
Partitioning OWL Knowledge Bases for Parallel
Reasoning

Sambhawa Priya∗, Yuanbo Guo†, Michael Spear‡ and Jeff Heflin§
∗‡§ Department of Computer Science and Engineering, Lehigh University

19 Memorial Drive West, Bethlehem, PA 18015, USA.
†Microsoft Corporation, USA

Email: ∗sps210@lehigh.edu, ‡spear@cse.lehigh.edu, §heflin@cse.lehigh.edu, † Yuanbo.Guo@microsoft.com

Abstract—The ability to reason over large scale data and
return responsive query results is widely seen as a critical step
to achieving the Semantic Web vision. We describe an approach
for partitioning OWL Lite datasets and then propose a strategy
for parallel reasoning about concept instances and role instances
on each partition. The partitions are designed such that each
can be reasoned on independently to find answers to each query
subgoal, and when the results are unioned together, a complete set
of results are found for that subgoal. Our partitioning approach
has a polynomial worst case time complexity in the size of the
knowledge base. In our current implementation, we partition
semantic web datasets and execute reasoning tasks on partitioned
data in parallel on independent machines. We implement a
master-slave architecture that distributes a given query to the
slave processes on different machines. All slaves run in parallel,
each performing sound and complete reasoning to execute each
subgoal of its query on its own set of partitions. As a final step,
master joins the results computed by the slaves. We study the
impact of our parallel reasoning approach on query performance
and show some promising results on LUBM data.

Index Terms—parallel reasoning, OWL Lite, knowledge base,
partition, empirical study

I. INTRODUCTION

The Semantic Web is increasingly being used for repre-
sentation and reasoning of data on the Web. However, there
are several challenges to be addressed before the Semantic
web vision can be practically realized. One of the challenges
the Semantic Web community is facing today is the issue
of scalable reasoning that can generate responsive results to
complicated queries involving large datasets. Unfortunately,
there is a significant gap between sound and complete de-
scription logic reasoners and scalable Semantic Web systems.
One way to overcome this scalability issue is to split the
workload across multiple nodes and perform reasoning in
parallel, ideally with minimal communication between nodes.

Splitting the Semantic Web data into independent partitions
is hard [1]. It is difficult to guarantee sound and complete
reasoning on the split workload. If we split the knowledge
base naively across multiple nodes, we would suffer significant
communication penalties due to the need to draw inferences
whose data is distributed across nodes. Another possibility is
to split the knowledge base such that all the triples involving a
particular term are sent to a single node so that all inferences
involving those triples could be drawn. But this might result
in poor load balancing since some terms are more popular

than others in accordance to the power law [2], and nodes
handling triples for such popular terms will have very high
load. We address this issue in our algorithm for partitioning
the knowledge base.

OWL, the W3C recommended Web Ontology Language,
is one of the key standards for building the Semantic Web.
OWL has three species, i.e. OWL Lite, OWL DL and OWL
Full, with increasing expressivity and thus increased reasoning
complexity. OWL 2 is an extension and revision of OWL
and has 2 major dialects - OWL 2 DL and OWL 2 Full,
more expressive counterparts of OWL DL and OWL Full.
OWL 2 specifies 3 profiles - OWL 2 EL, OWL 2 QL and
OWL 2 RL, which are subsets of OWL 2 DL. OWL Lite
is a subset of OWL DL, hence it is effectively a subset of
OWL 2 DL as well. OWL Lite covers most of the features
in OWL 2 EL, OWL 2 QL and OWL 2 RL as well as
others in none of these languages. OWL Lite and OWL DL
logically correspond to expressive Description Logics (DLs)
- SHIF(D) and SHOIN (D), respectively [3]. An OWL
Lite/DL knowledge base consists of a DL TBox T and a DL
ABox A. The TBox contains axioms about concepts (sets of
objects) and roles (binary relations). ABox is a set of assertions
about individuals (concept assertions) and their relationships
(role assertions). Thus, a TBox is analogous to ontology and
the associated ABox contains instance data over that ontology.

Reasoning with OWL is complex. Even OWL Lite has
exponential worst-case complexity. Nonetheless, contemporary
reasoners such as FaCT++ [4], Racer [5], Pellet [6] and Hermit
[7] tend to work well with realistic TBoxes which usually have
moderate sizes. All of the above systems are main memory-
based systems that are based on optimized implementations of
tableaux algorithms. As Horrocks et. al. [8] pointed out, a great
challenge for systems to support ABox reasoning is due to the
fact that ABoxes can be extremely large in a setting like the
Semantic Web. We address this issue by adopting a divide-
and-conquer approach of partitioning an OWL ABox into
independent smaller pieces that can be processed in parallel
while guaranteeing the completeness of reasoning in question
when the results are combined.

