
The Mobile Audio Ontology: Experiencing
Dynamic Music Objects on Mobile Devices
Florian Thalmann, Alfonso Perez Carrillo, György Fazekas, Geraint A. Wiggins, Mark Sandler

Centre for Digital Music
Queen Mary University of London

Email: f.thalmann@qmul.ac.uk

Abstract—This paper is about the Mobile Audio Ontology,
a semantic audio framework for the design of novel music
consumption experiences on mobile devices. The framework
is based on the concept of the Dynamic Music Object which
is an amalgamation of audio files, structural and analytical
information extracted from the audio, and information about
how it should be rendered in realtime. The Mobile Audio Ontology
allows producers and distributors to specify a great variety of
ways of playing back music in controlled indeterministic as well as
adaptive and interactive ways. Users can map mobile sensor data,
user interface controls, or autonomous control units hidden from
the listener to any musical parameter exposed in the definition
of a Dynamic Music Object. These mappings can also be made
dependent on semantic and analytical information extracted from
the audio.

I. INTRODUCTION

Within less than a decade, the capabilities of mobile devices
grew so quickly that a majority of the tasks previously accom-
plished on personal computers can now easily be managed on
these devices. Even more, mobile devices have developed into
compact multi-sensory computers, bringing novel ways of in-
teraction, such as multi-touch gestures, accelerometer control,
or geolocation tracking into everyones hands and pockets [1].
Yet, the music listening experience is only slowly adjusting
to this new environment and its capabilities. Although music
players add functionality derived from social platforms such as
recommendation schemes and shareable playlists, the listening
process itself is often no different from how it was using a
Walkman in the early eighties. Most music applications, even
more experimental ones, usually do not take advantage of
the controls available of mobile devices and still base their
interfaces on an emulation of skeuomorphs from the early
analog world, such as sliders and knobs [2].

In this paper, we introduce the Mobile Audio Ontology
(MAO), a Semantic Web framework that investigates new
ways in which music can be experienced on mobile devices.
The MAO defines so-called Dynamic Music Objects (Dymos)
which in this work we see as bundles of music files and
a flexible structural definition of the musical material that
also gathers semantic information extracted from the files and
exposes a variety of musical parameters. A playback configu-
ration called rendering, which can also be specified using the
MAO, then defines a multiplicity of mappings between the an-
alytical features, the controls available on a mobile device, and
specific musical parameters of the Dymo. A Dynamic Music

Object will typically sound different each time it is listened to,
according to constrained musical variations which can depend
on several factors including spontaneous decisions made by
the player, listener preferences, the contextual situation the
listener may be in, such as time of the day or activity, and
finally some simple user interface and sensor controls made
available to the listener.

The MAO allows producers, distributors, or consumers
themselves to customise a listener’s experience for any musical
format such as single tracks, albums, playlists, mixes, or
more experimental formats. A simple interface, a prototype
for which is called Dymo Designer, allows them to import
the music, define the structural definition, view the semantic
information extracted from the files, and finally define the
mappings of the playback configuration graphically for a great
variety of use cases, all of which can then automatically be
exported to a file that is publishable on the Semantic Web.
The listeners, in turn, can use a platform-independent mobile
player, such as the prototype called Semantic Music Player,
which understands the ontological format, reads the audio,
queries the structural and analytical data, and takes decisions
in realtime.

We begin by providing a brief overview of earlier musical
ontologies that we build on and the tools used to extract
semantic information from the music files. Then, we describe
our notion of Dynamic Music Objects and their relation to
so-called Digital Music Objects. In the main part of the
paper, we then introduce the MAO more formally, explain
its connections to other ontologies and give several examples
illustrating the variety of use cases that can be defined using
the ontology. Finally, we briefly discuss the two prototypical
applications, the producer-oriented Dymo Designer and the
consumer-oriented Semantic Music Player.

II. MUSICAL ONTOLOGIES AND EXTRACTING SEMANTIC
INFORMATION FROM MUSIC

Since the existence of the internet all its contributors have
been accumulating information and data at an exponential
pace, referencing each other’s sites, and publicising their
own point of view about any conceivable subject matter.
Even though the internet is an almost endless and dynamic
source of information, the fact that it is mainly based on
text makes it difficult to be interpreted by machines rather
than humans. This is what Semantic Web technologies try to

address by standardising the ways in which semantic relation-
ships between instances of data on the web can be expressed.
Formats such as the Resource Description Framework (RDF)1

or the Web Ontology Language (OWL)2 enable the definition
of web ontologies, which describe real-world entities and
their properties as dynamic graph structures made of simple
logical triples based on first-order logic, which can be read
and interpreted by computers. The data published using such
ontologies can be gathered, queried, and inferred upon using
the SPARQL language.3 More recently, more light-weight
formats that optimise both performance and minimises space
requirements have emerged including JSON-LD4, a JSON-
based linked data compatible serialisation format for RDF
data.

