-based techniques [2].

Text mining through NLP-based techniques is often per-
formed by employing some patterns on parse trees [22],
or similar structures [25]. Generating these patterns, either
manually or by statistical patten learning techniques, is a
challenging and costly task. Indeed, since a simple piece of
information can be expressed in many different ways through
natural languages, many patterns need to be created to extract
it. Generating such patterns is both costly and time-consuming,
due to the fact that parse trees still carry various syntactical
structures from the text. Thus, to mine parse trees one needs to
provide patterns for each different structure. Therefore, a more
standard form of representing the semantics of text is desirable
[37], and in this paper we present a new and more expressive
text representation, called TextGraph, that is much closer to
the semantics of the text, and thus requires simpler and fewer
patterns to be analyzed. As opposed to parse trees [22] and
dependency trees [25], TextGraphs capture single- and multi-
word (candidate) terms and grammatical connections between
words and terms in the text. Moreover, by providing weights
for the edges/links, TextGraph can better handle noise in text
or parse trees and the ambiguity in text.

In this paper, we present a new text mining framework,
called SemScape, which employs a pattern-based technique to
generate TextGraphs from free text. SemScape uses statistical
parsers [22], [8] to generate few most probable pares trees of
the sentences, and then uses a small set of tree-based patterns
to annotate the parse trees with some useful information called
MainParts. MainParts carry up the hidden information in the
leaves and lower branches of the parse trees to the upper
non-terminal nodes. In this way, simpler and more general
patterns can be used to mine the annotated trees, referred
to as the MainPart Trees (MPTs). Finally, SemScape uses
another set of tree-based patterns over the MPTs to extract
grammatical relations between words and terms in the text to
generate the TextGraphs. Generating TextGraphs from parse
trees in above two steps significantly reduces the number and
the complexity of the patterns required. Therefore, SemScape
makes the following contributions:

• We introduce an annotated parse tree called MainPart tree
or MPT in which non-terminal nodes are annotated with
important information from their branches. We also in-
troduce a tree-based query language, called Tree-Domain
(TD) rules. TD rules can be used to query both parse trees

Fig. 1. Most probable parse tree for our running example.

and MPTs. Using MPTs, one can extract information
from the parse trees with fewer and less complex patterns.

• Utilizing the MainPart trees, we propose a weighted graph
representation of the text, called TextGraph, which hides
many syntactical features of the text. TextGraphs are more
expressive than tree-based structures, include multi-word
(candidate) terms in the text, and are able to present
ambiguity of the text through weighted edges.

• To query and mine TextGraphs, SemScape provides
a SPARQL-like query language, called Graph-Domain
(GD). It also presents an optimization for searching graph
patterns in TextGraphs which avoids several unnecessary
join operations needed SPARQL engines.

• We propose a new Coreference Resolution technique
through a component called Story Context (SC) which
uses a large body of contextual, taxonomical, and cat-
egorical information. SC also takes advantage of many
syntactical patterns specifying possible or impossible
resolutions. Impossible resolutions were overlooked by
previous authors, but they can the final result significantly.

• SemScape is also able to adapt with different domains
by accepting an ontology. Once an ontology is fed to
the framework, it generates TextGraphs with higher focus
on the known terms and concept and eliminates many
unrelated terms. This makes the framework capable of
dealing with very noisy text data sets as shown in [30].

Since SemScape uses a pattern-based mining technique
(with supports for syntactical exceptions in natural languages)
to generate TextGraphs, it provides a natural way for in-
crementally improving the system by adding more rules to
capture missing grammatical connection and exclude wrongly
generated connections. Currently, all patterns mentioned in
this work are created manually, however supervised or semi-
supervised techniques can be used to create more of such
patterns. The SemScape framework has been used in several
text mining applications [20][27][28][29][30], where it has
proven very effective.

II. PREPARING PARSE TREES

To illustrate this and other steps toward generating
TextGraphs, we use the following example text in the paper:

Motivating Example: “Barack Obama (born August 4, 1961)
is the 44th and current President of the United States. He is the
first African American to hold the office. Born in Honolulu, Hawaii,
Pres. Obama is a graduate of Columbia University and Harvard Law
School, where he was president of the Harvard Law Review.”

[-1] (S
[0] (NP
[0, 0] (NP (NNP Barack 1) (NNP Obama 2))
[0, 1] (PRN
[0, 1, 0] (-LRB- (3)
[0, 1, 1] (VP (VBN born 4) (ADJP (JJ date-1961-8-4 5)))
[0, 1, 2] (-RRB-) 6)))
[1] (VP
[1, 0] (AUX is 7)
[1, 1] (NP
[1, 1, 0] (NP
[1, 1, 0, 0] (DT the 8)
[1, 1, 0, 1] (JJ 44th 9)
[1, 1, 0, 2] (CC and 10)
[1, 1, 0, 3] (JJ current 11)
[1, 1, 0, 4] (NN President 12))
...

Fig. 2. Parse tree of Figure 1 in parenthesized format.