In this work, we describe an approach for partitioning OWL
Lite datasets and then propose a strategy for parallel reasoning
about concept instances and role instances on each partition.
In our current implementation, we partition semantic web

datasets and execute reasoning tasks on partitioned data in par-
allel on independent machines. We implement a master-slave
architecture where we have a master process that distributes
a given query to the slave processes on different machines.
A typical query to the knowledge base may involve multiple
subgoals of different selectivity, referred to as a conjunctive
query. The selectivity of a query subgoal is determined by the
size of its resultset; the smaller the resultset, the more selective
a query subgoal is and vice versa. A retrieval conjunctive query
is the most frequently used query in the Semantic Web [6],
and searches the ABox for instances that satisfy a conjunction
of concepts and roles. In a parallel reasoning environment, the
results of the subgoals of a conjunctive query need to be joined
optimally in order to generate responsive results. All slaves run
in parallel, each performing sound and complete reasoning to
execute each subgoal of its query on its own set of partitions.
As a final step, the master joins the results computed by the
slaves.

The rest of the paper is organized as follows: in Section II
we describe an approach to partition OWL Lite knowledge
base into independent partitions. We present our approach
for parallel reasoning on the partitioned knowledge base in
Section III. In Section IV, we describe our implementation,
and we present results of our evaluation on partitioning and
reasoning with conjunctive query processing using the LUBM
benchmark in Section V. In Section VI we discuss related
work, and we conclude with a discussion of future work in
section VII.

II. AN APPROACH FOR INDEPENDENT ABOX
PARTITIONING

In this section, we discuss our approach for determining in-
dependent ABox partitions. This section recapitulates the work
presented in Guo and Heflin [9] and serves as a foundation
for the novel work done in this paper. In our discussion, we
ignore datatypes which can be easily supported without loss
of generality.

In [10], Amir and McIlraith provide a definition for parti-
tioning with respect to a logical theory. We have specialized
the definition for an ABox, as follows:

Definition 1 (ABox Partitioning). {Ai}i≤n is a partition-
ing of ABox A iff A = ∪iAi

We focus mainly on inference of concept instances, in the
form a :C, and the inference of role instances, in the form of
⟨a, b⟩ :R. Our goal is to work with partitions independently
while still guaranteeing complete reasoning for combined
results. Following is our definition of independent partitioning:

Definition 2 (Independent ABox Partitioning). Given
an OWL knowledge base K = (T ,A), a partitioning of
A, {Ai}i≤n is an independent partitioning of A with respect
to T iff for every concept assertion or role assertion φ such
that K |= φ, there exists Ai such that (T ,Ai) |= φ.

We assume that there are no assertions in ABox that contain
complex concepts, i.e. the assertion φ in Definition 2 is a role
or concept assertion whose concept is atomic.

Fig. 1. An Example chunk graph

Guo et. al. [11] have shown that for two OWL Lite/DL
knowledge bases, K1 = (T ,A1) and K2 = (T ,A2), iff A1

and A2 do not contain any individual names in common, then
K1 and K2 are independent from each other with respect to
the inference of concept or role assertions. Thus, we can say
that A1 and A2 is an independent partitioning of A1 ∪ A2.

A. Building Blocks - Chunk and Chunk Graph

In order to build the partitions, we build a chunk graph G
for a given ABox A. Chunks are the basic unit of partitions
and the structure of the chunk graph G determines partitioning.
Each vertex of G is a chunk which is a set of assertions from
A. G is a directed graph where two chunks sharing an edge
must belong to the same partition. The chunk graph represents
relevance between assertions in the ABox in terms of their
interdependence on each other for deriving new inferences.
The idea is that two assertions which are relevant to each other
should be assigned to the same chunk or to two chunks that
share an edge. In this way, both assertions will be guaranteed
to appear in the same partition.

Thus, the chunk graph serves as the building block for
partitions. Fig. 1 shows an example chunk graph and the
circles depict its three partitions. For determining partitions,
first a partition is created for each chunk that has no outgoing
edge and then all the chunks from which this chunk is
reachable are added to the partition. There can be duplication
of assertions among partitions as depicted in Fig. 1 where
Partition1 and Partition2 have assertion α1 in common.

1) Determining Relevant Assertions: For determining rel-
evant assertions in an ABox such that they depend on each
other for deriving a new inference, we utilize the natural
deduction style inference rules. Royer and Quantz [12], [13]
have developed a general approach for deriving a sound and
complete set of inference rules for any given DL. They first
translate the DL into FOL according to the method described
by Tsarkov et. al. [14] and then identify from the resultant
FOL formula necessary and sufficient conditions of provability
in the Sequent Calculus. This finally leads to derivation of
inference rules for DL. In their work [13], the authors have
applied this technique to a very expressive DL which includes
intersection, negation, value restriction, existential quantity,
role hierarchy, transitive role, inverse role, and number re-
striction (which subsumes SHIF). The rules they have given

are complete if nominals are ignored which does not affect us
since SHIF does not have such a feature.

Based on their results, we have identified the following set
of inference rules for a DL SHIF knowledge base (T ,A).
In these rules, a, b and c are individuals, C, C1 and C2 are
class (concept) expressions and R, R1 and R2 are roles.

TBox Rules

There are around 100 TBox rules for inferring concept and
role subsumptions. We refer the readers to [13] for details.
Below we use T ⊢ C1 ⊑ C2 or T ⊢ R1 ⊑ R2 to denote such
inferences.

