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Handling missing values in greenhouse
microclimate dataset using PCA-SARIMAX model 

M.R. Ouamane1, A. Saboni2, O. Bennis3, F. Kratz4, H. Megherbi5, JA. Sanchez-Molina6 

Abstract— The  purpose  of  this  paper  is  to  present  a
novel  approach  to  handle  all-sensors  losses  of  the  internal
greenhouse  environmental  data  due  to  the  power  cut
throughout the greenhouse. The proposed method is based on
the  principal  components  analysis  (PCA)  and  the  seasonal
autoregressive  integrated  moving  average  model  with
exogenous variables (SARIMAX). The exogenous variables are
derived from the external meteorological dataset provided by
the weather station of the city where the greenhouse is located.
The  role  of  the  PCA method  is  to  analyze  the  correlation
between exogenous and the available endogenous variables and
then  reduce  the  dimensions  of  the  exogenous  dataset.  After
selecting the best choice of the training set for the SARIMAX
model, the obtained results show that the proposed approach
represent a promising solution for completing the bulk missing
data in internal greenhouse environmental dataset.

Keywords—SARIMAX model,  principal  component
analysis,  greenhouse,  missing  data,  data  imputation,  time-
series. 

I. INTRODUCTION 

Complete and accurate datasets are essential for
statistical,  classification,  prediction  or  decision-
making tasks  in  the  management  of  the  modern
greenhouse  environment.  Unfortunately,  the
sensors  and the  electronic  equipment  inside  and
outside  the  greenhouse  operate  in  very  harsh
conditions:  high  solar  radiation  and  humidity,
blackouts  and  floods  to  name  but  a  few.
Consequently,  the  collected  greenhouse
environmental datasets usually contain small and
wide gaps in certain variables (individual sensors
losses)  and even in  all  the  variables  (all-sensors
losses).  Hence,  the  modeling  and  prediction  of
greenhouse  environment  variables  using  such
datasets  are complicated and less accurate.  It is
argued  in  the  data  analysis  community  that  the
efficient  way to  handle  the  missing  values  is  to
impute gaps with reliable and accurate data. In the
last three decades, numerous research works have
been  dealt  with  data  imputation  in  different
domains [1-7]. They revealed to be efficient when
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gaps  appear  in  some variables.  The presence  of
wide  gaps  in  all  variables,  very  frequent  in
greenhouse application, is a difficult problem and
still an open issue. It explains in fact why there are
few works devoted for handling bulk missing data
in the greenhouse environment. In [6] the authors
propose  a  two-dimensional  convolutional  neural
network  called  U-Net  to  impute  missing  tabular
data  collected  from  27different  greenhouses
affected  by  the  same  climate  conditions.  The
objective of the proposed U-Net architecture is to
learn  the  evolution  patterns  and  interpret  the
relationship  between  the  five  environmental
variables  (the  external  and  internal  temperature,
the  internal  relative  humidity,  the  internal  CO2
concentration  and  the  solar  radiation).  A
comparative study has been conducted with linear
interpolation  (LI),  feedforward  neural  network
(FFNN)  and  long  short-term  memory  (LSTM).
The U-Net network and the compared ones were
trained using 30% data loss. The obtained results
show an acceptable  accuracy of  the  U-Net  with
Screen size of 50 for the different variables. The
LI was unable to impute data of all-sensor losses
but had comparable performance to the U-Net for
individual  sensors  losses,  while  the  FFNN  and
LSTM  have  failed  to  be  train  properly.  The
encouraging  performances  of  the  U-Net
architecture in fact depend on the availability of
the huge datasets (from 27 greenhouses) which is
not always affordable in practice. 

In  this  paper,  a  method  for  handling  bulk
missing data in greenhouse microclimate dataset is
developed using the dataset of one greenhouse and
the external environment dataset provided by the
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meteorological  station  of  the  city  where  the
greenhouse is located (in our case Almeria, Spain).
To tackle the daily seasonality of 24 hours in the
greenhouse environmental variables, the proposed
method  is  based  on  seasonal  autoregressive
integrated mobile average with exogenous variable
(SARIMAX)  modeling  technique,  in  addition  to
the principal component analysis  (PCA) for data
preprocessing and dimensionality reduction of the
exogenous variables.