After tagging known data formats such as dates, floating
point numbers, etc, and partitioning the text into its paragraphs
and sentences, SemScape parses each sentence using a proba-
bilistic parser (e.g. Charniak [8] and Stanford [22] parsers). For
each sentence, we generate Npt (>1) parse trees (PTs). Having
more than one PT will i) help us better deal with the inaccuracy
and noisiness of the parsers in many cases, ii) increase the
amount of extracted information, and iii) provide a better way
for representing ambiguity in the text. For many cases, the
first PT is not completely correct, so using the secondary PTs
may help improving the results. Using multiple PTs also helps
generating more information and capturing possible ambiguity
in text. A possible PT for our example is shown in Figure 1.

Each word in the PTs is assigned an ID to make the system
capable of uniquely addressing words in the text. This is
required to avoid confusion among repeated words and more
importantly, to preserve the order of words and terms in the
TextGraphs. SemScape also uses a simple addressing scheme
to address nodes in the tree (Figure 2). In this scheme, each
node address contains its parent address plus its position in
the ordered list of siblings.

III. MAINPART TREES

Parse trees (PTs) are much richer semantic structures than
the bag-of-words representation. However, they still suffer
from two important issues. The most important issue is that
the structure of the PTs hugely depends on the grammar and
morphological structures in text. Thus they are still far from
the semantics of the sentences. The second issue is that PTs (as
well as dependency trees) are only connecting words together.
Multi-word terms (A.k.a. Candidate Terms) and their roles in
the sentences are completely missing from these structures.

To address these issues, we propose a richer structure by
annotating the non-terminal nodes in the PTs with useful
information about their underlying sub-trees as shown in
Figure 3. For instance, consider the NP node at address [0, 0]
in Figure 3, which is representing either ‘Barack Obama’ or
‘Obama’. Once these pieces of information, referred to as Main
Parts (MPs), will carried up to the upper nodes in the PTs,
other applications will not need to search deep in the trees
branches. MPs may contain multi-word (candidate) terms as
well, which addresses the second issue mentioned earlier. The
annotated parse trees are referred to as MainPart Trees or
MPTs. To extract MPs in the PTs and assign them to their
corresponding nodes, we use tree-based patterns/rules, which

[-1] S ⇒ NMP: {Barack Obama, Obama}
[0] NP ⇒ NMP: {Barack Obama, Obama}
[0, 0] NP ⇒ NMP: {Barack Obama, Obama}
[0, 0, 0] NNP ⇒ NMP: {Barack}
[0, 0, 1] NNP ⇒ NMP: {Obama}
[0, 1] PRN
[0, 1, 0] -LRB-
[1, 1, 1] VP ⇒ AVMP: {born}
[1, 1, 1, 0] VBN ⇒ AVMP: {born}
[1, 1, 1, 1] ADJP ⇒ NMP: {date-1961-8-4}
[1, 1, 1, 1, 0] JJ ⇒ NMP: {date-1961-8-4}
[1, 1, 2] -RRB-
[1] VP ⇒ AVMP: {is}
[1, 0] AUX ⇒ AVMP: {is},

PMP:{{of, the United States}, {of, States}, {of, United States}}
[1, 1] NP ⇒ NMP: {President, current President, 44th President, ...},

PMP: {{of, the United States}, {of, States}, {of, United States}}
[1, 1, 0] NP ⇒ NMP: {President, current President, 44th President}
...

Fig. 3. MPT for the parse tree in Figure 2.

are also called Tree Domain (TD) rules. A TD rule for the
mentioned MP is shown below:
——————————– Rule 1. ——————————–

RULE mainPartRule1 (’NMP’) {
PATTERN: (NP * (NP |NN |NNS | NNP)

(NP |NN |NNS | NNP)
!*)

RESULT: < [−1], [1] >
RESULT: < [−1], [2] + [1] > }

—————————————————————————
This rule consists of two parts: PATTERN and RESULT.

PATTERN specifies a tree-like pattern for which we need to
find matches in the PTs of the sentences in the text. The
RESULT parts indicate how the MPs should be generated
and to which node they should be assigned. We should add
that PATTERNs are nested patterns and more expressive than
regular expressions (or finite automata) [9]. This differentiates
our work from most existing NLP-based techniques.

In Rule 1, PATTERN specifies noun phrases whose last two
branches are both a noun phrase (NP|NN|NNS|NNP). From the
PT in Figure 1 (and in parenthesized format in Figure 2), it
is easy to see that ‘Barack Obama’ in our motivating example
matches this pattern. If any match is found for this PATTERN,
the first RESULT in Rule 1 adds the NMPs of the last branch
(‘Obama’ with address [1] in the pattern tree and address [0,0,1]
in the matching tree) of the matching tree to the noun MP list
of its root (the node with address [-1] in the pattern tree and
address [0,0] in the matching tree). With its second RESULT,
Rule 1 also suggests a multi-word terms, ‘Barack Obama’. This
sort of terms are usually referred to as Candidate Terms in the
literature, and can be directly used in Name Entity Recognition
systems [31]. The MPT for our running example is depicted
in Figure 3 in parenthesized format. Currently, SemScape uses
135 TD rules (accessible at [5]) to generated the four types of
MP listed next. Applying these TD rules over the PTs does not
significantly increase the delay of generating MPTs comparing
with the delay of generating PTs.
Noun MainParts (NMPs): As already explained, NMPs are
defined for noun-related nodes (NP , NN , JJ , ADJP , ...), and
they indicate the actual term(s) represented by these node.
Active Verb MainParts (AVMPs): A similar concept is used
for the verbs-related non-terminal nodes (V P , V B, V BZ,
V BD, V BN , ...) in the PTs; however, since verbs have two
forms, passive and active, we use two types of main-parts for
verb-related nodes. Thus, AVMPs capture the active verbs of

Fig. 4. Part of the TextGraph for our running example.

the verb-related nodes.
Passive Verb MainParts (PVMPs): Similar to the previous
case, PVMPs are for passive verbs which are of particular
importance since they change the regular roles of the subject(s)
and the object(s) in the sentences.
Preposition MainParts (PMPs): The fourth MainPart set is
for prepositions and preposition phrases. Both noun-related
and verb-related nodes may contain PMPs. PMP of a node
specifies a possible preposition for that node.