ABox Rules

For ABoxes rules, we use A ⊢ φ as an abbreviation for
(T ,A) ⊢ φ. Also for simplicity, we ignore the cardinality
constructs - ≥0R, ≥ 1R and ≤ 0R since they can be translated
into ⊤, ∃R.⊤ and ∀R.⊥ respectively.

R1) If φ ∈ A then A ⊢ φ.
R2) A ⊢ a : ⊤
R3) If T ⊢ C1 ⊑ C2 and A ⊢ a : C1 then A ⊢ a : C2.
R4) If A ⊢ a : C1, a : C2 then A ⊢ a : C1 ⊓ C2

R5) If A ⊢ a : ∀R.C, ⟨a, b⟩ : R then A ⊢ b : C
R6) If A ⊢ ⟨a, b⟩ : R, b : C then A ⊢ a : ∃R.C
R7) If T ⊢ R1 ⊑ R2 and A ⊢ ⟨a, b⟩ : R1 then A ⊢ ⟨a, b⟩ : R2

R8) If A ⊢ ⟨a, b⟩ : R then A ⊢ ⟨b, a⟩ : R−

R9) If R ∈ R+ (transitive role) and A ⊢ ⟨a, b⟩ : R, ⟨b, c⟩ : R
then A ⊢ ⟨a, c⟩ : R
R10) If A ⊢ a :≤ 1R, ⟨a, b1⟩ : R, ⟨a, b2⟩ : R then A ⊢ b1 = b2
R11) If A⊢a = b and a : C (resp. ⟨a, c⟩ : R, ⟨c, a⟩ : R, a = c)
then A ⊢ b : C (resp. ⟨b, c⟩ : R, ⟨c, b⟩ : R, b = c)

Given their forward chaining style, the above rules may not
be suitable for implementing an effective reasoning system.
However the advantage is that they provide us with an in-
tuitive guidance for partitioning: generally, assertions in the
antecedent of an inference rule should be placed in the same
partition. However, it would require full backward chaining
reasoning on the knowledge base to pinpoint the antecedents
of implicitly inferred statements.

In order to avoid determining antecedent assertions for all
implicitly inferred statements along with the explicit ones (i.e.
reasoning on the entire knowledge base), Guo and Heflin
[9] adapted some inference rules for OWL Lite to quickly
determine which assertions might infer others. We refer to
these new rules as ”might-infer”(⊢?) rules.

The might-infer (⊢?) rules can simplify the process of de-
termining relevant assertions for constructing the chunk graph.
We note that the adapted rules are complete but unsound, but
this does not sacrifice the correctness of partitioning. The only
consequences of unsoundness are that there might arise a case
where two irrelevant assertions are required to be in the same
chunk; or that arcs may be added between chunks that do not
actually contain relevant assertions. We refer the readers to [9]
for detailed discussion on the might infer (⊢?) rules.

2) Constructing the Chunk Graph: We use the might infer
(⊢?) rules mentioned above as a guidance to develop the
algorithm for building the chunk graph. We derive new rules
called chunk rules (ChunkRule) by combining one or more
of the might infer rules. The application of a chunk rule
causes some alteration of the chunk graph - it may create a
new chunk, merge existing chunks, or add arcs between some
chunks. The partitions are determined based on the chunk
graph.

When defining chunk rules, we keep in mind the following:
1) If based on ⊢?, an assertion β might affect inference about
concept membership of a, then the chunk containing concept
assertions of a (denoted by chunk(a)) will be reachable from
the chunk that either contains or infers β. 2) If a chunk ck
depends on concept memberships of a to derive new inference,
then ck will be reachable from chunk(a). This is shown in
Figure 2.

Fig. 2. Illustration of rules for determining reachability between chunks

Before we elaborate on the ChunkRules, we define three
properties for roles which will be used in describing
ChunkRules:

Definition 3 (∀ - Possible(T ,R))
1) If there exists a general concept inclusion (GCI) g in T
such that ∀ R occurs on right hand side of g, then ∀ -Possible
(T ,R) is true.
2) If T |= R ⊑ S and ∀-Possible(T ,S) is true, then ∀ -
Possible(T ,R) is also true.

Definition 4(∃ − Useful(T , R))
1)If there exists a GCI g in T such that ∃R occurs on the left
hand side of g, then ∃ − Useful(T , R) is true.
2) If ∀-Possible(T , R) is true, then ∃−Useful(T , R) is also
true.
3) If T |= R ⊑ S and ∃ − Useful(T , S) is true, then ∃ −
Useful(T , R) is also true.

Definition 5 (≤ −Possible(T , R))
1) If there exists a GCI g in T such that ≤1R occurs on the
right hand side of g, then ≤ −Possible(T , R) is true.
2) If T |= R ⊑ S and ≤ −Possible(T , S) is true, then ≤
−Possible(T , R) is also true.

We now describe the ChunkRules:
ChunkRule 1.(Based on TBox rules on concept and role

subsumptions and R2-R4) Create a chunk for each individual
a in ABox A such that a : C∈A. For any individual a,
chunk(a) ⊢? a : C for any concept C.

