
Learning-based Observer Evaluated on the Kinematic Bicycle Model

Agapius Bou Ghosn1, Philip Polack1 and Arnaud de La Fortelle1

Abstract—The knowledge of the states of a vehicle is a necessity
to perform proper planning and control. These quantities are
usually accessible through measurements. Control theory brings
extremely useful methods – observers – to deal with quantities
that cannot be directly measured or with noisy measurements.
Classical observers are mathematically derived from models. In
spite of their success, such as the Kalman filter, they show their
limits when systems display high non-linearities, modeling errors,
high uncertainties or difficult interactions with the environment
(e.g. road contact). In this work, we present a method to build
a learning-based observer able to outperform classical observing
methods. We compare several neural network architectures and
define the data generation procedure used to train them. The
method is evaluated on a kinematic bicycle model which allows
to easily generate data for training and testing. This model is
also used in an Extended Kalman Filter (EKF) for comparison
of the learning-based observer with a state of the art model-
based observer. The results prove the interest of our approach
and pave the way for future improvements of the technique.

I. INTRODUCTION

In control applications, a difference of behavior exists
between the actual system and its model. This difference of be-
havior is caused by the assumptions underlying the model and
by external disturbances known as process noise. Similarly,
a difference exists between the measurements of the actual
system and its actual state and is caused by measurement
noise. To tackle this problem, state observation is a necessity
to estimate the internal state of a system. State estimation is of
great importance to the motion planner and controller, and the
estimation quality has direct influence on the system’s control
quality, knowing that the estimations are used in the control
process.

Classical observing techniques are used for state estimation
purposes. They rely on a model of the system in order
to predict the future states based on the current ones, the
inputs and the provided measurements. The used system model
should be as close as possible to the actual system behavior
to produce accurate estimations.

Classical observers are widely used in the literature in
many control applications; we present next the different types
of classical observers applied in the literature to vehicle
state estimation. The Luenberger observer, which is a linear
observer that uses the linear state space representation of a
system to predict its state with a correction term that includes
the difference between the predicted observations and the
measurements, has been employed in applications like [1],
[2], to estimate the vehicle velocity, side slip angle, and yaw
rate using a dynamic bicycle model and a linear tire model.
Limitations occur when the vehicle steps out of the linear op-
erational domain. To overcome nonlinearity issues, nonlinear
observers are used. They involve the update equations of the
model in addition to a correction term to estimate a system’s

state. Applications included estimation of the side slip angle
as in [3], [4], or the vehicle’s velocity as in [5], [6]; In these
works, the vehicle is described by either a dynamic bicycle
model or a four wheel dynamic model associated with different
tire models; the model used is then more representative of a
vehicle’s maneuvers, providing more accurate estimations in
nonlinear cases.

Other applications use the Kalman filter for state observa-
tion. The Kalman filter is model based and deals with linear
systems. Its algorithm is split into two steps: the prediction
step where it predicts the current state and uncertainty based
on the previous state, applied inputs and covariances and
the update step where it corrects the predicted state based
on the current measurements and covariances. The Extended
Kalman Filter is an extension to the Kalman filter to deal
with nonlinear systems. It performs linearizations at each step
around the current estimate. The EKF has been used along
with a dynamic bicycle model or a four wheel dynamic model
to estimate the vehicle’s velocity, yaw rate and tire forces as
in [7], [8], or for slip angle estimation as in [9], [10] with
different considerations to the choice of the tire model.

As presented so far, observers are able to estimate multiple
variables of interest based on models and measurements.
Presented techniques showed accurate results in a specific
operational range, the problem lies in their validity beyond
the assumptions of the model they use. Classical observers
use vehicle and tire models to represent the motion of the
vehicle: these are subject to their own assumptions. In other
words, model based observers are limited to the validity of the
model (vehicle and tire models) used in their estimations; any
change in the hypotheses that define the model would result
in the degradation of the observer’s performance.