As the popularity of these technologies is growing, in-
creasingly many musical platforms use them to describe a
great variety of musical information. These can be classified
into two main kinds. Extra-musical metadata, as for instance
gathered in the platform MusicBrainz,5 describes composers,
musicians, production environments, dates, etc, and is typically
annotated manually. On the other hand, analytical metadata or
simply features are typically extracted from audio or symbolic
representations using the algorithmic methods of Music Infor-
mation Retrieval (MIR) and describe musical characteristics
such as harmony, melody, tempo, segmentations, as well as
more low-level descriptive or acoustic quantities, such as the
spectral centroid or the amplitude envelope.

There is a great variety of musical ontologies that describe
either of the two types of musical information and thereby
focus on different aspects of music. The Music Ontology is the
most basic of these ontologies and defines a vocabulary for and
relationships between musical actors and groups (musicians,
composers, etc), musical items (CDs, files, scores, instruments,
etc), manifestations and events (concerts, venues, etc), as well
as activities and processes and their results (orchestration,
transcription, etc) [3]. Several smaller ontologies were defined
as extensions of the Music Ontology, e.g. the Studio Ontology,
the Event Ontology, the Chord Ontology, or the Tonality On-
tology, the latter two of which describe higher-level analytical
features [4]. Finally, the Audio Feature Ontology resides at the
other end of the information spectrum and describes musical
features and existing extraction methods in a more technical
and reproducible way.

Data using feature-based ontologies rely on the extraction of
analytical features from music files, which can for instance be
done using Sonic Annotator6, a command line tool that outputs
feature data in various formats. Sonic Annotator analyses
audio files based on any number of given Vamp Plugins, each
of them specialised on a small number of related features [5].
It’s most relevant feature to this work is that using Vamp

1http://www.w3.org/RDF/
2http://www.w3.org/TR/owl2-overview/
3http://www.w3.org/TR/sparql11-query/
4http://json-ld.org
5http://musicbrainz.org
6www.vamp-plugins.org/sonic-annotator/

Plugins, Sonic Annotator can output data as RDF files, thereby
linking to appropriate musical ontologies telling us about the
data. Other serialisation formats include simple CSV or JSON
based formats, with an RDF compatible JSON-LD format
under development.

III. DYNAMIC MUSIC OBJECTS

The Mobile Audio Ontology builds on the notion of Dy-
namic Music Objects (Dymos), which we define as flexible
and modifiable musical objects that can be played back in
various ways. Dymos extend the more general concept of a
Digital Music Object (DMO), a musical adaptation of the
Research Object. The latter is an amalgamation of a research
publication, its results, and the methods used to arrive at the
results, such as collected data and computer code [6]. One of
the main motivations behind Research Objects is to facilitate
reproducible research, enabled by the inclusion of metadata
and executable workflows of scientific experiments.

De Roure defines Executable Music Documents first as a
bundle of music research, analogous to Research Objects.
However, he then extends the definition to composition, pro-
duction, and consumption: “[the DMO] enables ease of reuse
and remixing of music right through the chain from compo-
sition to consumption, with the consumer equally empowered
to produce and compose.” [7]

It is the latter of De Roure’s understanding that we build
on here. We think of Dynamic Music Objects as Digital
Music Objects aimed at consumers and intermediary music
professionals. In contrast to the broader Digital Music Objects,
they are designed to be flexible and modifiable within degrees
of freedom and constraints that are given by the producers
and composers. They are meant to be played back directly
based on this information, rather than remixed or reused in a
more general sense. Within these constraints, Dymos typically
sound different every time they are listened to. Their musical
variations are based on semantic information about the music
and can be brought about either by autonomous decision-
making units or by a certain form of listener interaction. More
specifically, we define Dymos as:

• a bundle of music files
• a structural definition relating the music files, enriched

with semantic analytical data extracted from the audio,
and enabling a number of modifiable musical parameters

• a playback configuration called rendering, which maps
controls and features to parameters

The MAO facilitates and standardises the definition of
the latter two, structural definitions and renderings, while
attempting to keep definitions as general as possible in order
to allow for a great variety of use cases. In the following, we
describe the current state of the ontology.