Using this rule, we group all the concept assertions about

a in the ABox into chunk(a) which infers any concept
membership of a. If a is untyped, then chunk(a) is initially
empty (since OWL Lite requires that all instances be typed,
this is only significant if the data is messy).

ChunkRule 2. Create a chunk for each role assertion φ
in A. Hereafter, we will use chunk(φ) to denote the chunk
containing φ. We note that chunk(φ) ⊢? φ.

ChunkRule 3. (Based on R10) If ≤1 − Possible(T , R)
and ck1 ⊢?< a, b >: R, ck2 ⊢?< a, c >: R, then:
1) Merge ck1 and ck2 to form ck.
2) Draw an arc from chunk(a) to ck.
3) From the above two steps, we record that ck ⊢? b = c

ChunkRule 4.(based on R11) If ck ⊢? b = c, then :
1) Record that b ≈ c (abbreviation for A ⊢? b = c).
2) Merge chunk(b) and chunk(c) to form chunk ck′.
3) Draw an arc from ck to ck′.
4) For every role assertion φ involving b or c, draw an arc
from ck to chunk(φ) .

ChunkRule 5.(Based on R7-R9) For each R ∈ R+,conduct
an individual names based merging on the following set of
assertions:
{< a, b > |R1 ⊑ R or R1 ⊑ R−} according to the following
rule:
For any two of the above assertions, φ1 =< a, b >: R1 and
φ2 =< c, d >: R2, where a ≈ c or a ≈ d or b ≈ c or a ≈ d,
merge chunk(φ1) and chunk(φ2).

ChunkRule 6.(Based on R5) If ∀ − Possible(T , R) and
ck ⊢?< a, b >: R then
1) Draw an arc from chunk(a) to chunk(b).
2) Draw an arc from ck to chunk(b).

ChunkRule 7.(Based on R6) If ∃ − Useful(T , R) and
ck ⊢?< a, b >: R then
1) Draw an arc from chunk(b) to chunk(a).
2) Draw an arc from ck to chunk(a).

We apply the above ChunkRules to construct the chunk
graph G. We first initialize the chunks using ChunkRule 1
and ChunkRule 2. Then, we repeatedly apply ChunkRules 3,
4 and 5 which lead to creation of new chunks that might infer
something new. This may result in generating new antecedents
for these ChunkRules and activate another round of application
of the rules. Finally, we apply ChunkRules 6 and 7, which
result in addition of new arcs on the graph. This algorithm to
build the chunk graph always terminates and has a polynomial
worst case time complexity in the size of ABox A. We refer
the readers to [9] for details on this algorithm.

B. Determining Partitions

After the chunk graph G is built, to determine the parti-
tioning of G becomes fairly straightforward. For every chunk
ck that has no outgoing links, we create a partition p =
∪i cki where ck is reachable from cki on G (including
ck). Effectively, we create partitions by merging every set of
chunks that form a connected component of G.

The most complex operation in determining partitions is
computing reachability between vertices. In the worst case, if
the number of chunks in chunk graph is n and the graph is

dense, the algorithm will have a time complexity of O(n3).
However, the graph is typically sparse, and as shown in the
later experiments, the run time grows linearly with the problem
size.

The above algorithm keeps the resultant partitions as small
as possible by allowing chunks to be put in the same partition
only when they are required by the chunk graph. In practice,
however, we may prefer a restricted number of partitions as
long as their sizes do not go beyond a predefined limit. In that
case, we perform merging of resultant partitions.

III. PARALLEL REASONING ON PARTITIONED ABOX

Once the knowledge base has been divided into independent
partitions using the strategy described above, we reason with
the partitions in parallel on independent machines. We imple-
ment a master-slave architecture (see Figure 3) where we have
a master process that distributes a given query to the slave
processes on different machines. During the bootstrapping
phase, the slave processes are assigned a disjoint set of
partitions such that the load is balanced as much as possible
between them in terms of number of triples. Each slave has a
sound and complete DL reasoner. The slaves read their allotted
partitions and load RDF models for their partitions in memory.
Once a slave has loaded RDF models for its partitions, it
signals the master that it is ready to receive queries. Each
query is a conjunctive query (x1, x2, ...) ← A1 AND A2

AND ... where each Ai is a subgoal of the form ⟨x1, x2⟩ : R
or x1 : C where R is a role and C is a concept name. x1,
x2, etc. are distinguished variables and an answer to the query
provides bindings for all such variables. The master waits until
it receives notifications from all the slaves and then sends the
query across to them. Upon receiving the query, the query
processing phase begins when the slaves start processing the
query on each of their in-memory models. The slaves reason
on their respective models simultaneously in order to build the
corresponding inference models. They divide the query into its
subgoals and each subgoal is independently processed on each
inference model. The results for a particular subgoal are stored
as a shared set of n-tuples over different models and slaves.
Once a slave completes processing a given query on all of its
models, it sends a signal to the master indicating its completion
of task. The master waits to receive the completion signal from
all the slaves and then performs a join on the merged results
of each subgoal to obtain complete answers to a given query.
In the meantime, the slaves wait to receive another query from
their master. After computing the final result of a query, the
master sends the next query to process across the slaves. Thus,
the process continues while the master keeps receiving queries
from the user.