The  remainder  of  this  paper  is  organized  as
follows.  In  section  II,  the  available  greenhouse
environmental dataset is described in addition to
the  details  of  the  proposed  data  restoration
approach  including  the  data  analysis  based  on
PCA, SARIMAX model and the model parameters
selection  method.  The obtained results  and their
discussions are presented in section III. The main
conclusions drawn from the study are illustrated in
the last section.        

II. MATERIALS AND METHODS

A. AVAILABLE DATASET

The investigation of the developed method was
performed by an experimental dataset provided by
the  University  of  Almeria  in  Spain  within  a
framework  of  cooperation  with  PRISME
laboratory, France. The dataset is collected from a
greenhouse located at the Cajamar Foundation (El
Ejido, Almería, South-East Spain) covered by PE
film of 200 µm thickness. This traditional “parral-
type” greenhouse has a surface of 877 m² (37.80 m
× 23.20 m).  The greenhouse is  equipped with  a
hinged  roof  window  with  a  maximum  opening
angle of 45°, and a lateral window with a length of
37  m,  and  an  opening  from  0◦  to  45◦.  The
greenhouse is instrumented with several sensors to
gain  environmental data.  In  addition,  a
meteorological station is installed at a height of 6
m for measuring different meteorological variables
such  as  outside  temperature,  relative  humidity,
global  radiation,  photosynthetic  radiation  and
wind  speed,  and  direction.  The  database  is
collected in 2007 from February 15th to June 15th,
with time step of 1 min. A meteorological dataset
with nine variables of the city of Almeria covering
all the periods of the available inside greenhouse
dataset, with 1 hour time step, is introduced in this
study and their  variables  are  used  as  exogenous
factors. 

B. IMPUTATION METHODOLOGY

The proposed method is based on SARIMAX
model,  which  is  an  extension  of  Seasonal
Autoregressive  Integrated  Mobile  Average
(SARIMA)  model,  upgraded  with  the  ability  to
integrate exogenous variables. In the present work,
the  used  exogenous  variables  represent  the
external environment of the greenhouse, in order
to make the model more accurate and to increase
the  forecasting  performance,  especially  for  bulk
data missing. 

Firstly, using the PCA, the relationship between
datasets variables (endogenous and exogenous) is
analyzed; then, the exogenous dataset is reduced
to  remove  redundancy  from the  data.  Once  this
pre-processing  operation  is  carried  out,  the
compressed data is used as exogenous factors for
the  SARIMAX model.  Using SARIMAX model
suppose  that  the  endogenous  time  series  is
stationary.  Therefore,  the  unit  root  test  is
performed to verify the stationarity requirement of
the input time series. To identify the SARIMAX
model  parameters,  the  corrected  Akaike-
information-criterion is used. 

C. PRINCIPAL COMPONENT ANALYSIS (PCA)
The  PCA  method  is  one  of  the  popular

dimension  reducing  techniques.  It  removes
redundancy and complexity from correlated data
and leads to a smaller number of dimensions. A
data  distribution  containing  the  descriptive
variables can be transformed into another one with
the  necessary  characteristic  variables  known  as
principal  components  describing  most  of  the
information of the original dataset. Indeed, more
variables  are  correlated less  number of  principal
components are needed for representing the data. 

In the present study, the PCA is used to select
pertinent variables from the set of correlated data
provided  by  the  meteorological  station  of
ALMERIA  city.  The  dataset  of  correlated
variables  is  transformed  into  an  uncorrelated
component.

The original  dataset  is  m  ×  n matrix  noted by  X ,
where m is the number of variables (rows) and n number of
samples (columns). It is normalized as follows: 

Xcentred (i )=X i−X́ i                                           
(1)

 X i : The ith variable of the dataset. 



 X́ i : Mean of the ith variable of the dataset. 

