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Aziz Naamane

Abstract—The prediction and observation of the growth, and
the peaks reproduction of the Coronavirus are of main impor-
tance. In this study, we revisit the old deterministic SIR model
and show its ability to describe the disease spread; Then we
use it to try some observers to avoid acquisition perturbations
and measurements imperfections. After finite time converging
observations an output re-injection is used for parameters
estimation. Note that the data are not provided by sensors
which are regular in their measurements, synchronised in time
and robust versus noise

Index Terms—Compartment models of virus propagation, Ob-
servation and prediction, Data filtering, Parameters estimation,
Compensation of measurements imperfection and perturba-
tions, Super-Twisting Algorithm (STA).

1. Introduction

1.1. COVID history

The epidemic spread in a country depends on several pa-
rameters. It depends on the population, its density, practices
and lifestyles as well as the movements of individuals and
the strains of the disease. Understanding the phenomenon
of its spread is complex and goes through many stages [1].

Already in 1914, Anderson Gray McKendrick and
William Ogilvy Kermack proposed compartmental models,
which they revised and extended a few years later [2]–[5].
A large host of mathematical models have followed and
continue to evolve until today [6]–[14].

The most common symptoms are fever, dry cough and
severe breathing difficulties [1]. The virus is mainly spread
step by step during close contact via small droplets resulting
from coughing, sneezing or spitting during conversations
[15].

People affected by the virus may be asymptomatic or
develop flu-like symptoms [1]. Healthy carriers are not
easily spotted and remain prone to transmit the virus to
others [11]. This is why the fight against COVID-19 is
difficult and not yet finished [16]. A new wave of pandemic
is problematic, hence the importance of testing.

The goal, in this paper, is to propose efficient observers
with reduced complexity and then try to detect and identify

the different variables that promote or slow down the spread
of the virus [16].

1.2. Context and formulation

Measurement imperfections and perturbations can be
observed in the available COVID19 data. Data are collected
and communicated by human beings doing their best, in
addition to their jobs. Then they are gathered, registered
and published. To understand the disease evolution in time
and in function of some parameters that may seem to be
relevant, data processing and observers are needed. Errors
and perturbations may occur at each one of theses steps.
The Figure 1 shows the daily confirmed cases for three

Figure 1. The COVID propagation in 3 countries [17]

countries. These numbers are reported by institutions and
transmitted manually. One can compare some curves. the
curves depend on the location and various parameters related
to the population and the region particularities. The count
of infected people (I) and individuals in remission (R) is not
achieved in the same way (the same rigour) in each region
or each country. Communication delays and measurement
imperfections may exist in the data.

One can note that the numbers (measurements) may have
drifts in their dates. This comes from transmissions delays
and long reporting chains that exist to gather data statistics.
It is worthwhile to note also that the health testing is not



uniformly and homogeneously done. So errors and time
delays exist in the daily numbers [16]. This also means
that some values can be overestimated one day and under
estimated the next ones. In Figure 2, we remark that there are

Figure 2. The confirmed COVID case by day in France [17]
periodic perturbations appearing each week for the french
data [17].

In this paper we recall the SIR compartment models in
section two. Then we try to adapt the model to the actual
situation where we observe periodic reproduction of the
peak of the infected people number. Section three proposes
an appropriate model formulation which allows the design of
robust observers by the Sliding Mode (SM) Super Twisting
Algorithm (STA). It proceeds by the STA design for the
Modified SIR model and then give a discrete time observer
in two steps to estimate first the R and I numbers and
then deduce the S. The 2 most important features of this
observation method are the convergence rate of observations
and possibility of output injection which allows a final stage
of parameters identification. This is used in section four
to identify the process parameters. The final thought, as a
perspective of this work, is about an approach, or attempt
in modelling, for the prediction and the evaluating of some
actions that can be taken.

2. Models in Use

2.1. The Compartments Model (SIR)

2.1.1. SIR Model Definition. The compartment models S,
I ,R, D, E are well presented in Wikipedia. The SIR model
is made of at least 3 stages of the disease (S, I, R).
Definition 1.

• S(t) is the sub-population susceptible to acquire the
disease,

• I(t) is the sub-population that has become infected,
• R(t) is the sub-population that has recovered from

infection.

Assumption 1. In general, we assume that

• The numbers of Births and Deaths are equal
• The total population is constant: N = S + I +R =

cst
• Then the time derivative is null and Births -

Deaths=0. Ṅ = Ṡ + İ + Ṙ = 0

• Persons who has not catched the COVID is suscep-
tible to be infected (Assumption for SARS-CoV-2)

• The demographic processes variations is neglected
(numbers of births and deaths are equal).