In this approach, partitioning needs to be done only once
for every dataset. Once partitioning is done, the slaves load
the models for their partitions which also occurs once per
dataset. Thus, the time-cost of partitioning and loading can be
amortized over several queries. Depending upon the number
of slaves available, the total time taken to reason and answer

Fig. 3. Master Slave Architecture for Parallel Reasoning on Partitions

a query over a partitioned dataset, which has been loaded in-
memory across slaves, can be given by the sum of time taken
for reasoning on the partitions in parallel and the time to join
the results from different slaves.

IV. IMPLEMENTATION

A. Partitioning

Our algorithm allows for an implementation based on sec-
ondary storage so as to accommodate large datasets. We use a
MySQL instance to store the input data and the intermediate
results - chunks, chunk graph, partitions, ≈ and ⊢? infor-
mation. One important feature of the partitioning algorithm
is that it works on a small subset of input data at a time,
for example, concept assertions for the same individual, role
assertions for the same role, a single chunk, and so on. This
locality is important for the scalability of the system.

As we mentioned before, our algorithm keeps resultant
partitions as small as possible. Since our purpose is not to
evaluate granularity of partitioning, but to reason on them to
evaluate conjunctive queries, we do not generate the smallest
partitions. Instead, we let the partitioner merge the partitions
by grouping every 1000 small partitions into one merged
partition. We found such a grouping to be most optimal for
balancing the I/O overhead for the slaves during loading the
partitions for parallel reasoning.

B. Parallel Reasoning on Partitions

We use Jena, an open source Semantic Web toolkit for
processing the OWL ontologies to create models for partitions.
These are loaded by each slave into the main memory. Reason-
ing on these raw models to generate inference models is done
using an open source reasoner, Pellet [6]. The communication
between master and slaves is implemented using Java TCP
sockets. SPARQL is used as the query language for processing
conjunctive queries.

For storing the results of query subgoals computed by the
slaves, we use a separate MySQL instance on the master node.
We create a table for each subgoal of the conjunctive query

where the columns of a table correspond to the variables
in the respective subgoal. For a given conjunctive query:
(x, y)← ⟨x, y⟩ : R ∧ y : C, we create the tables: table1:(x,y)
and table2:(y) to hold results of the subgoals of the query.
In order to populate the database, we use DELAYED inserts,
a MySQL extension to standard SQL, that takes inserts from
many clients (in our case, slave processes) and clubs them
together to write in one block, which is much faster than doing
separate individual inserts. The MySQL tables are indexed to
generate B-tree indexes on the fields corresponding to join
variables (In the conjunctive query example above, we create
an index on column y in table1 and table2). This speeds up
join processing to compute the result of the conjunctive query.

V. EVALUATION

To evaluate the performance benefit of our parallel reason-
ing system, we performed experiments on a cluster with 17
machines. Each machine has one 4-core (8-thread) 2.93 GHz
Xeon processor and 6 GB of RAM. Each machine ran CentOS
6.4 and the Oracle JDK, version 1.7.

A. Evaluation of Partitioning

Partitioning was performed serially on one of the machines.
We conducted the experiments on LUBM data to evaluate
performance of our partitioner. LUBM is a benchmark for
evaluating OWL knowledge base systems focusing mainly on
ABox processing. Using the LUBM data generator, we have
created test sets with between 6M and 27M triples. The bench-
mark data includes someV aluesFrom, transitiveProperty,
inverseOf , and other properties. The benchmark is intended
to be a realistic ontology of the university domain.

Table I, II and Fig.4 show the test results. As can be seen,
the partitioning system scales well. The triples are found to
be evenly distributed across partitions. Prior to merging, about
55% of partitions have only 1 triple (these are triples that
do not influence inference) and thus we get the median size
of 1000 triples for the merged partitions in Table II. The
maximum partition size only grows slightly as the dataset
doubles. The minimum partition size is because the last group
of partitions that were merged may have fewer than 1000
partitions, and thus may have much fewer triples than most
partitions. Fig. 4 shows that the partitioning time is roughly
linear with the size of the dataset. As shown in Fig. 1, there
can be duplicate assertions among partitions. About 1.5% of
assertions in the original dataset were duplicated at least once
which resulted in 18% total duplicated triples in the partitioned
dataset. Partitioning needs to only occur once per dataset, thus
the partition time can be amortized over many queries.