IV. THE MOBILE AUDIO ONTOLOGY

The Mobile Audio Ontology is an OWL ontology that
partially builds on previous musical ontologies (Section II) and
focuses on describing ways in which music can be rendered
and controlled with contemporary mobile devices. Its top-level

concepts are the structural definitions of Dymos and their
renderings, as described in the previous section.

Dymos are currently defined as recursive multi-hierarchical
structures of objects, each of which can have sub-objects or
parts, and can be linked to other objects in other hierar-
chies via similarity relations. These structures are based on
CHARM, an abstract music representation system based on
abstract data types, allowing multiple hierarchies of musical
objects or events related by arbitrary logical formulae and
abstracted from concrete applications [8]. CHARM is currently
being reimplemented using OWL, JSON-LD, and JavaScript
[9].

Renderings are composed of any number of mappings that
map the values of single or groups of controls and features to
any of the musical parameters available in the Dymo structure.
After a quick overview of how mappings are commonly
defined in computer music, we will devote a section to each
of these concepts and their types.

A. Conceptual Background

Mappings are a common way to think about controllers and
interaction in computer music helping to simplify the interface
while ensuring maximum musical flexibility. Hunt and Kirk
claim that the musical parameters of a multi-parametric system
are best controlled using a complex combination of convergent
(many-to-one) and divergent (one-to-many) mappings, rather
than with a confusing multitude of one-to-one mappings [10,
p. 235]. They further suggest the use of weighting and bias-
ing (dependencies between controls) when combining several
mappings. In multiple experiments, such interfaces proved
to be less challenging and more engaging to the user, and
they sparked a longer-lasting interest [10, p. 255]. Other
authors suggest multi-level mappings, where controls map to
intermediate layers of higher-level parameters, which are then
mapped to the musical parameters, in a fashion reminiscent of
neural networks [11, p. 639].

Any such mappings can be described using mapping func-
tions of various shapes. The method Hunt and Kirk suggest
leads to weighted sum functions of linearly mapped control
values, while multi-level mappings are already quite complex
polynomial functions. With the MAO, we generalise these
mappings by allowing any kind of mapping functions such
as linear, logarithmic, triangle, square, trigonometric, or poly-
nomial functions, which can then be combined using sum and
product functions etc.7

As a further generalisation, the function parameters can
include any kind of control, feature, or Dymo parameter rather
than merely interface and sensor controls, as suggested in
the sources cited above. In this way, we can build mapping
situations that take analytical information about the music into
account. We encourage applications using the MAO to use
complex many-to-many mappings, and especially one-to-many
mappings using few controls, which are perhaps the most

7The current implementation even allows mappings to be defined as
arbitrary serialised JavaScript functions which can contain any algorithm
based on parameters within the function scope.

Fig. 1. Dynamic Music Objects as defined by the MAO. The relationships
between Dymos, Parameters, and Features are defined by the CHARM
Ontology [9].

suitable for mobile devices in that they simplify the interface
and can add a sense of mystery that may encourage listeners
to experiment in discovering the various ways in which the
music will play back.

B. Dynamic Music Objects and their Parameters

The MAO represents Dymos as multi-hierarchical struc-
tures of musical objects (:Dymo),8 which are sub-classes of
CHARM constituents (see above). Each object may contain
a set of sub-objects or parts (:hasPart) which are again
Dymos. As extensions of constituents, Dymos can also have
a type (:hasType) which determines how their parts relate
to each other and to the parent, e.g. form a sequence, a
simultaneity, or more musically distinct types, such as a
melody or a progression.9 A Dymo can also be directly related
to Dymos in other hierarchies by being connected via relations
such as :similarTo. Figure 1 shows the definitions the MAO
adds to the CHARM ontology, visualised using WebVOWL.10

Each Dymo, or each node in the Dymo graph, can contain
any number of immutable analytical features (:hasFeature)
and mutable musical parameters (:hasParameter),11 as well
as musical source files such as audio files (:hasAudioFile).
The musical parameters defined for each object can be any
selection from the standard parameters defined by the ontol-
ogy, which are sub-classes of :Parameter, such as amplitude,
panning, or temporal positions, as described in the following.

8In the following we informally discuss OWL classes simply by referring
to their names (words that start with upper-case letters) and the properties
that have a domain restriction on that class (words that start with lower-case
letters).

9Types enable different ways of manipulating dymos.
10http://vowl.visualdataweb.org/webvowl/
11These two properties are both sub-properties of the CHARM property

:hasAttribute, which point to general musical attributes.