The  resultant  normalized  data  is  used  to
calculate the covariance matrix S defined by the
following expression:

S=
1

1−n
Xcentred

T Xcentred∈Rm× m

                       
(2)

Finally, the eigenvalues and eigenvectors of the
correlation  matrix  are  calculated  to  identify  the
PCA model parameters. The variance part of each
principal component is related to the eigenvalues
as fellows: 

W PC (i )=
λ i

∑
j=1

m

λ j                                                

(3)

The  selection  of  the  representative  principal
component is based on the sum of the preserved
variance for each variable. The dispersion of data

is sufficiently preserved when  ∑
i=0

m

W PC (i )>0.8

where iϵ {1,2, …,m } .

Hence,  the  transformation  of  correlated
variables  x i    into new uncorrelated variables

zi  is performed as follows: 

Z=UT X centred                                                  
(4)

These  uncorrelated  variables  are  called  the
principal  components  of   X centred  ,  the  ith

component is obtained as follow: 

zi=ui
T X centred

(5)

With ui  the ith eigenvector of the covariance
matrix S.

The  vectors  of  maximum  variation  can  be
represented  in  a  visualization  space  called
“factorial  space”  or  “correlation  circle”.   This
graphical representation shows how the variables
are correlated. 

The  coefficient  of  correlation  between  two
variables  is  given  by  the  cosinus  of  the  angle
between these two variables: 

ρi , j=cos ( Angle(x i , x j))                                 
(6)

The  purpose  of  this  analysis  is  to  define  a
simplified  model  with  only  pertinent  variables.
The  reduced  data  is  used  as  exogenous  factors.
The new reduced system is also used for clustering
data, to verify the relationship between exogenous
and endogenous factors. 

D. BOX AND JENKINS METHODOLOGY  
Box-Jenkins  methodology  aims  to  develop  a

mathematical model that describes the behavior of
observed past values of time series to be used in
forecasting  future  values.  The  used  approach
describes  the  effect  of  trend  and  seasonal
components in time series, such approach is quite
different  from  that  used  in  regression  or
exponential  smoothing  [7].  Box  and  Jenkins
methodology is described in a three-step process
as follows:  first check the stationary of the time
series, by verifying if the statistical properties of
the  series  (variance and level)  are  constant.  The
second  step  is  the  identification  of  the  model,
making  an  appropriate  choice  of  model
parameters. The last step consists of the fitting of a
selected model and diagnostics of results.

E. SARIMAX MODEL

SARIMAX is a mathematical  model  used for
time series forecasting, that account for time series
dependence  across  season,  with  the  ability  to
integrate exogenous variables. The model consists
of  two  main  parts  autoregressive  and  mobile
average, with a differentiating operator[11].

In the  autoregressive  part,  the  current  data  is
estimated based on a  linear  combination of  past
data.  This part  is  denoted as AR (p),  with p the
order of the model. The formula of the model is
expressed as follows:   

X t=φ1 X t−1+φ2 X t−2+…+φp X t−p+εt            
(7)

φ1 , φ2 ,…,φp  :  The  parameters  of  the
autoregressive part of the SARIMAX model.

 εt  : White noise εt N (0,σε
2
)

The  moving  average  model  uses  past  forecast  errors
t−¿ ,…, εt−p

εt−1, ε¿

  to predict the current data X t  . Each

value of X t  is considered as a weighted moving average
of the past errors. This model is referred, as MA (q) with q is
the order of the model. The model is given by:

X t=ε t−θ1ε t−1−θ2εt−2−…−θq ε t−q             (8)



θ1 ,θ2 , …, θp  :  The  parameters  of  the  mobile
average part of the SARIMAX model.

The  combined  model  SARIMAX  is  described
mathematically as follows:

φp ( B )ΦP ( B s )∇d ∇s
D X t=θq(B)ΘQ (B s

)ε t


Where,  φp ( B )  is  the  regular  AR model  of
order p.  ΦP (B s )  is  the seasonal AR model of
order P and s  is the time span of the repeating
seasonal  pattern.  θq(B)  is  the  regular  MA
model of order q.  ΘQ(Bs

)  is the seasonal MA
model  of  order  Q.  B  is  the  backward  shift
operator.  The  model  is  designed  by

SARIMAX ( p ,d ,q)×(P , D ,Q)S ,  where
( p , d , q)  are  the  non-seasonal  orders  and
(P ,D ,Q)S  are  the  seasonal  orders.  The

differentiating operator ∇d  is introduced in the
model  to  remove  the  non-seasonal  non-
stationarity,  whereas  the  seasonal  differentiating
operator  ∇s

D  is used to eliminate the seasonal
non-stationarity.