TABLE I
PARTITIONING STATISTICS I (FOR MERGED PARTITIONS)

Dataset Size(# triples) Time(hh:mm:ss) # partitions
LUBM(50) 6.8M 01:23:25 5178
LUBM(100) 13.8M 02:51:00 10421
LUBM(200) 27.6M 03:47:22 20760

TABLE II
PARTITIONING STATISTICS II (FOR MERGED PARTITIONS)

Dataset

Average
Partition
Size
(# triples)

Min
Partition
Size
(# triples)

Max
Partition
Size
(# triples)

Median
Partition
Size
(# triples)

LUBM(50) 1593 67 6721 1000
LUBM(100) 1594 159 6747 1000
LUBM(200) 1595 279 6755 1000

Fig. 4. Partition time for LUBM data

B. Evaluation of Parallel Reasoning on Partitions

Out of the 17 machines in our cluster, one serves as the mas-
ter and the remaining 16 machines host the slave processes.
For maximum utilization of our resources, we decided to run
2 processes per machine (PPM) to experiment with 8, 16 and
32 slave processes. However, due to memory limitations, we
were unable to achieve the above configuration for our largest
dataset, LUBM-200, with 8 processes (2PPM * 4 machines).
Thus, for fair comparison between experiments on each dataset
with respect to 8 processes, we resort to the configuration of
1PPM * 8 machines1. For experiments with respect to 16 and
32 processes, we keep the configuration of 2 PPM for each
dataset. Note that, in theory, we do not need to run more than 1
PPM but we resorted to the above configuration for maximum
utilization of resources available to us. For LUBM-100 and
LUBM-50, the query processing time with the configuration of
2PPM * 4 machines was only 10% higher than that with 1PPM
* 8 machines. We restricted our experiment to 32 processes
to avoid too much resource contention between processes on
the same node. Experiments were conducted when the load
on these machines was very low. Results are an average of 10
trials.
We evaluated our system’s performance using LUBM-50,
LUBM-100 and LUBM-200 benchmark datasets. Fig. 5 shows
the speedup for these datasets for 8, 16 and 32 processes.
It shows the arithmetic average of speedup over all LUBM
queries where 8 processes is our baseline.2 The speedups fall

1For LUBM-200, the maximum memory usage for the in-memory DL
models is 4GB per machine (for 1PPM *8 machines). For larger datasets,
we can rely on the swap memory (6GB) for caching the models. Ideally,
we would pre-compute and serialize the DL models for the partitions and
load them only at query processing time, instead of holding them in-memory
throughout.

2A single process cannot load LUBM-100 or LUBM-200 without partition-
ing. Hence we did not use 1 process as our baseline.

Fig. 5. Speed up for LUBM-50, LUBM-100 and LUBM-200 on 8, 16 and
32 processes.

short of embarrassing parallelism, mostly due to the setup cost
(time spent distributing the query to the slaves) and performing
join to get the final answers. We observe that we get better
speedup with larger datasets. This can be attributed to the fact
that the parallel framework overcomes the overhead of setup
and performing joins. LUBM-100 and LUBM-200 result in a
3.5x speed-up which is 12.5% short of the perfect speedup. 3

In Fig. 6, we compare the query execution times (wall clock
time) for different LUBM datasets over different benchmark
queries using 32 processes. For LUBM-50, response time for
queries 1, 6, 10, 11, 12 and 14 are observed to be within 15
seconds. We find that queries 7 and 9 are worst performing
queries and, in general, degrade rapidly as the size of dataset
increases. We have found that the queries with high query
processing time have very large intermediate resultsets for
query subgoals. These large intermediate resultsets took longer
to insert into database tables, to index and to join to obtain
final results.

Fig. 6. Time taken to answer LUBM Queries on LUBM-50, LUBM-100
and LUBM-200 data using 32 processes

In order to explore this issue further, we analyze the
overheads of different steps involved in query processing.
In Fig. 7, exec denotes the time taken by the slaves to
execute the query subgoals on their set of partitions and hold
resultsets temporarily in memory. After this, we iterate over the
resultsets and prepare to insert them into the database tables

3The configuration with respect to processes per machine, that we described
earlier in this section, does not affect the speedup analysis very much and the
shape of the curve remains intact.

Fig. 7. Analysis of steps for query processing on LUBM-100 using 32
processes for the benchmark queries (except Q6 and 14).

for respective subgoals and we denote this entire operation
by insert DB. Once all the slaves have finished processing
the query on all its partitions, the master indexes the database
tables, indicated by index DB. Finally, the master joins the
tables corresponding to the query subgoals to compute the
result of the query, indicated by join DB. Statistics are taken
for query processing on LUBM-100 using 32 processes for all
the benchmark queries, except queries 6 and 14 (since they
have single subgoal and hence don’t need indexing or joining).
We can observe from Fig. 7 that, for most of the queries, the
majority of the query processing time is spent in populating,
indexing and joining the database tables compared to the time
taken in executing the query subgoals (For queries shown in
Fig. 7, the query execution time is less than 2 seconds for each
query (denoted by exec) which is insignificant when compared
to the database processing time). With respect to the resultset
size, the query execution time grows slowly. For example,
query Q10 has a resultset of size 1.04 million triples and an
exec time of 0.85s, while query Q7 has a resultset that is 7x
larger and an exec time that is only 1.5x longer. The database
insertion and indexing times grow polynomially. The join time
fluctuates from one query to another as it depends on multiple
factors like number of subgoals, resultset size, number of join
variables, query optimization and rewriting performed by the
MySQL engine, etc. For the slowest queries (Q7 and Q9), the
intermediate result sizes are at least 27 times larger than those
for the fastest ones (Q1 and Q11). Also, the faster queries have
fewer subgoal tables to join. Thus, for queries 7 and 9, a long
time is spent in populating, indexing and joining the database
tables compared to queries 1 and 11. Also, as the resultset
size grows, the total insert, index and join time grows more
quickly than the execution time. We can observe that queries
4, 5 and 13 have surprisingly smaller join time than queries
2, 7, 8 and 9, while they all have comparable intermediate
resultset sizes. This is attributed to the fact that the latter
queries have more intermediate resultsets and involve more
join variables. These factors lead us to the conclusion that the
database is essentially a bottleneck when dealing with queries
involving multi-way joins with large intermediate resultsets
and multiple join variables. We plan to address this issue in

the future by devising intelligent and efficient join processing
algorithms that take into account data distributed across nodes
(e.g. parallel hash-join algorithm).