• The Recovered sub-population is no longer suscep-
tible to be infected, nor to be infected

• The three sub population groups (S, I and R) are
assumed to be non-overlapping.

The epidemic progression have then be modelled by
some transition rates as follows

Susceptible
βSI
N−−→ Infectious

γI−→ Recovered

The infected people I, have βSI
N chances to encounter the

susceptible population S resulting in infection transmission.
S and I are the sizes of the suspected and infected

populations. γ is the percentage to recover and become
resistant to infection. The Recovered population is R = γ.I .

For simplicity we use normalised variables or population
fractions. Let us define

s =
S

N
i =

I

N
r =

R

N
(1)

The SIR propagation model can be written as follows,
where s+ i+ r = 1 is an invariant [9], [10].

d

dt

 s
i
r

 =

 −β.i 0 0
0 βs− γ 0
0 γ 0

 s
i
r

 (2)

This model gives us the following curves in simulation, with
R0 = 2.4, tinfective = 8.4, γ = 1/tinfective and β = R0γ.
The initial conditions are: i0 = 1/200 , r0 = 0.0 and s0 =
1− i0 − r0. (see the reference of prof Jeffrey Kantor [10]

2.1.2. Conclusion on results of the SIR model. :
- The constraint 1=r+s+i, plotted in red is fulfilled
- The infected population shows only one peak and goes to
0
- More than 85% of the population recovers from infection
- The Susceptible population decays to less than 15%

One can note several contradiction with the actual data.
The number of infected people decreases to zero after
the peak and stays there (indicating that the infection has
disappeared). This is not what we observe in reality. The
peak came back 3 more times and is coming back again.

At the end of the simulation, there remains a little more
than 15% of the Susceptible population and the rest (ie about
85 %) is the Remitted population. This will mean that the
infection will affect a very large majority of the population
(here 85% after only one peak). This also is not the case in
the observed actual data.

The population remains constant and the Susceptible
number S reaches up to 85% of the population. Then,
clearly, the dynamics of the COVID19 is not described by
this model with the previous assumptions. Only 15 % of
the population remain susceptible without evolution of the
infection over time!



Figure 3. Results with SIR Model by Jeffrey Kantor [10]

More complex models can be considered like the gen-
eralised SEIRD model presented in [18], among others but
this will not solve the latest problems.

2.2. The Modified SIRD Model (MSIRD)

The compartments are more coupled than assumed pre-
viously and the epidemic progression have to be modelled
by more transition rates.

2.2.1. MSIRD Model Definition. :
In this paper we will still consider the simplest SIR

model. But we do not keep some of the restrictive assump-
tions admitted in the previous models. In the proposed model
(MSIRD), we assume that there are more transmissions
between the compartments.
Assumption 2. For the MSIRD model we assume that:

• We assume that a part of the Recovered sub-
population become Susceptible to the disease and
may be (re) infected. We add, to the model, the term
µ.r

• The compartments (S, I and R) are coupled. Some
infected persons either ignore it or hide it. They are
still counted in S instead of in I.

• I is underestimated (leakage -c.i) and S overesti-
mated (increased by +as).

• The term −d.r is added to account for the small
number of deaths in the additional D group.

The proposed modifications lead us to the model equa-
tion (MSIRD) (3). d

dt
s

d
dt
i

d
dt
r

 =

 a− β.i 0 µ
0 βs− γ − c 0
0 γ + c −(µ+ d+ a)

 s
i
r


(3)

The MSIRD model (eq (3)) gives us the following curves
(Figure 4) in simulation, with the same (previous) parame-
ters and initial states with addition to mu = 0.003, a = 0.01,
c = 0.1 and d=0.00001. The initial number of Infected is
i0 = 1/2000 .

Figure 4. Results with MSIRD Model

2.2.2. Conclusion on results of the MSIRD model.
The number of infected people shows periodic peaks with
decreasing amplitudes (indicating that the infection comes
back quasi-periodically and doesn’t disappear) like we ob-
serve it reality. The process shows Lotka-Volterra like pe-
riodic cycles. The modified MSIRD model is then more
suitable to describe the COVID19 spread as shown by Figure
(4).

The total population r+s+i=1-dr is plotted in red (in
Figure 4). This suggests to add, as input to S, the number
of births b, to compensate the number of deaths.