If the same parameter occurs at various adjacent positions
in the Dymo hierarchy, we can define functional relationships
between them using arbitrary mappings.12 Whenever a higher-
level parameter is changed, lower-level ones are adjusted
accordingly. With the predicate :hasInitialValue, we can
also define initial parameter positions, relative to which mod-
ifications will then take place. Analytical features, sub-classes
of :Feature are based on the feature ontology and can take
any values, which will however not be possible to be changed.

Using these definitions, we can characterise any of the most
common structures found in audio processing. For instance,
we can define a simple multichannel mix with the following
triples:13

:mix a :Dymo ;
:hasParameter :Amplitude ;
...
:hasPart :track1, :track2, :track3 .

:track1 a :Dymo ;
:hasParameter :Amplitude ;
...

This definition enables us to access the overall amplitude of
the object (the master level), as well as the amplitude of each
sub-object, in this case the single tracks.

Figure 2 shows a slightly more complex example of a Dymo
structure representing a simple multi-track mix that offers
parameters on various hierarchical levels. In this example,
we can control the amplitudes of the main mix object, which
changes the overall amplitude, but also for the riddim object,
which merely affects organ and drums. This is a simple
example of grouping, a technique frequently used in audio
mixing. We also ensure access to a few other audio parameters
such as reverb, delay, or panning, which we briefly discuss in
the following sections. The example also shows how music
files can be associated with Dymos. Here, only objects with
no parts refer to an audio file. If one of them is played back,
we will merely hear the respective file, whereas a playback of
the mix object will result in a simultaneous playback of all
three files.

1) Audio and Playback Parameters: These parameters cur-
rently include :Amplitude, :PlaybackRate (which affects
pitch, as with tapes and records), :TimestretchRatio

(which leaves pitch unchanged), :Transposition (pitch
shifting with no change of duration), :Reverb, :Filter, and
:Delay. The binary parameters :Play and :Loop simply start
and stop Dymos, and activate and deactivate Loop mode.

2) Spatial Parameters: Current spatial parameters include
:Pan, :Distance, and :Height (relative to the spatial coor-
dinate system). There are also some global spatial parameters,
which are tied to the listener rather than specific Dymos,

12This is a generalization of the relative transformation of satellites as for
instance described in [12]. To model that case, we can define a mapping
function that adjusts lower-level parameters by the same amount in which the
higher-level parameter was changed.

13The examples in this paper and are expressed in Turtle, a textual syntax
for OWL ontologies (www.w3.org/TR/turtle/). The a keyword refers to the
rdf:type property, which defines instances of OWL classes, written in
capitalized words. In some figures we use a simplified version of this notation.

rhythm a Dymo

hasParameter Amplitude, Reverb

verb a Reverb

hasValue 0.5

hasAudioFile

vocals a Dymo

hasParameter Amplitude,

Pan, Distance

mix a Dymo

hasParameter Amplitude, Pan

“voc.m4a”

hasPart
hasPart

drums a Dymo

hasParameter Delay

organ a Dymo

hasParameter Amplitude

hasPart

hasParameter

hasPart

hasAudioFile

“drums.m4a”

hasAudioFile

“organ.m4a”

Fig. 2. A sample Dynamic Music Object.

such as :ListenerPosition and :ListenerDirection

(see Section V-A for an example).
3) Structural and Temporal Parameters: These parameters

can be assigned to objects at any level that contain parts,
however these are meant to be played back (sequentially,
simultaneously, or tiled). :DurationRatio affects the total
time the material of an object will be played for. If the material
is longer than the given duration, it will be cut off, if it is
shorter, it will be played past its ending point if possible, or
looped otherwise. :Onset determines the time an object will
be played at.
:PartCount concerns the discrete number of parts of an

object played. For instance, if we expose this parameter in bar
(measure) objects containing a number of parts corresponding
to beats, we become able to change the meter of the piece by
either increasing or decreasing the beat count. In case of an
increase, some of the segments will be repeated. Similarly, we
can get access to chord complexity by changing the number
of chord members played back.
:PartOrder affects the order in which subelements are

played back. :Tempo simply determines the playback speed
at the current level of the Dymo.
:PartProportion determines the proportional length for

which Dymo parts are played back. For instance, again on
the beat level, we can shuffle the rhythm (increase the swing
amount), by increasing the proportion of odd-numbered parts.

Figure 3 illustrates these parameters schematically for a
multilevel temporal segmentation.