 Before undertaking the model identification, in
this study, a test of unit root called “Augmented
Dickey-Fuller  test”  is  used  for  checking  the
stationarity of the time series. The test suggests an
alternative equation by subtracting  Y t−1  from
both sides of the equation (10) which represent an
autoregressive model with the p order equal to 1.

Y t=ρY t−1+ϵ
(10)

      ∆ Y t=( ρ−1 )Y t−1+ϵ
(11)

This  test  is  performed under  two hypotheses:
the  null  hypothesis  (H0:  ( ρ−1 )=0 )  which
suppose that the data is non-stationary and needs
to be differentiated to make it stationary; and the
alternative hypothesis (H1  :  ( ρ−1 )<0 ) suppose
that the data is stationary and there is no need for
its differentiation [8]. The next step is to estimate
the SARIMAX model  orders,  both seasonal  and
non-seasonal.  A  traditional  Box-Jenkins
framework  for  identifying  a  suitable  model  is
based  on  autocorrelation  and  partial-
autocorrelation.  This  method  is  not  always
informative,  especially  in  small  data  size,  the
interpretation  of  the  correlogram  is  more
complicated when the data is differentiated, hence

inappropriate models are often fitted [9]. A more
efficient method for the selection of the best model
(structure and parameters) is used in this paper. It
is an automatic procedure based on the corrected
AIC (Akaike information criteria). This procedure
is an implemented Python function.

F. TEST AND DIAGNOSTIC PROCEDURE

The diagnostic of the used model is crucial to 
evaluate the performance of prediction methods. 
For this purpose, the dataset is split into training 
and testing sets, where the testing set succeeding 
the training set. The measurement of prediction 
accuracy is defined as the root-mean-square error 
(RMSE), expressed as follow:

RMSE=√∑t=1

n

( ŷt− y t)
2

n
                                  

(12)

Where  ŷ t is  the  predicted  value,  y t  is  the
observed value.

The tests used are presented as follow:

· Testing the model  adequacy based on AIC
criterion. The best model corresponds to the
lower value [8].

· Analyzing  the  residuals  to  check  the
adequacy of the model, by representing the
correlogram and the quantile-quantile plot. 

· Analyzing  the  robustness  of  the  model  by
changing the test set.  

· Testing of the accuracy of the model.

III. RESULTS AND DISCUSSION

The  variables  concerned  by  imputation  are  the
inside  temperature  and  solar  irradiation  of  the
greenhouse.  At  first,  the dataset  for  training and
analyzing has been formed with fifteen days from
1st March  to  15th March.  As  the  phenomena  in
question  have  slow  dynamics,  the  time  step  is
changed  from  1  min  to  10  min  to  reduce  the
computational cost. Hence, the number of samples
is 2160, Fig. 1.



Fig. 1. Temperature and Solar irradiation for training stage.

 

G. SELECTION OF PATIENTS VARIABLES

Analyzing data correlation with PCA allows us
to  select  the  pertinent  variables  to  use  as
exogenous  factors.  Before  analyzing  data  with
PCA,  the  number  of  necessary  principal
components to represent data must be determined.
This  choice  is  essentially  depending  on  the
cumulative explained variance.  Fig.  2 shows the
preserved percentage of each component on the y-
axis and the number of components on the x-axis.

Fig. 2. Scree plot for the four components.  

As illustrated in Fig 2, the preserved variance
percentage for the first  component PC1 is  about
39% and  the  second  component  PC2 represents
16%. However, the four first components allow us
to explain a cumulative percentage of 80%. Hence,
the number of necessary components to represent
the  weather  station  dataset  into  a  new space  of
visualization is four components.  