IV. TEXTGRAPHS
MPTs provide a better structure than parse trees, but they

still inherit the issues of tree-based structures mentioned
earlier. In this section, we introduce a richer structured repre-
sentation of text called TextGraph. TextGraphs are machine-
friendly weighted graph structures, that represent grammatical
connections between words and terms in the sentences, where
terms are single- or multi-word phrases representing an entity
or a concept. Each link in the TextGraphs is assigned a
confidence value (weight) indicating SemScape’s confidence
on the correctness of the link and an evidence count indicating
the frequency of observing the link.

A simplified TextGraph for the first sentence in our running
example is shown in Figure 4. The complete list of link
types in TextGraphs with their purposes is published in [30].
The graph also identifies multi-word (candidate) terms (as
shown in dashed boxes) and their links to other component
of the sentences. For instance, the TextGraph contains two
possible subjects for the verb ‘is’ in sentence which are
‘Barack Obama’ and ‘Obama’. Providing candidate terms in
TextGraphs significantly facilitates the process of most text
mining applications. Representing the text with graph struc-
tures makes it possible to utilize many existing graph-based
mining algorithms. They are also closer to the semantics of
the text, by providing meaningful terms, their grammatical
relations and confidence weight for the relations. Due to the
above reasons, which hugely differentiate TextGraphs from
their counterpart representation techniques such as parse trees
and dependency trees, more effective and efficient algorithms
can be designed to extract knowledge from text by combining
graph-based and statistical methods.

To generate the TextGraphs, we use more than 270 TD rules
(available in [5]) to find grammatical relations between words
and terms identified by the MPTs. These relations, referred
to as either links or triples throughout this paper, are then
combined into the final TextGraph structure. An examples for

such TD rules is shown bellow, which rule aims at capturing
the ‘subject of ’ (‘subj of ’) links:
——————————– Rule 2. ——————————–

RULE subjectToVerb {
PATTERN: (S (NP)

(VP))
RESULT (FO1=‘NMP’, FO3=‘AVMP’, conf=.9):

<[0], ‘subj of ’, [1]>
RESULT (FO1=‘NMP’, FO3=‘PVMP’, conf=.9):

<[0], ‘pobj of ’, [1]> }
—————————————————————————

The PATTERN in Rule 2 specifies a pattern in which a
Noun Phrase (NP) is followed by a Verb Phrase (VP). This is
the most general form of subject-to-verb link structure in PTs.
Similar to MP rules, Rule 2 indicates that for the matching
trees, the NMPs of the noun phrase (NP) should be connected
to the active verb main-part (AVMP) of the verb phrase (VP)
to generate a subj of link with confidence 0.9. Moreover, the
NMPs of the noun phrase (NP) should be connected to the
passive verb main-part (PVMP) of the verb phrase (VP) as a
‘passive object of ’ (pobj of) link. For our running example,
this rule captures links such as <Obama, subj of , is> and
<Barack Obama, subj of , is>.

Notice that, with the assist of MP information, this single
rule can catch most of the subj of and pobj of links in
different sentences without needing to know their lower level
structures. This is actually one of the most important gains
in the SemScape framework, that dramatically decreases the
number and the complexity of required patterns/rules required
for any text mining application.

Generated links have confidence values (indicated by key-
word ‘conf ’ in Rule 2) showing SemScape’s confidence on
the correctness of the link. If the same link is generated from
different rules or MPTs, SemScape increases its correctness
confidence as discussed in Subsection IV-B. After applying
all rules to the MPTs and generating the triples, we combine
them into the final TextGraph (e.g. Figure 4).

A. Support for Exceptions
Syntactic exceptions are the inseparable part of any natural

languages. Although capturing exceptions can significantly en-
hance the quality of the text mining systems, most of existing
approaches do not provide an easy-to-use technique to handle
exceptions. Moreover, finding patterns with no exceptions
in natural languages is a very tedious task, and a general
pattern should be split down into many smaller patterns too
avoid some exception cases. To simplify this process without
needing to split our general patterns (e.g. Rule 2), SemScape
uses patterns with negative confidence to specify exceptions
and remove many of the incorrectly generated triples from the
TextGraphs. Thus if the same triple is extracted multiple times
by different rules over the MPTs of the same sentence, and one
of the extracted triples has a negative confidence, the triples
with positive confidence will be eliminated.

For instance, consider the sentence “In the woods are trees”.
Since the sentence is in inverted form, which is not as common
as the normal form, the parsers may not be able to recog-
nize the structure correctly. For instance for the mentioned
sentence, only one PT from the first three suggested PTs
by Stanford parser is correctly capturing the inverted form.