The constant population constraint can be exploited to
reduce the model complexity. The number of system states
can be reduced to only two states, knowing that the third
state can be got by ṙ = −ṡ− i̇.

2.2.3. Proposed reduced 2 states Model MSIRD2. :
Using the constraint of constant population, we get a

reduced order model with only two system states owing
to the fact that one state can be deduced from the two
others and the constraint. Three second order models are
then possible. Let us consider the following one, where we
choose s and i as states : ṙ = −ṡ− i̇ and r = 1− s− i

If we choose as outputs i and r, we get the system state
equations:

[
d
dt
s

d
dt
i

]
=

[
a− µ− βi −µ

0 βs− γ − c

] [
s
i

]
+

[
µ+ b
0

]

y =

[
i
r

]
=

[
0 1
−1 −1

]
.

[
s
i

]
+

[
0
1

]
Keeping the same parameters: µ = 0.003, a = 0.01,

c = 0.1 and d = 0.0001 with as births number b = 0.00001,
we got the following simulation results. Then no information
have been lost by the model reduction. The two state model
is enough to describe the complete dynamics as it gives the
same results.



Figure 5. Results with MSIRD second order state space Model

3. Robust Non Linear State Observer

3.1. Parametrization of the process model

The process variables of interest, which can be quanti-
fied, are i and r. The remaining population s (hidden state)
is not easy to estimate and is of reduced interest to follow
the evolution of the infectious disease. It is rather interesting
to be controlled. As the global population is constant, s can
be deduced from the constraint s = 1− i− r. We have also
ṡ = −i̇− ṙ

Consider the simple nominal model of equation (4). Let
us consider the state space vector

X =

 x1

x2

x3

 =

 r
γ.i
s


The variables x1 = r x2 = ẋ1 = γ.i can be quantified

by gathering data application (with γ = 1/tinfective [16].
We can write the system model

ẋ1 = x2

ẋ2 = βx3x2 − γx2

ẋ3 = −βx3x2/γ (4)

y =

[
x1 0
0 x3

]

MSIRD Observer design We have, in two steps, to
design an observer for (x1,x2) and to retrieve x3 by using
x1 and x2 with a finite-time (FT) convergence [19]. In a
third step, some nonlinear signal are injected for parameters
identification (see [20]–[22]).

An output injection signal, filtered from the STA is used
to get a regression vector for the RLS (Recursive Least
Square) algorithm to identify the parameters asymptotically.

3.2. Step 1: x1, x2 States Estimation

The subsystem with state variables x1, x2, of equation
(4) becomes as follows:

ẋ1 = x2,
ẋ2 = f1(t, x1, x2)
y = x1,

(5)

The dynamics is: f1(t, x1, x2) = βx3x2 − γx2 is assumed
bounded and Lebesgue-measurable.

The proposed observer for system (5) uses the Super-
Twisting Algorithm.

Let us design an observer of x2 assuming the state x1 =
r available, which converges in finite-time.

We note x̂1 and x̂2 the process variables estimations.
The correction variables z1 and z2 are deduced from the

Super-Twisting Algorithm (STA) [23].
The estimation errors are noted x̃1 = x1− x̂1 and x̃2 =

x2 − x̂2

The observer can be expressed as in [21]

˙̂x1 = x̂2 + z1
˙̂x2 = f1(t, x1, x̂2) + z2

(6)

The correction terms are computed as

z1 = λ|x1 − x̂1|1/2 sign(x1 − x̂1)
z2 = α sign(x1 − x̂1).

(7)

To ensures observer convergence we take as initial con-
ditions for the estimates x̂1 = x1 and x̂2 = 0.

The dynamics of the error equations is deduced as

˙̃x1 = x̃2 − λ|x̃1|1/2 sign(x̃1)
˙̃x2 = F (t, x1, x2, x̂2)− α sign(x̃1)

(8)

with F (t, x1, x2, x̂2) = f1(t, x1, x2)− f1(t, x1, x̂2)
In our process the system states (population fractions)

are bounded. Then existence of an upper bound f+ is
ensured such as the inequality (9) holds, for any time and
any possible x1, x2 and |x̂2| ≤ 2 sup |x2|.

|F (t, x1, x2, x̂2)| < f+ (9)

The system states are bounded because the (5) is BIBS
stable. F (t, x1, x2, x3, x̂2) is also uniformly bounded, since
all variable x1, x2, x3 are uniformly bounded by 1.

Let us consider α and λ two constants verifying the
conditions of equations (10), with some constant p is chosen
such as 0 < p < 1.