VI. RELATED WORKS

Amir and McIlraith [10] have researched automatic parti-
tioning of first-order and propositional theories and designed a
message passing framework for reasoning with the partitioned
knowledge base. The basic difference between their approach
and our approach lies in the fact that their strategy, due to
different requirements and goals, does not guarantee indepen-
dent partitioning as we noted in Definition 2. Their approach
generates partitions with potential links and correct reasoning
may require communication between partitions.

Stuckenschmidt and Klien [15] have proposed an approach
to partition OWL TBoxes based on the class hierarchy for
modeling purposes. Unlike us, they do not take into account
reasoning on the resulting partitions. Also, our focus is on the
ABox. Fokoue et. al. [16] employ static analysis of knowl-
edge representation and summarization techniques to extract
a reduced proxy ABox, which, from the instantiation query
point of view, depends on the given query; our partitioning is
independent of the query.

Some previous work has been done in the area of parallel
and distributed reasoning on RDF and OWL datasets. Some
of these works [1, 17, 18] are based on RDFS reasoning in
forward chaining style (materialization) which differ from our
system which is based on reasoning in OWL Lite (a more
expressive language than RDFS) using backward chaining.
Oren et al. [1] combine parallel hardware with distributed
algorithms to implement a system called MARVIN for scalable
RDFS reasoning. The triples are randomly distributed between
nodes based on a hash value of the triple and the node’s rank
in the network. Each node reasons on its input data and swaps
some part of the computed data with another node for further
inferencing. The technique guarantees anytime behavior and
eventual completeness of inference process. In our system,
there is no swapping of intermediate results between the nodes
since we partition the dataset in such a way that each partition
can be reasoned on independently.

Weaver et al. [17] derive an embarrassingly parallel algo-
rithm for materializing complete RDFS closure using C/MPI.
They divide the assertional triples evenly among the processes
and give each process a complete set of ontological triples and
RDFS rules. In their system, each of the processes perform
fixpoint iteration on all finite RDFS rules. Unlike our system,
they don’t show query evaluation.

Heino et al. [18] perform parallel RDFS entailment on a
massively parallel hardware in a shared memory setting where
as our parallel reasoning system is deployed on cluster of
compute nodes that don’t share memory. DynamiTE [19] uses
a parallel infrastructure to perform incremental materialization
in the domain of stream reasoning. This system performs rule-
based reasoning on ρdf RDFS fragment.

Urbani et al. [20] proposed a system called WebPIE which
performs distributed computation of closure of an RDF graph

under the OWL Horst semantics using the MapReduce frame-
work. OWL Horst is an extension of RDFS with ρD rules. It is
a less complex dialect of OWL compared to OWL Lite. The
entailment rules are encoded as Map and Reduce functions
which are chained and applied on the data to compute the
full closure. The compute nodes are partitioned into mappers
and reducers according to their respective allocated functions.
WebPIE might not scale that well in computing more compli-
cated rules that use union and intersection. Also, this system
has no query endpoint.

In [21], Urbani et. al. present an approach where they
use a combination of backward-chaining and materialization
of terminological closure to execute queries on OWL Horst
knowledge bases. They introduce optimizations to reduce the
search space of backward-chaining reasoning. However, they
show query evaluation for only single pattern queries, not
conjunctive queries.

Soma and Prasanna [22] propose data-partitioning and rule
partitioning approaches. Data partitioning approach splits data
among processes which have complete rulesets while rule par-
titioning partitions rules over processes which have complete
dataset. Our work is somewhat similar to their domain specific
data partitioning idea as they aim to put all related entities
on same partition . They report good speedup for the LUBM
benchmark for different numbers of processors.

VII. CONCLUSION AND FUTURE WORK

We address the issue of scalable and parallel reasoning
in this work. This work builds on the foundation of the
work by Guo and Heflin [9] who proposed a polynomial
time approach to partition OWL Lite knowledge base with
respect to its TBox. Each resulting partition can be reasoned
on independently while still guaranteeing sound and complete
reasoning. We utilized this feature to design a framework to
reason on these partitions in parallel on independent machines,
which is our novel contribution in this work. We implement a
master-slave architecture to carry out reasoning in parallel.
The slave processes are assigned disjoint set of partitions
such that the load is evenly balanced between them. Once the
slaves have loaded the models for these partitions, the master
distributes a conjunctive query across them. The slaves run in
parallel, each performing reasoning to execute the subgoals
of the query on its partition. Finally, the master joins the
results computed by the slaves. We evaluated our system
using LUBM-50, LUBM-100 and LUBM-200 datasets and we
observed promising speedups for our approach using multiple
compute nodes across different queries of the benchmark.