Thus, our patterns may generate incorrect information from the
incorrect PTs. (<trees, obj of , are> in our case). To eliminate
this incorrect information, we use the following pattern:

——————————– Rule 3. ——————————–
RULE subjectToVerb(Inverted) {

PATTERN: (SINV (PP)
(VP)
(NP))

RESULT (FO1=‘NMP’, FO3=‘AVMP’, conf=-.9):
<[2], ‘obj of ’, [1]>

RESULT (FO1=‘NMP’, FO3=‘AVMP’, conf=.9):
<[2], ‘subj of ’, [1]> }

—————————————————————————

This pattern matches the correct PT and generated a triple
with negative confidence (<trees, obj of , are>) as well as
the correct triple (<trees, subj of , are>). Using the negative
triple, SemScape can eliminate incorrect triples generated from
wrong PTs and improve the final TextGraph for the sentence.

B. Combining Confidence Value
Since the same triple may be generated more than once

(from different rules or different PTs), we need to combine
their confidence value c. Similar to [24], the only assumption
for the combination process is that evidences of the same piece
of information are independent from each other. Thus, if a
piece of information has been generated twice by different
rules or from different MainPart Trees, once with confidence
c1 ≥ 0, and once with c2 ≥ 0, we combine the confidence to
c = 1−(1−c1) (1−c2)= c1+(1−c1)c2. This new confidence
is higher than both c1 and c2 which indicates the link’s
correctness probability is now higher. For each triple, we also
count the number of time it has been generated and refer to it
as the evidence frequency or count (e). We should note that, if
one of the confidence values is negative for a particular triple
(specifying an exception), we eliminate all same triples with
positive confidence as explained in previous subsection.

C. Enriching TextGraphs with Ontologies
Another important feature of SemScape is the ability to

adapt an ontology and provide more related candidate terms
to the specified ontology. The Ontology here can be both
domain-specific or domain independent. For simplicity, one
can also specify a list of concepts instead of Ontology (e.g.,
the list of all subjects in Wikipedia). This feature has two main
advantages discussed next.

The first advantage is to control the volume of generated
Noun MainParts. For complex noun phrases (NPs) there might
be several possible candidate terms. Not all of these candidate
terms are useful or meaningful. Therefore, suggesting all of
them as MPs may lead to a very large set of candidate terms
which lowers the efficiency of the system. To prevent this
problem, SemScape is made capable of utilizing an ontology,
say O. Using O, SemScape only generates candidates terms
that either i) contain less than three words, ii) are part of an
existing concepts in O, or iii) contain a concept from O. In
most simple cases this generates all possible candidate terms;
however for many long noun phrases, this helps us reduce the
size of the TextGraphs. The second advantage of incorporating
an ontology is to allow domain-specific applications to better
utilize the framework. This can also spot more related parts

of the text with respect to the ontology which consequently
improves system’s robustness on dealing with noisy corpora.
This feature is discussed in greater detail in [30].

D. Graph Domain Patterns
SemScape provides a graph-based query language, called

Graph Domain or GD rules, to let users and applications mine
the TextGraph. Although the format of GD rules is very similar
to that of SPARQL [6], its implementation is slightly different
as explained in Section VI. To simplifying the mining process
from TextGraphs, GD rules support few extended features that
are introduced later in this subsection. Besides the external
applications that can benefit from GD rules, SemScape uses
GD rules for two purposes. The first one is to complete and
improve TextGraphs using GD patterns. These patterns are
often much easier to be expressed by GD rules than TD rules.
The second purpose is to perform Coreference Resolution
which is the topic of the next section. Readers are also referred
to [5], [30] and [29] for more examples of such rules.

We should add that GD rules are usually considered as in
batch of patterns aiming at mining certain types of informa-
tion. That is SemScape may be fed with sets of GD rules for
different tasks (and applications). For instance as shown in
[30], we fed the system with rules for generating ontological
links in an automatic ontology generation system. Similar idea
is used in [28] to generate structured information from free
text. Thus, once the GD rules are specified by an application,
SemScape will apply them on all TextGraphs of the provided
text, combine the resulted tuples, and report them.

Besides SPARQL’s features, GD rules introduce the follow-
ing features to ease the process of TextGraphs mining. Each
rule may have multiple SELECT clauses to allow generating
multiple pieces of information from same patterns. One may
use keyword ‘NEG’ before the SELECT keyword to specifying
exceptions similar to TD rules in subsection IV-A. One may
use keyword ‘NOT’ before any triple in the WHERE clauses
to indicate the absence of some links in the pattern, which
requires a more complex expression in SPARQL.

V. COREFERENCE RESOLUTION

In textual documents, many pronouns and references are
used to refer to other terms (concepts). For instance in our
running example, the pronoun ‘he’ in the second sentence is
referring to ‘Barack Obama’ and ‘Pres. Obama’ is a reference
for ‘Barack Obama’. Resolving these types of coreferences,
called Coreference Resolution, is a very challenging task
since it requires a huge amount of contextual knowledge,
commonsense knowledge, and in many cases complex and ad
hoc inferencing techniques [26]. The ambiguity of the natural
languages also aggravates this issue.