α > f+,

λ >
√

2
α−f+

(α+f+)(1+p)
(1−p) ,

(10)

Theorem 1. ( [20], [21]). For the system (5), as the condition
(9) holds, we choose the observer (6) with parameters
selected according to conditions (10). Then, the conver-
gence of the estimated states (x̂1, x̂2) to the real value
of the states (x1, ẋ1) is guaranteed after a finite time.
Then there exists a time constant t0 such as: for any
t ≥ t0, (x̂1, x̂2) = (x1, x2).



This theorem has been proved by Davila, Fridman and
Levant in [20].

The objective now is to get discrete equivalents of the
states, the observer and the process variables.

Let us choose as sampling period δ and let ti, ti+1 be
two successive times of acquisition.

The variables x(ti), z1(ti), z2(ti), f1(ti), are discrete
times acquisitions with as sampling period δ. Let us consider
the Euler discrete equivalent observer

x̂1(ti+1) = x̂1(ti) + (x̂2(ti)+
+λ|x1(ti)− x̂1(ti)|1/2 sign(x1(ti)− x̂1(ti)))δ,
x̂2(ti+1) = x̂2(ti) + (f1(ti, x1(ti), x̂2(ti))+
+α sign(x1(ti)− x̂1(ti)))δ

(11)

where the estimated variables are x̂1(ti) and x̂2(ti)

Theorem 2. ( [20]). We assume that f1 is a bounded
function and that the condition (9) is verified. Then,
with the parameters (10), the algorithm (11) ensures the
convergent observations with estimation errors such as
|x̃1| ≤ γ1δ

2, and |x̃2| ≤ γ2δ
where γ1, γ2 are some constants, depending on the ob-
server parameters.

Davila et al have proved also this theorem in [20].

3.3. Estimation of the State x3 (step 2)

Consider the subsystem with state variable x3 = s and

ẋ3 = −βx3x2/γ

In this second step, we design an observer, to get a
finite-time convergent estimation of the state x3 (susceptible
population). This leads us an equivalent output injection.

The dynamic equation of x3 is written as

ẋ3 = f2(t, x3) + ξ2(t, x2, x3)
y2 = x3,

(12)

In this case, the dynamic of the system considered as
unknown is ξ2(t, x2, x3) = βx3x2/γ, then in consequence
f2(t, x3) = 0.

The system (12), is assumed bounded and Lebesgue-
measurable (Filippov’s sense) in any region of the state
space.

We note x̃3 = x3−x̂3, and recall that s can be quantified
from s = 1− r − i. Then x3 is quantified.

Then we propose the following sliding mode observer

˙̂x3 = z3 = K.sign(x3 − x̂3) (13)

We can deduce the estimation error dynamic for x3 as

˙̃x3 = ξ2(t, x2, x3)−K sign(x̃3) (14)

with the gain K chosen such as K > max(ξ2(t, x2, x3)) =
η.
Theorem 3. Assume that |ẋ3| ≤ η, and the Sliding Mode

gain K is chosen such that K > η.

Then the observer (13) guarantees, after a finite time,
the convergence of the state estimation (x̂3) to its real
value (x3) transient.
There exists a time constant t1 such that for all t ≥ t1,
x̂3 = x3.

Proof 1. Let us choose as Lyapunov function

V (x̃3) =
1

2
x̃2

3

the time derivative is

V̇ (x̃3) = x̃3
˙̃x3 = x̃3(ξ2(t, x2, x3)−K sign(x̃3)) (15)

If K is chosen as given in the theorem (3), then the
Lyapunov derivative is negative V̇ (x̃3) < 0.
This proves that x̃3 goes to zero in a finite time.
Then there exist a constant t1 such that for all t ≥ t1
holds x̃3 = 0

4. System Parameters Identification

4.1. Equivalent output signal injection

Recall that the time instants t0 and t1 are those of
Theorems 1 and 3 and let the time t2 = max(t0, t1).

For all t ≥ t2 the error dynamics (8) and (14) holds

˙̃x2 = 0 = F (t, x1, x2, x̂2)− α sign(x̃1) (16)
˙̃x3 = 0 = ξ2(t, x2, x3, u)− β sign(x̃3) (17)

We assume that z2, z3 change at a high frequencies. Vari-
ous imperfections make the state oscillate in some vicinity of
the sliding surface intersection. The components of z2, z3 are
switched at a finite frequency. Then the signals oscillations
have high and slow frequency components [24].