4) Higher-Level Parameters: In addition to the predefined
parameters, users can define their own higher-level parameters
for any dymo and link them to lower-level ones by defining
an appropriate set of mappings (from the custom parameter
and any features to the lower-level parameters).

5) Features: As mentioned above, Dymos can also include
features (:Feature), which can contain any analytical data
about the objects, such as the spectral centroid, average
amplitude, meter, tempo, or harmonic information. These data

...

PartProportionPartCount

DurationRatio

0 1 2

0 1

3 ...
PartOrder

...

Fig. 3. The structural parameters illustrated with a multilevel segmentation.

can then be used either in mappings to mutable parameters, as
described in the next section, or while querying larger, more
complex Dymos in order to get subsets of their sub-objects,
which can again be targeted by mappings. We will discuss
some example features in greater detail later on.

A special type of features, segmentations, are best repre-
sented by the Dymo structure itself. Examples are onset, beat,
bar, or section features. Such features divide the music into
segments, which are best represented as parts of a higher-level
Dymo referring to the music file. This way, we can easily
represent multilevel segmentations, e.g. with beats being parts
of bars, bars parts of sections, and sections parts of a main
object.

C. Renderings and Mappings

Apart from defining Dynamic Music Objects and their
parameters and features, the MAO also describes how they can
be played back on mobile devices in indeterminate, adaptive,
and interactive ways. Figure 4 shows a simplified view of
the MAO definitions of renderings and mappings. The top-
level constructs are so-called renderings (:Rendering) that
refer to a Dymo (:hasDymo) as well as to a number of
mappings (:hasMapping) which describe how any of the
Dymo’s available parameters can be controlled.

Mappings (:Mapping) map to parameters in any arbitrary
subset of Dymos (:toDymo). They can have any number
of domain dimensions (:MappingDimension) and are based
on a mapping function (:hasFunction) which can be one
of several types (linear, logarithmic, exponential, triangle,
but also serialised JavaScript function, see Section IV-A).
The function value is then sent to all associated parame-
ters (:toParameter) of all Dymos that are mapped to via
:toDymo.

By mapping from a Dymo’s immutable features we can
give specific initial values to each parameter, which will
stay the same in case there is no control mapping to the
same parameter. This way, we can for instance smoothen or
exaggerate the local tempo of a piece, by inversely mapping a
tempo feature to the :TimestretchRatio parameter. Feature

Fig. 4. A simplified view of renderings and mappings defined by the MAO.

mappings can also be used for creative or analytical purposes.
We can for instance highlight certain analytical aspects of
the music, e.g. exaggerate expressive variety by mapping an
amplitude feature to the Amplitude parameter.14

Mappings that include controls, on the other hand, map the
data stream of any controls to Dymo parameters. As mentioned
in Section IV-A, some of these controls are interactive and
allow users to influence the music or interact with it, whereas
others are autonomous or hidden and let the player take
decisions on its own. In the following, we briefly survey
the various control categories and their members that are
currently available. All controls are subclasses of the OWL
class :MobileControl.

1) Mobile Sensor Controls: As mentioned earlier, mo-
bile devices typically contain a great number of sensors,
all of which can be accessed via APIs. In theMAO, they
are grouped by the class :SensorControl. Any multi-
dimensional sensor controls are currently split into sin-
gle dimensions so that in mappings they can be re-
combined in arbitrary ways. Accelerometer controls are
thus split into :AccelerometerX, :AccelerometerY,
and :AccelerometerZ and geolocation controls into
:GeolocationLatitude and :GeolocationLongitude.
Further sensor controls are one-dimensional, including
:CompassHeading or :GeolocationDistance. There are
also higher-level sensor controls, derived from other controls,
such as :TiltX and :TiltY.

2) UI Controls: In addition to these sensor controls MAO
also supports more traditional UI controls (:UIControl). Cur-
rently, the ontology supports traditional skeuomorphs such as
:Slider, :Button, and :Toggle. In the future, we will also

14Another such possibility is described in [13], where we sonify decom-
posed audio recordings by spatialising it based on analytical features.

fromControl

ampMap1 a Mapping

toDymo track1

toParameter Amplitude

rendering a Rendering

hasDymo mix

locationSlider a Slider

label “Location”

hasMapping

hasFunction

a TriangleFunction

hasPosition 0.333

hasRange 0.667

fromControl

ampMap2 a Mapping

toDymo track2

toParameter Amplitude

hasFunction

hasMapping

a TriangleFunction

hasPosition 0.667

hasRange 0.667

playMap1 a Mapping

toDymo track1

toParameter Play

hasMapping

a RectangleFunction

hasPosition 0.667

hasRange 0.667

a RectangleFunction

HasPosition 0.333

hasRange 0.667

hasFunction

playMap2 a Mapping

toDymo track2

toParameter Play

hasFunction

hasMapping

Fig. 5. A sample rendering of a Dynamic Music Object with two tracks.

add controls such as :TouchX and :TouchY controls which
will be configurable for multitouch with :hasFingerIndex.