In SemScape, we propose a new technique to resolve
coreferences through the Story Context (SC) component. At its
highest level, SC recognizes characters (A.k.a. mentions) in the
text, learns contextual information about them from different
resources, and uses this contextual information and a novel
pattern-based technique to match characters to each other and
resolve coreferences in the text. These steps are explained next
in this section.

A. Recognizing Characters
The first step to construct the SC’s structure is to recognize

possible characters or mentions. This is a relatively easy task
for us since TextGraphs already provide all the candidate
terms (Noun MainParts) in text. We use these candidate terms
as the characters of [the story of] the text. However, some
characters in the text are more important (due to their role)
than the others, and as a result they are more probable to
be referred with pronouns or other references. To determine
the importance of a character, each character is assigned
an evidence count and a confidence weight. Whenever the
same character is encountered in different roles (relations),
we increase its evidence count by one and its confidence as
explained in Section IV-B. At this stage each occurrence of
the same candidate term is considered as a separate character.

B. Mining Characters Context
After creating characters, we gather information on some

of their important attributes or properties. These properties are
sometimes called agreement properties. Currently, we consider
seven properties: isMale (if it is a male or a female), isPerson
(if it is a person or not), isOrganization (if it is an organization
or not), isLocation (if it is an geographical location or not),
isAnimal (if it is an animal or not), isObject (if it is a thing
or not), and isPlural (if it is plural word or not). Other
properties could be added to this set to improve the final
resolutions results. However, we found these the most useful
and differentiating properties. We should add that most of the
exiting works in this area only consider person, gender, and
number as their agreement properties [18][23][11][16].

For each property, SC uses different sources of information
to estimate their value, which ranges between -1 and 1. Value
1 means 100% confidence that the property holds and value
-1 means 100% confidence it does not (value 0 indicates no
information about the property). As opposed to most similar
approaches which use only true/false values for characters
properties [18][23][11][16], SC uses probability of being true
or being false to better deal with uncertainty .

To evaluate the mentioned properties, we use Wikipedia’s
categorical information. For instance if one of the ancestor of
a character is the ‘Category:People’ category in Wikipedia, we
set its isPerson property to 1. The same approach is used for
isOrganization, isLocation, isAnimal, and isObject properties.
This technique can be used for many potential properties
that one may want to add to our initial list of properties.
However, the main drawback of this technique is that for
many characters, there is either no equivalent title in Wikipedia
or no categorical information. Thus as provided in the next
paragraph, we use several heuristics to mine more contextual
information on each character.

We use VerbNet [21] which for each verb v specifies its
possible subject or object as either an organization, a person,
an animal, or an object. For instance, in the sentence ‘The agent
was killed in a terrorist attack.’, due to the meaning of the verb
‘killed’, ‘agent’ is probably a person or an animal. For isPlural,
we use the POS tags generated from the parser as well as
some TD rules (e.g., terms containing the word ‘and’ or ‘or’
are considered plural). For isMale, we use lists of masculine

(e.g., waiter, king, etc.) and feminine (e.g., waitress, queen,
etc.) terms and lists of male or female proper first names.
For isPerson, we use some POS tag information (e.g., NNP),
our male and female first names lists, as well as some TD
rules (e.g., any term renaming the words ‘who’ or ‘whom’ is
a person). We also use a list of animal names to add more
evidence to isAnimal. For isObject, if there is evidence that
a term is not a person and is not an animal, we increase the
confidence that it is an object. Any term renaming the word
‘which’ is also an object.
Combining Potentially Referencing Characters: Another
new technique to improve our understanding about the values
of the seven properties for different characters is to use
taxonomical relations namely type of relations between the
characters. These relations can be generated using our Onto-
Harvester system [30] and Hyponym information in WordNet
[36]. The key idea is that if character γ1 is type of character
γ2 with confidence c, then γ2 may be used as a coreference
for γ1 (in other words, γ1 may be referred to as γ2) with
confidence c. For instance, since ‘algebraic equation’ is type of
‘equation’, after the first time ‘algebraic equation’ is mentioned
in text, it can be referenced with the ‘equation’ for the rest of
text. This essentially means that γ1 can inherit the properties
of γ2 and vice versa. In order to do so, for each property f
of γ1, we update its confidence value, γ1.f , as follows:

γ1.f = { γ1.f + (1− γ1.f)cγ2.f if γ1.f × γ2.f ≥ 0
(γ1.f + cγ2.f)/2 if γ1.f × γ2.f < 0

The idea of combining the confidence values is essentially
the same as in Section IV-B if properties’ values have the
same signs. If they have different signs, we simply take a
weighted average on their values. By propagating the values
of the properties for potentially coreference characters, we ease
our later resolution technique which is based on the similarity
(or agreement) of the properties of the characters.

C. Finding Patterns for Coreferences
Although in general resolving coreferences only based on

morphological structures in text is not feasible, there are few
cases for which these structures may indicate a resolution.
For instance consider the sentence “Bob relieved himself telling
him the truth.”. Clearly from the structure of the sentence, one
can tell the reflexive pronoun‘himself ’ refers to ‘Bob’ in this
sentence. Here the pattern is that if the object of a verb is a
reflexive pronoun, it always refers to the subject of the same
verb. To capture such a pattern, we use the following GD rule:
——————————– Rule 4. ——————————–

SELECT (?2 ‘CoRef’ ?1)
WHERE { ?1 ‘subj of’ ?3.