The signal z2, z3 are (low-pass) filtered to drop their
high frequency components. The sliding mode dynamic is
determined by the slow components [20]. Then the equiv-
alent control is driven by the slow components. Those are
obtained by filtering the high-frequency using a low pass
filter (with a sufficiently small time constant). This is to
preserve the slow components undistorded enough and to
eliminate the high frequency component.

Thus the conditions τ → 0 where τ is the filter time
constant, and δ/τ → 0, where δ is the sample interval, ful-
filled to extract the slow component equal to the equivalent
control and to filter out the high frequency component.

This allows us to write the equivalent output injection
z̄2 and z̄3 as the filtered versions of z2 and z3 respectively.

z̄2 = f1(t, x2, x3) = βx3x2 − γx2 (18)
z̄3 = ξ2(t, x2, x3) = −βx3x2/γ (19)



4.2. Model for Parameters Identification

With the parameters θ1 = [β, γ]T , θ2 = β/γ and the
regression vectors ϕ1(x) = [x2.x3,−x2]T , ϕ2(x) = −x2x3

defined below, the process equation (4) is rewritten in an
appropriate regression form for parameters identification.
We can then use the output injection for the parameters
estimation

The Least Squares Estimation (LSE) algorithm [25], [26]
can be applied using z̄2 and the regression vector deduced
from the states observations. For all t ≥ t2 equations (18),
(19) become

z̄2 = θ̂T1 .ϕ1(x̂2, x̂3) (20)
z̄3 = θ̂T2 .ϕ2(t, x̂2, x̂3) (21)

ε1(t) = θ̃T1 ϕ1(x̂2, x̂3) (22)

ε2(t) = θ̃T2 ϕ2(x̂2, x̂3) (23)

where θ̂i is the estimation of θi and θ̃i the estimation error.
The LSE estimations, for the two parameters vector, are

˙̂
θ = σ

γt
Γtϕ1(x̂2, x̂3)ε(t) = Γtϕ1ϕ

T
1 θ̃1 (24)

Γ̇t = − σ
γt

Γtϕ
T
1 (t)ϕ1(t)Γt (25)

γt = 1 + ϕ1(t)Γtϕ
T
1 (t) (26)

We use a forgetting factor σ ∈ [0.9, 1].
The LSE initial adaptation gain matrix is Γ0 = ρ−1I

and θ̂ = ∆̂ϑ0 are initial parameters values.

Theorem 4. The Recursive Least Squares Estimation algo-
rithm ensures the following properties [25], [27]:

(i) θ̃TΓ−1
t θ̃ is a non increasing and

∥∥∥θ̃t∥∥∥2

≤
λmin(ΓO)
λmax(Γt)

∥∥∥θ̃0

∥∥∥2

(ii) ε̃(t) = ( σγt )
1/2(h(t)− ĥ(t)) ∈ L2

Figure 6. Observation Results for the MSIR Model

Remark 1. The use of LSE ensures the asymptotic conver-
gence of θ̂ to θ under the persistent excitation condition.

5. Simulations and experimental results

In this section, to validate our approach, some simulation
results are presented. The figure (6) shows one of several
trials have been done with the proposed MSIRD simulation
model and a state estimation observer. It shows the conver-
gence of the estimations.

Figure 7. Observations for reduced the MSIR Model

The real data must be pre-processed in order to give
interesting and coherent results. The obtained results are
very convincing and show that the most efforts have to be
done for the data prediction. We have used median filtering
to remove the pics and outliers. An averaging filter, with
a 7 days sliding window, is used to remove the one week
periodicity (see fig 1) due to data acquisition features. The
given daily new-cases are compared to derivatives of total-
cases (for I, R Data) and smoothed to fit the progression
curves.

6. Conclusion

The 2d-order sliding-mode (super-twisting algorithm)
is used to define (in two steps) a states estimation for
COVID propagation model and data. The convergence of
the estimations, in finite time, permits the step by step state
estimation and to avoid lack of sensors to estimate s. Then
parameters identification is made possible in a third step.
This observer is shown to be robust. Its robustness allows
us to reconstruct non-measurable variables. Cascaded robust
estimators converging in finite time to help to avoid absence
of sensors.

After robust state estimations converging in finite time,
we can retrieve the rejected signals which can be used as
an output injection for some parameters estimation (thanks
to the rejection property and robustness). Least Squares
Estimation (LSE) method can then be used for the process
parameters estimation.

The predictive observations and estimations will be
mixed, in perspectives, to online hypothesis testings to
reduce the data pre-processing burden and forward predic-
tions.
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Figure 8. Observations for reduced the MSIR Model
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