3) Autonomous Controls: Currently there are two types of
autonomous controls (:AutoControl), both of them based
on statistical decisions. :RandomControl is simply meant to
output streams of random numbers based on given statistical
distributions, which can be associated with the control via
:hasDistribution. :BrownianControl is similar in that it
outputs values based on various kinds of random walks. On the
other hand, :GraphControl navigates the Dymo structure via
a given type of relation (:hasRelation). An implementation
of a graph control chooses a path in the given graph, in the
most simple case, for instance, by randomly choosing among
the possible outgoing edges for every node. It will then set
the associated parameter of each Dymo it reaches along the
way. For instance, the graph control can be used to navigate
the similarity relations (:similarTo) of Dymo structures, as
will be shown in an example later on.

4) Contextual Controls: In the future, we will also add
contextual controls :ContextualControl to the ontology,
which are based on contextual information gathered from the
web, such as user preferences, trends, or weather information.

———————————

Figure 5 shows a simple example of a rendering with control
mappings where one slider is mapped to various parameters
of a Dymo with two parts, each of them representing an
alternate track. The two mappings with the rectangle functions
decide when each of the tracks is started or stopped while two
mappings with the triangle functions control the amplitudes
which creates a cross-fade between the two tracks. Figure 6
shows a graph of the resulting mapping, where the vertical axis
represents both the Play and the Amplitude parameters. Multi-
dimensional mappings can quickly lead to intricate results and
they can be defined in an easy and intuitive way using the
Dymo Designer, which will be introduced later on. In the next
section, we will give a few more intricate examples of use
cases in order to illustrate the versatility of the ontology.

slider value

amplitude

& play

0 1

1

geolocation latitude

geolocation

longitude

Fig. 6. Graph of the mappings in Figure 5.

V. A FEW SAMPLE USE CASES

A. Spatial Navigation

The simplest type of Dymo is just a single audio track
represented by a single Dymo as follows:
:spatial a :Dymo ;

:hasAudioFile "spatial.m4a" ;
:hasParameter :Distance, :Reverb ;
...

With the two :hasParameter lines we provide access
to the Dymo’s distance and reverb parameters. We can then
define a rendering that maps compass and geolocation sen-
sor data to these two parameters as well as to the global
:ListenerOrientation parameter as follows:
:orientationMapping a :Mapping ;

:hasDimension [a :MappingDimension ;
:fromControl [a :CompassHeading ;

:isRelative True] ;
:hasFunction [a :LinearFunction]] ;

:toParameter :ListenerOrientation .
:distanceMapping a :Mapping ;

:hasDimension [a :MappingDimension ;
:fromControl [a :GeolocationDistance ;

:isRelative True] ;
:hasFunction [a :LinearFunction]] ;

:toDymo :spatial ;
:toParameter :Distance, :Reverb .

:spatialUseCase a :Rendering ;
:hasDymo :spatial ;
:hasMapping :orientationMapping,

:distanceMapping .

Here, both the :CompassHeading and the
:GeolocationDistance are defined relative to the
movement of the listener here. The :distanceMapping is
an example of a one-to-many mapping (Section IV-A) where
we increase both the distance of the audio source and the
reverb associated with it while the listener moves away from
the initial position with their mobile device. Simultaneously,
depending on the direction the device points to, the listener
orientation is updated. Altogether, this gives an impression of
the musical source staying where the listener was in the first
moment.

In a similar way, we could implement a use case where
several musical voices, such as the instruments of a band, are
distributed in space and the listener could navigate around
between them or away from them.

B. Multitrack Mixing

Another basic use case can be created using a Dymo just
like the one defined in the first example in Section IV-B. If
we define a set of tracks as parts of a main Dymo and provide
access to some low-level mixing parameters such as amplitude

and panning, these can then be mapped to sliders or knobs as
follows:
:t1AmpMap a :Mapping ;

:hasDimension [a :MappingDimension ;
:fromControl [a :Slider ;

rdfs:label "Bass Amplitude"] ;
:withFunction [a :LinearFunction]] ;

:toDymo :track1 ;
:toParameter :Amplitude .
...