?2 ‘obj of’ ?3.
FILTER (regex(?2, ‘ˆitselfˆ|ˆherselfˆ|ˆhimselfˆ...’, ‘i’)) }

—————————————————————————
In addition to reflexive pronouns, we use predictive nomi-

native constructs, first exploited by [33], appositive and role
appositive constructs [16], and relative pronouns construct
[34]. As can be seen, there are only very few such constructs
that explicitly specify a resolution. However, there are many
cases that a construct explicitly indicates two characters can
NOT refer to each other (be each others resolution). For

instance, in our earlier example, ‘him’ can refer to neither ‘Bob’
nor ‘himself ’. We refer to such cases as impossible resolutions.
In general, the object and subject of most verbs can not be each
other’s resolutions unless the object is a reflexive pronoun.
This pattern is specified by the following GD rule:
——————————– Rule 5. ——————————–

SELECT (?1 ‘NoCoRef’ ?2)
WHERE {

?1 ‘subj of’ ?3.
?2 ‘obj of’ ?3.
FILTER NOT (regex(?3, ‘ˆbeˆ|ˆbecomeˆ|ˆremainˆ...’, ‘i’))
FILTER NOT (regex(?2, ‘ˆitselfˆ|ˆherselfˆ|ˆhimselfˆ...’, ‘i’)) }

—————————————————————————
Some other obvious constructs indicating impossible reso-

lutions are terms connected through a preposition, terms for
which one is part of the other, and terms connected with
conjunctions (‘and’, ‘or’, ‘except’, etc.) Currently, we use 64
GD rules (available at [5]) to extract possible and impossible
resolutions from the morphological information in text. For
possible resolutions, we combine the characters as explained
in the previous subsection. The impossible resolutions, on the
other hand, are used in the next subsection where we explain
how SemScape performs the final character resolution.
D. Resolving Characters

Say that a character γ1 from a sentence s needs to be
resolved. We calculate the similarity (see next paragraph)
between γ1 in s and all other non-pronoun characters in s that
are not an impossible resolution for γ1. Our studies shows that
filtering by impossible resolution reduces the search space by
more than half for each sentence. Similarity values larger than
a predefined threshold are reported as resolutions. If no value
exceeds the threshold, resolution search for γ1 is continued
among characters in the previous same-paragraph sentences,
iteratively. In this way, we take the recency into account. If γ1
is a pronoun and no resolution is found for it in its paragraph,
the search will be stopped; this should be a rare case. If
γ1 is not a pronoun and it is not resolved yet, sentences of
the previous paragraph are also checked until a resolution is
found or until the beginning of the document is reached. In
other words, the scope for a pronoun’s resolution is only its
paragraph in SemScape, while the scope for other coreferences
is the entire document.
Characters Similarity Measurements: To compute the sim-
ilarity of two characters γ1 and γ2, we define the distance for
property f as δf=(γ1.f−γ2.f)/2 (−1≤ δf ≤1) and average
for property f as µf=(γ1.f+γ2.f)/2 (−1≤ µf ≤1) respec-
tively. Thus, we compute the similarity of characters γ1 and
γ2 by 1−(

∑
f∈F df)/|F |, where F is the set of all properties

(i.e. |F | = 7 in our case) and df is the dissimilarity of γ1 and
γ2 for property f which is defined as df = |δf |/(|µf | + 1).
It is easy to see that 0 ≤ df ≤ 1. The above formula
indicates that more difference (|δf |) essentially means more
dissimilarity, especially when the average is smaller (e.g.,
the dissimilarity of properties with values -.2 and .2 is more
than the dissimilarity of properties with values .5 and .9 even
though their distances are the same).

VI. GRAPH MATCHING OPTIMIZATION
TextGraphs can be presented in RDF format, and thus

queried by SPARQL. However, there is a subtle difference

Fig. 5. From left to right (a) A GD query (q), (b) a TextGraph containing q
(tg), and (c) a TextGraph not containing q (tg′).

between TextGraphs and RDF graphs. As the TextGraphs are
the graph representation of text, they may contain several
nodes with the same name or label while nodes in RDF must
have unique names. For instance in the TextGraph in Figure
4, there are two nodes with label ‘the’. This makes querying
the TextGraphs using SPARQL inefficient as explained next.

Consider the GD pattern/query (q) in Figure 5(a). Five nodes
with three different labels (A, B, and C) are connected through
four links in this query. As mentioned earlier, to differentiate
among nodes with the same label, SemScape assigns an ID
to each node (e.g. ‘the 8’ and ‘the 14’ in Figure 4). To ease
our discussions, we assume all edges have the same label, say
‘link’. Now consider two TextGraphs tg and tg′ in Figures 4(b)
and 4(c). Although both tg and tg′ contain all the individual
edges of the query graph q, only tg contains a subgraph
matching q. To find such matches, q can be expressed with
the following SPARQL query:
——————————- Rule 6. ———————————
SELECT *
WHERE { ?1 ‘link’ ?2 .