The  representation  of  the  eigenvectors  of  the
variables on the plane of PC1-PC2 is showed in
Fig  3.  It  represents  in  fact  the  direction  of  the
maximal variability for each variable in the two-
principal  component  plane.  In  this  plane,  the
correlation between variables is proportional with
the  angle  between  eigenvectors.  Specifically,  a
small angle value represents a high correlation. 

 

Fig. 3. Correlation circle with PC1-PC2 

The representation of the direction of maximal
variability for each variables in 2D plane, shows
four  cluster  of  correlated  variables:  {Tmax (max
atmospheric  temperature),  Tmin  (min  atmospheric
temperature) ,  Tav  (average  atmospheric
temperature)}  ,  {Hex (external  humidity),  Pr

(atmospheric  pressure)}  ,  {Fl  (feels  like
temperature}  and { Cl (density of clouds)  ,  Wd

(wind direction) , Wv (wind velocity)}. Correlated
variables  provide  the  same  information  to  the
system with redundancy, for the reason a selection
of variables from each cluster is carried out. From
the first cluster the Tav is selected, which represents
the  average  atmospheric  temperature,  in  the
second  cluster,  we  chosed  the  most  preserved
variable  Hex and  from the  last  cluster  the  most
correlated variable (Wv) with PC2 is selected.  

G. RELATIONSHIP BETWEEN EXOGENOUS AND 
ENDOGENOUS DATASETS

Fig. 4. Plot of PCA scores on the plane PC1-PC2 

Concerning  the  internal  data  (a),  the  plot  of
scores obtained by PCA shows a cluster of days
with  a  similar  weather,  and  some  days  with
particular  weather  pattern.  In  the  other  side,  the
data of external environment (b) confirm that these
days  represent  a  particular  weather.  This

(a) (b)



coherence  verified  by  the  PCA scores,  indicate
that there is a strong relationship between external
and internal database. 

H. STATIONARITY CHECK

As  referenced  above,  the  used  test  of
stationarity is Dickey Fuller test. The obtained T-
statistical value is showed in TABLE Ⅰ.

TABLE Ⅰ.

T-statistical for Dickey Fuller test

Time series Temperature Solar irradiation

T-statistical -8,78 -7,17

The T-statistical values for each time series is
less than the critical values for no trend case at 1%
(-3.43) based on MacKinnon [10]. Hence, the two
time series for temperature and solar radiation are
stationary. 

Table  Ⅱ represent  the  summary  evaluation  of
four  candidates  models,  based  on  Corrected
Akaike  information.  The  best-fitted  model
corresponds to the minimum value of AIC.

TABLE Ⅱ.

AIC values for fitted model

SARIMAX 
model

AIC

Temperature Solar irradiation

(0,0,0)(2,1,0) 2518,57 6264,71

(0,0,0)(3,1,0) 2053,04 5160,97

(0,0,0)(3,1,1) 2005,81 5067,79

(0,0,0)(3,1,2) 1981,09 5076,40

(2,1,0)(3,1,2) 15740,64 16139,58

Based on the values of AIC criterion, the best
fitted model is which corresponds to the minimal
AIC values, Hence the used model is  SARIMAX
(0,0,0)×(3,1,2)  for  temperature  and  SARIMAX
(0,0,0)×(3,1,1)  for  solar  radiation.  The estimated
parameters of the model by Maximum Likelihood
optimization with Python, is given in TABLE Ⅲ.

TABLE Ⅲ.

Optimized parameters for SARIMA model

Parameter θ1 θ2 θ3 Θ1 Θ2
Value for temperature 
model 0

.
4

4
3

5 -
0

.2
0

4
2

-
0

.0
0

6
4

-
1

.6
6 0

.
9

9

Value for solar irradiation 
model 0

.
1

0
.

0
0

4
6 -

0
.1

-1

Three type of model are used to improve the
impact  of  seasonal  component  and  exogenous
factors. The results are illustrated as follows:  

- The  real  curve  of  internal  temperature  and  solar
irradiation.

- The  estimated  curves  by  each  model  (ARIMA,
SARIMA and SARIMAX).    