:mixUC a :Rendering ;
:hasDymo :mix .
:hasMapping :t1AmpMap .
...

With similar definitions, the processes of multitrack players
such as [14] can be described including the definition of
various presets that can be triggered via appropriate controls.

C. Location Mapping
In order to illustrate multidimensional mapping, we can

create a rendering based on two-dimensional geolocation map-
pings, which assign two different sub-Dymos to two different
geolocation positions. First, we would have to define a Dymo
with two tracks, similar to the one used in Section V-A,
which however includes alternative rather than parallel audio
files, similar to the Dymo illustrated in Figures 5 and 6. The
rendering could then look like this:
:track1Location a :ProductMapping ;

:hasDimension [a :MappingDimension ;
:fromControl :GeolocationLatitude ;
:hasFunction [a :TriangleFunction ;

:atPosition 0 ;
:hasRange 0.6]] ;

:hasDimension [a :MappingDimension ;
:fromControl :GeolocationLongitude ;
:hasFunction [a :TriangleFunction ;

:atPosition 0 ;
:hasRange 0.6]] ;

:toDymo :track1 ;
:toParameter :Amplitude .

:track2Location a :ProductMapping ;
...

:locationMixing a :Rendering ;
:hasDymo :mix .
:hasMapping :track1Location, track2Location .
...

The choice of a product mapping (:ProductMapping)
with two triangular functions results in a cone structure, at
the maximum of which the amplitude of the corresponding
track is the highest. More intricate definitions could be used
to describe location-based audio experiences reminiscent of
the ones described in [15] consisting of many alternative and
intersecting Dymos and sub-Dymos played in sub-regions etc,
as illustrated in Figure 7. In the example of this figure, we
use the same technique as in Section IV-C where we used
rectangle function mappings to the :Play parameter in order
to synchronise parallel tracks.15 We could then define similar
mappings to other musical parameters in order to increase the
amount of musical variation.

15For a more interesting result, we can replace these functions with arbitrary
discrete and gradual polygon-containment functions. The Dymo Designer
allows users to draw such polygons and calculates the corresponding serialised
JavaScript functions.

geolocation latitude

amplitude

& play

0

1

geolocation

longitude

Fig. 7. A top-down view and a cross-section of mappings from the two-
dimensional geolocation controls to the play and amplitude parameters of a
hierarchical Dymo.

D. Graph-Based Variation of Temporal Structure

If we wish to vary a Dymo’s temporal structure using the
parameters described in Section IV-B3 we need to define
a multilevel Dymo (here :beats) in the fashion of the
schematic graph in Figure 3. We can then use the following
rendering to navigate its similarity structure:

:beatMapping a :Mapping ;
:hasDimension [a :MappingDimension ;

:fromControl [a :GraphControl ;
:hasRelation :Similarity] ;

:hasFunction [a :LinearFunction]] ;
:toDymo :beats ;
:toParameter :PartOrder .

:beatGraphNavigation a :Rendering ;
:hasDymo :beats ;
:hasMapping :beatMapping .

VI. FIRST APPLICATIONS BASED ON THE ONTOLOGY

In the context of this project we are working on two
prototypical tools that use the ontology at two different ends,
one that facilitates the definition of Dymos and their renderings
and a second one that plays them back.

A. The Dymo Designer

Defining use cases in Turtle, as we did all along in this
paper, can be rather tedious or confusing for non-ontologists. If
we plan to make the ontology available to music professionals,
e.g. producers or distributors, it will be helpful to provide
a tool that facilitates the definition of Dymos. The Dymo
Designer is a browser-based application that visualises Dymos
in highly flexible ways and provides a simple and intuitive
interface for automatically adding features to the structure and
defining mappings supported by the MAO. All these things can
be done in a visual and interactive way, mapping functions
can be drawn onto the screen, either one-dimensional ones as

Fig. 8. The Dymo Designer showing an adventurous visualization of a
multilevel segmentation object enriched with amplitude and spectral centroid
features.

simple graphs, or multi-dimensional ones as areas in multi-
dimensional space. Finally, the musical result can also be
previewed using mock controls. Figure 8 shows the current
version of the Dymo Designer representing an object with
several levels of temporal segmentation.