?1 ‘link’ ?4 .
?4 ‘link’ ?3 .
?5 ‘link’ ?3 .
FILTER (strStarts(?1, ‘A ’))
FILTER (strStarts(?2, ‘C ’))
FILTER (strStarts(?3, ‘C ’))
FILTER (strStarts(?4, ‘B ’))
FILTER (strStarts(?5, ‘A ’)) }

—————————————————————————
Although this approach perfectly works for GD query q

using any SPARQL engine, it is very inefficient and slow, since
it can not take advantage of any smart indexing techniques.
Notice that the engine normally needs to traverse all triples
for each where clause in the form of <?1 ‘link’ ?2 .> and
then filter them based on the specified FILTER commands.
The same phenomenon can happen in other RDF resources,
however it is much more frequent in TextGraphs due to too
many same-label nodes.

To take advantage of the same-label nodes in our engine,
we first ignore all the IDs assigned by SemScape to nodes
and collapse both query graphs and TextGraphs by combining
same-label nodes into a single node. The collapsed version of

Fig. 6. From left to right: Collapsed version of (a) q (qc), (b) tg (tgc), and
(c) tg′ (tg′c).

Fig. 7. From left to right: (a) the subgraph of tgc matching qc, (b) the
expanded graph of part a, and (c) the subgraph of tg matching q.

the examples in Figure 5 is depicted in Figure 6. As shown
in Figure 6, for every link in the collapsed version, we store
all associated links in the actual graph for later retrieval. Now
the collapsed version of query q, called qc (Figure 6(a)), can
be expressed by the following SPARQL query:
—————————— Rule 7. ———————————

SELECT *
WHERE { ‘A’ ‘link’ ‘C’ .

‘A’ ‘link’ ‘B’ .
‘B’ ‘link’ ‘C’ . }

—————————————————————————
Answering collapsed queries (e.g. Rule 7.) over collapsed

TextGraphs is much faster than regular queries (e.g. Rule 6.)
over original TextGraphs. This is because of i) the collapsed
queries are smaller in the number of edges which consequently
reduce the number of join operations needed by SPARQL
engines, and ii) there are more literal nodes and less variable
nodes in the collapsed query graphs, which makes a better
use of indexing optimizations. However, finding a match for a
collapsed query on a collapsed TextGraph does not necessarily
mean that the actual query matches the actual TextGraphs (e.g.,
qc matches tg′c but q does not match tg′.) A match, here, only
indicates that all edges in the query graph have at least one
corresponding edge in the TextGraph. This check significantly
reduces the search space by eliminating many TextGraphs in
which one or more of the specified edges in q is missing.
For the remaining cases, we use the following verification
algorithm to verify that the matching edges construct the same
graph structure specified by q.
Verification: After finding the matches for the collapsed
queries on the collapsed TextGraphs, we expand the matching
edges to those in the actual edges. For instance, consider
TextGraph tg and its collapsed version tgc (Figure 6(b)).
Running the collapsed query qc over tgc will return the
subgraph shown in Figure 7(a). Once we expand this subgraph
to its corresponding subgraph in tg, we create a graph in which
each edge matches at least one of the edges in the original
query graph q. This subgrapg which is shown in Figure 7(b)
is referred to as tgm.

Now, the goal is to verify that the query graph q matches
with tgm or part of it. To this end, any sub-graph matching
technique can be utilized. Fortunately, since both nodes and
links in TextGraphs are labeled and the queries are mostly
small graphs, the problem is much simpler than the general
subgraph matching (subgraph isomorphism) problem which is
NP-Complete [12]. In our current implementation, we use a
simple recursive backtracking procedure.

VII. RELATED WORK
Text-Mining Frameworks: Several NLP-based text analyzing
packages and frameworks have been introduced in recent

years. Apache UIMA [2], OpenNLP [1], NLTK [3], GATE
[13], and CoreNLP [7] are among most commonly used such
systems, which mostly support a limited set of basic NLP
tasks such as POS-tagging, parsing, NER, etc. However to our
knowledge, none of these systems are able to support semantic
analysis and querying (such as GD patterns) of the free text.
Semantic Representation of Text: Although much efforts
are devoted to represent knowledge in more machine readable
structures such as RDF graphs [4], there are very few research
efforts to semantically represent text for the purpose of more
effective and efficient text querying and mining. We already
discussed the shortcomings of parse tree [22] and dependency
tree [25] representations. But unfortunately most NLP-based
text-mining approaches including the ones mentioned above
are still using these tree-bases representations, due to lack of
a better semantic representation [37]. There are some efforts
to present textual knowledge in Concepts Maps [32], Concept
Graphs [35], etc. However, the fact that nodes in these graphs
must be unique concepts makes them less effective for text
representation. Moreover, a general approach for automatically
converting text into such formats is still lacking
Coreference Resolutions: Hobbs [18] introduced one of the
early pronoun resolution techniques. In [19], Kehler et al.
utilized shallow parsing to resolve third-person pronouns and
achieved only marginal improvement with respect to Hobbs.
Authors in [23] created a set of potential resolutions for
each pronoun, and used recency, syntax-based preferences,
and a few agreement properties to suggest the final resolu-
tions. Authors in [14] used a similar approach by employing
the centering theorem. These approaches are only able to
resolve pronouns and suffer from low accuracy problem. Thus,
more recent works focus on either capturing some syntactic
structures implying a resolution to combine them with se-
mantic features [33][16][34] or utilizing statistical techniques
[15][11]. However, these approaches do not use taxonomical
information and constructs for impossible resolutions, and can
not identify the correct multi-word referent as they either
consider the whole NP or single-word terms.