In the future, we plan to experiment with large scale real
world datasets with expressive ontologies in OWL 2. We plan
to parallelize the partitioning strategy which is currently serial.
In order to address the bottleneck imposed by the relational
database for queries involving large intermediate resultsets,
we plan to introduce optimizations for efficiently computing
joins on our parallel infrastructure. We also plan to look into
join order processing by prioritizing the execution of selective
subgoals whose resultset will be utilized by other subgoals.

This may require sharing of intermediate results across the
different nodes.

REFERENCES

[1] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronald Siebes, Annette
Teije, and Frank van Harmelen. MARVIN: A platform for large scale
analysis of Semantic Web data, In Proc. of the WebSci’09: Society On-
Line, 18-20 March 2009, Athens, Greece.

[2] E. Oren, R. Delbru, M. Catasta, R. Cyganiak, et al. Sindice.com:
A document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies,3(1):3752, 2008.

[3] I.Horrocks and P.Patel-Schneider. Reducing OWL entailment to descrip-
tion logic satisfiability. Journal of Web Semantics 1(4), pp. 345-357, 2004.

[4] D. Tsarkov and I. Horrocks, FaCT++ Description Logic Reasoner: System
Description, In Proc.of IJCAR 2006,Seattle, USA, 2006.

[5] V.Haarslev and R. Moller. Racer: A Core Inference Engine for the
Semantic Web. In the 2nd International Workshop on Evaluation on
Ontology-based Tools (EON2003).

[6] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet:A practical OWL-DL reasoner. Journal of Web
Semantics 5(2):51-53 (2007)

[7] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Reasoning in
Description Logics using Hypertableaux. In Proc. of the 21st Conference
on Automated Deduction (CADE-21), vol. 4603 of LNAI, pp. 67-83,
Bremen, Germany, July, 2007. Springer.

[8] I. Horrocks, L. Li, D. Turi and S. Bechhofer. The instance store: DL rea-
soning with large numbers of individulas. In Proc. of 2004 International
Workshop on Description Logics(DL2004).

[9] Guo, Yuanbo and Heflin, Jeff . A Scalable Approach for Partitioning
OWL Knowledge Bases. In Proc. of the 2nd International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS2006). Athens,
Georgia. 2006.

[10] E. Amir and S. McIlraith. Partition-Based Logical Reasoning. In Proc.
of the 7th International Conference on Principles of Knowledge repre-
sentation and Reasoning (KR2000).

[11] Y. Guo and J. Heflin. On Logical Consequences for Collections of OWL
Documents. In Proc. of the 4th International Semantic Web Conference
(ISWC2005).

[12] V. Royer and J.J. Quantz. Deriving Inference Rules for Terminological
Logics. In Proc. of the European Workshop on Logics in Artificial
Intelligence (JELIA1992).

[13] V. Royer and J.J. Quantz. Deriving Inference Rules for Description Log-
ics: a Rewriting Approach into Sequent Calculi. Technical Report: TUB-
FB13-KIT-111, Dec. 1993. http://dl.acm.org/citation.cfm?id=894980

[14] D. Tsarkov and I. Horrocks. DL Reasoner vs. first-order provers. In
Proc. of 2003 International Workshop on Description Logics (DL2003).

[15] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large
class hierarchies. In Proc. of the 3rd International Semantic Web Confer-
ence(ISWC2004).

[16] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg and K.Srinivas.
The Summary ABox: Cutting Ontologies Down to Size. In Proc. of 5th
International Semantic Web Conference (ISWC2006).

[17] J. Weaver and J. Hendler. Parallel materialization of the finite rdfs
closure for hundreds of millions of triples, In Proceedings of the ISWC,
2009.

[18] Norman Heino and Jeff Z. Pan, RDFS Reasoning on Massively Parallel
Hardware, In Proc. of the International Semantic Web Conference ISWC
2012, Boston, 2012.

[19] Jacopo Urbani, Alessandro Margara, Ceriel J. H. Jacobs, Frank van
Harmelen, and Henri E. Bal. DynamiTE: Parallel Materialization of
Dynamic RDF Data, 12th Int. Semantic Web Conference (ISWC 2013),
Sydney, Australia.

[20] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank Van Harmelen
and Henri Bal. OWL reasoning with WebPIE: calculating the closure of
100 billion triples, Journal of Web Semantics, Vol 10, 2012.

[21] Jacopo Urbani, Frank van Harmelen, Stefan Schlobach, Henri E. Bal:
QueryPIE: Backward Reasoning for OWL Horst over Very Large Knowl-
edge Bases. International Semantic Web Conference (1) 2011: 730-745

[22] Soma, R., Prasanna, V.K.: Parallel Inferencing for OWL Knowledge
Bases. In Proc. of the 37th International Conference on Parallel Process-
ing, Washington DC, USA. 2008.