B. The Semantic Music Player

The MAO evolved to the current state in parallel with a
prototypical player simply called the Semantic Music Player
(SMP) which is able to play back anything that can be
described using the ontology. The SMP is a cross-platform
mobile app that also works in browsers on any computer. It is
based on Ionic16 and various W3C standards, such as the Web
Audio API17. It reads Dymos from MAO turtle files (currently
using rdfstore.js18) or JSON-LD files, which are typically
encapsulated in file folders containing all referenced audio files
and analytical data. For each such Dymo, the player dynami-
cally loads the necessary drivers for the sensors and constructs
a visual interface containing any specified UI controls (see
Section IV-C2). Figure 9 shows the interface generated for
the rendering shown in Figures 5 and 6, consisting of just one
slider labelled Location and the standard interface buttons.

VII. CONCLUSION AND FURTHER WORK

We have introduced a first version of the Mobile Audio
Ontology and illustrated how it works by giving some ex-
ample use cases. The Semantic Music Player and the Dymo
Designer are two early prototypes of applications that show
the potential and the versatility of the framework. However,
there are still many potential extensions of the framework and
as the applications evolve, new use cases will be encountered
and incorporated into the ontology. Some of these extensions
were already suggested in this paper. For instance, one could

16http://ionicframework.com
17https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
18https://www.npmjs.com/package/rdfstore

Fig. 9. The GUI dynamically generated for the rendering in Figure 5, shown
on an Android device.

introduce new types of contextual controls based on data taken
from the web, as well as more advanced controls based on
artificial intelligence that navigate the structural definitions of
Dynamic Music Objects in more informed and intricate ways.

REFERENCES

[1] G. Essl and M. Rohs, “Interactivity for mobile music-making,” Organ-
ised Sound, vol. 14, no. 2, pp. 197–207, 2009.

[2] T. Kell and M. M. Wanderley, “A high-level review of mappings in
musical ios applications,” in Proceedings ICMC, SMC, Athens, Greece,
2014.

[3] Y. Raimond, S. A. Abdallah, M. B. Sandler, and F. Giasson, “The music
ontology,” in ISMIR, 2007, pp. 417–22.

[4] G. Fazekas, Y. Raimond, K. Jacobson, and M. Sandler, “An overview of
semantic web activities in the omras2 project,” Journal of New Music
Research, vol. 39, no. 4, pp. 295–311, 2010.

[5] C. Cannam, M. Sandler, M. O. Jewell, C. Rhodes, and M. d’Inverno,
“Linked data and you: Bringing music research software into the
semantic web,” Journal of New Music Research, vol. 39, no. 4, pp.
313–25, 2010.

[6] D. De Roure, “Towards computational research objects,” in Proceedings
of the 1st International Workshop on Digital Preservation of Research
Methods and Artefacts co-located at Joint Conference on Digital Li-
braries, Indianapolis, 2013.

[7] ——, “Executable music documents,” in Proceedings of the 1st Interna-
tional Workshop on Digital Libraries for Musicology, 2014, pp. 91–3.

[8] M. Harris, A. Smaill, and G. Wiggins, “Representing music symbol-
ically,” in Proceedings of the IX Colloquio di Informatica Musicale,
Venice, 1991.

[9] N. Harley, “An ontology for abstract, hierarchical music representation,”
in Late-Breaking Demo at the 16th International Society for Music
Information Retrieval Conference (ISMIR 2015), Malaga, Spain, 2015.

[10] A. Hunt and R. Kirk, “Mapping strategies for musical performance,” in
Trends in Gestural Control of Music, M. Wanderley and M. Battier, Eds.
Paris: Ircam - Centre Pompidou, 2000.

[11] M. M. Wanderley and P. Depalle, “Gestural control of sound synthesis,”
Proceedings of the IEEE, vol. 92, no. 4, pp. 632–644, 2004.

[12] F. Thalmann and G. Mazzola, “Visualization and transformation in
general musical and music-theoretical spaces,” in Proceedings of the
Music Encoding Conference 2013. Mainz: MEI, 2013.

[13] F. Thalmann, S. Ewert, M. Sandler, and G. A. Wiggins, “Rendering
decomposed recordings spatially – integrating score-informed source
separation and semantic playback technologies,” in Late-Breaking Demo
at the 16th International Society for Music Information Retrieval Con-
ference (ISMIR 2015), Malaga, Spain, 2015.

[14] G. Herrero, P. Kudumakis, L. J. Tardón, I. Barbancho, and M. Sandler,
“An html5 interactive (mpeg-a im af) music player,” in Proceedings of
the 10th International Symposium on Computer Music Multidisciplinary
Research (CMMR), Marseille, France, 2013, pp. 15–18.

[15] A. Hazzard, S. Benford, and G. Burnett, “Sculpting a mobile musical
soundtrack,” in Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, Seoul, 2015.