VIII. CONCLUSION

Mining semantic information from free-text documents will
provide the enabling technology for a host of important
new applications. NLP-techniques, which utilize the mor-
phological structure of the text to produce plausible parse
trees, represent an important first step that must be followed
by anaphora resolution, and consultation of contextual and
taxonomical information from knowledge bases, including
domain-specific ontologies. To perform these tasks, we have
proposed a TextGraph representation and several TextGraph
based techniques. These proved quite effective at identifying
the semantic relationships between entities, properties and
attributes in the sentences, and between those and their real-
world counterparts. A number of experiments, including our
recent text-mining of the whole Wikipedia [28][29] illustrate
this conclusion.

REFERENCES

[1] Apache opennlp. https://opennlp.apache.org/.
[2] Apache uima. http://uima.apache.org/.

[3] Natural language toolkit. http://www.nltk.org/.
[4] Resource description framework (rdf). http://www.w3.org/RDF/.
[5] Semantic web information management system (swims).

http://semscape.cs.ucla.edu.
[6] Sparql query language for rdf.
[7] Stanford corenlp. http://nlp.stanford.edu/software/corenlp.shtml.
[8] Charniak nlp parser. ftp://ftp.cs.brown.edu/pub/nlparser/, 2008.
[9] R. Alur and P. Madhusudan. Adding nesting structure to words. In

Developments in Language Theory, 2006.
[10] M. Atzori and C. Zaniolo. Swipe: searching wikipedia by example. In

WWW, pages 309–312, 2012.
[11] E. Charniak and M. Elsner. Em works for pronoun anaphora resolution.

In EACL, pages 148–156, 2009.
[12] S. A. Cook. The complexity of theorem-proving procedures. In STOC,

pages 151–158, 1971.
[13] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate:

an architecture for development of robust hlt applications. In Recent
Advanced in Language Processing, pages 168–175, 2002.

[14] B. J. Grosz, S. Weinstein, and A. K. Joshi. Centering: a framework
for modeling the local coherence of discourse. Comput. Linguist.,
21(2):203–225, June 1995.

[15] A. Haghighi and D. Klein. Unsupervised coreference resolution in a
nonparametric bayesian model. In ACL, 2007.

[16] A. Haghighi and D. Klein. Simple coreference resolution with rich
syntactic and semantic features. In EMNLP, 2009.

[17] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Bürgle,
H. Düwiger, and U. Scheel. Faceted wikipedia search. In BIS, 2010.

[18] J. Hobbs. Resolving pronoun references. Lingua, 44:311–338, 1978.
[19] A. Kehler, D. Appelt, L. Taylor, and A. Simma. Competitive self-trained

pronoun interpretation. In HLT-NAACL, pages 33–36, 2004.
[20] D. Kerr, H. Mousavi, and M. Iseli. Automatic short essay scoring using

natural language processing to extract semantic information in the form
of propositions. In (CRESST Report 831). UCLA, 2013.

[21] K. Kipper, A. Korhonen, N. Ryant, and M. Palmer. A large-scale
classification of English verbs. JLRE, 42(1):21–40–40, Mar. 2008.

[22] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In ACL,
pages 423–430, 2003.

[23] S. Lappin and H. J. Leass. An algorithm for pronominal anaphora
resolution. Comput. Linguist., 20(4):535–561, 1994.

[24] T. Lee, Z. Wang, H. Wang, and S. won Hwang. Web scale taxonomy
cleansing. PVLDB, 4(12):1295–1306, 2011.

[25] M. D. Marneffe, B. Maccartney, and C. D. Manning. Generating typed
dependency parses from phrase structure parses. In LREC, 2006.

[26] O. Medelyan, D. N. Milne, C. Legg, and I. H. Witten. Mining meaning
from wikipedia. Int. J. Hum.-Comput. Stud., 67(9):716–754, 2009.

[27] H. Mousavi, S. Gao, and C. Zaniolo. Discovering attribute and entity
synonyms for knowledge integration and semantic web search. SSW,
2013.

[28] H. Mousavi, S. Gao, and C. Zaniolo. Ibminer: A text mining tool for
constructing and populating infobox databases and knowledge bases.
PVLDB, 6(12):1330–1333, 2013.

[29] H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. Deducing infoboxes
from unstructured text in wikipedia pages. In CSD Technical Report
#130001, UCLA, 2013.

[30] H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. Ontoharvester: An
unsupervised ontology generator from free text. In CSD Technical
Report #130003, UCLA, 2013.

[31] D. Nadeau and S. Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, Jan. 2007.

[32] J. D. Novak and G. D. B. Learning how to learn. Cambridge University
Press, N.Y., 1984.

[33] H. Poon and P. Domingos. Joint unsupervised coreference resolution
with markov logic. In EMNLP, 2008.

[34] K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu,
D. Jurafsky, and C. D. Manning. A multi-pass sieve for coreference
resolution. In EMNLP, 2010.

[35] J. F. Sowa. Conceptual graphs for a data base interface. IBM Journal
of Research and Development, 20(4):336–357, 1976.

[36] M. M. Stark and R. F. Riesenfeld. Wordnet: An electronic lexical
database. In Eurographics Workshop on Rendering. MIT Press, 1998.

[37] A. Tan. Text mining: The state of the art and the challenges. In PAKDD,
pages 65–70, 1999.