A. IMPACT OF SEASONAL COMPONENT

The prediction results of the ARIMA model are
given in Fig. 5. It is clear that this model is unable
to predict the seasonal component. This means that
the ARIMA model is unsuitable to impute the bulk
missing  data  in  the  greenhouse  internal
environment dataset. 

Fig. 5. Illustration of the results of the ARIMA model. 

I. IMPACT OF EXOGENOUS FACTORS

For  the  investigation  of  the  impact  of
exogenous  variables,  the  performance  of  the
forecasting  using  SARIMA  and  SARIMAX
models  are  compared  for  two  different  time
periods. The first period represents two days with
particular  weather  pattern,  whereas  the  second
period represents three days with normal weather
pattern. The selection of this periods is done by the
PCA method and particularly using the score plot
of principal component.  The obtained results  for
the first and second time periods are illustrated in
Fig. 6 and Fig.7, respectively.



Fig. 6. Illustration of the results of the SARIMA and SARIMAX model for
days with particular weather. 

The  evaluation  in  term  of  RMSE  of  the
SARIMA and  SARIMAX  models  in  both  time
periods  for  the  temperature  and  solar  radiation
series is given in Table IV.

From  Fig.  6  and  Table  IV,  when  the  days
present  particular  weather  pattern,  it  is  obvious
that  the  SARIMAX model  performs  better  than
SARIMA  model.  However,  when  the  days
presents  normal  weather  pattern,  the  SARIMA
model outperforms the SARIMAX model, see Fig.
7 and Table IV. 

Fig. 7. Illustration of the results of the SARIMA and SARIMAX model for
normal days. 

TABLE Ⅳ.

RMSE values for each model

Forecast model

RMSE

Days with
particular weather

Days with regular
weather

Temp RG Temp RG

SARIMA 3.3 121.8 1.1 20.2

SARIMAX 2.5 116.7 1.2 33.8

In the days with particular weather pattern, the
exogenous factors provide additional information
to the imputation mechanism. Indeed, a significant
climate  change  has  an  important  impact  on  the
internal environment of the greenhouse. Therefore,
the  use  of  exogenous  variables  is  necessary  in
days  with  particular  weather  pattern  which
constitutes  usually  the  conditions  of  the
occurrence of the bulk loss of data. However, in
the  days  with  normal  weather  pattern  there  is
neglected  impact  on  the  internal  protected
environment of the greenhouse.  So, in this  case,
the  prediction  of  the  greenhouse  internal
environment  variables  using  exogenous  factors
can limit  the performance of the model.Residual
analysis

The  residuals  of  the  model  are  tested  to
improve the accuracy of the fitted model.  In the
Fig 8 the Q-Q plot is presented, to check whether
the residuals are a Gaussian nois

                                                                                                                         Fig. 8. Diagnostics plot for fitted models

According to the diagnostics plot the residual
of  the both models are  not  correlated.  However,



the  Q-Q plot  shows  that  the  residuals  have  the
nature of Gaussian noise. 

IV. CONCLUSION

This  paper  investigates  a  PCA-SARIMAX
method for handling bulk loss data in greenhouse
internal  environment  dataset.  The  proposed
approach  is  evaluated  using  an  experimental
greenhouse dataset. The exogenous dataset of this
greenhouse is analyzed using PCA, to simplify the
model input variables while keeping the relevant
ones. The PCA method is also used for clustering
the  days  according  to  the  weather  pattern.  The
selected  relevant  variables  are  reduced into  four
principal  components  to  be  used  as  exogenous
input of the SARIMAX model. The evaluation of
the  SARIMAX  model  results  is  carried  out  on
different dataset with different weather patterns. A
comparative  study  is  performed  with  these
different  datasets  and  revealed  that  the  use  of
exogenous  factors  is  effective  only  in  days
representing a particular weather pattern. 

In  future  research  work,  we  suggest  the
combination of SARIMA and SARIMAX models
in addition to PCA method for more accuracy in
handling  the  missing  data  in  different  weather
conditions.  We  also  suggest  the  use  of  more
advanced  parameters  estimation  methods  and
models based on artificial intelligence techniques.
This imputed data will be used to develop a virtual
sensor  for evapotranspiration estimation,  used in
the regulation of the greenhouse crops irrigation.
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