In several works, learning methods have integrated in ob-
servers, either in parallel with vehicle models as in [11]
or alone as in [12]. The methods used resulted in accurate
estimations but either were still depending on a vehicle model,
failed to converge in many scenarios, or weren’t compared to
a known benchmark.

In this paper, we present a complete framework to create a
robust learning based observer, including the neural network
architecture and the data generation methods. The observer
requires a lot of training data of the system (inputs and ground
truth); and also testing data. In this preliminary work, we
intend to show the condition of feasibility of our method.

The observer gets as input what is known: measures and
control inputs. The output is what we would like to observe:
it could be any physical quantity linked to the system and even
other features (like uncertainties or context related indicators).
Since there is no model, the observer is not limited to
estimation of the state of the model (or parameters). The

ar
X

iv
:2

30
3.

17
93

3v
1 

 [
cs

.R
O

] 
 3

1 
M

ar
 2

02
3



difficulty is to get a ground truth for these quantities.
Therefore we show in this paper a simple case, where the

system is modeled as a kinematic bicycle, a simple non-linear
model. This allows to generate data by simulation (including
the ground truth) and also to compare with a state of the art
observer, the Extended Kalman Filter (EKF).

The rest of the paper is organized as follows: Section II
presents the kinematic bicycle model which will be used as
a simulator for our system. This model is also used for the
prediction step of the reference EKF observer. Section III
presents the learning based observer including data generation
algorithms. Section IV compares the performance with the
EKF with a detailed error analysis. Section V concludes the
paper.

II. THE KINEMATIC BICYCLE MODEL

As it was stated in the introduction, a learned observer
does not necessarily require a model, but one is used in
this paper for two purposes: on the one hand, simulation for
generating datasets for training and testing; on the other hand
for the prediction step of the reference EKF observer used for
comparison.

In the rest of the paper, the system is identified to the
kinematic bicycle model, described in Figure 1. The kinematic
bicycle model is used in many vehicle planning and controlling
applications in the literature (e.g. [13]). This model is a
simplified one that does not consider dynamics such as forces,
masses and inertia. Several assumptions define this model [14]:
first, the wheels of the vehicle are lumped into a bicycle model;
second, slope and road bank angles are neglected; third, the
pitch, roll and vertical dynamics are neglected; fourth, the
model is only valid for low speed motion when wheels do
not slip at all. The parameters of the kinematic bicycle model,
are presented in Table I.

Fig. 1: The kinematic bicycle model.

Variable Characteristics
x, y Coordinates in the map of the rear wheel
V Velocity of the model at its rear wheel
L Wheelbase of the vehicle
δ Steering angle
ψ Yaw angle of the vehicle

TABLE I: Characteristics of the kinematic bicycle model

The state of the kinematic bicycle model is defined by
z = [x, y, ψ]>, its input is defined by u = [V, δ]. The state
evolution is then defined by:

ż = f(z, u) =
[
V cos(ψ) V sin(ψ) V tan δ

L

]>
(1)

We use a discretized version of this model to generate data
and to build the EKF. Following the classical framework, we
add process and measurement noises. Following Equation (1),
the discrete time system is described by:

zk+1 = zk + f(zk, uk).∆t+ wk (2)
mk = zk + vk (3)

where k is the time step, ∆t is the time interval, mk is the mea-
surement, wk is the process noise and vk is the measurement
noise. In order to stay close to the EKF assumptions, noises
are white Gaussian with variance σ′

2 = (σ′2x, σ′
2
y, σ
′2
ψ) for

wk and σ2 = (σ2
x, σ

2
y, σ

2
ψ) for vk. Table II describes the noise

parameters used. The process noise is constant throughout all
simulations. The measurement noise varies: the 3 standard
deviations (σx, σy, σψ) are then all multiplied by a scaling
factor α. Our observer is trained using constant noise α = 1.
Measurement noise levels are motivated by GPS/INS sensor
properties presented in [15].

Process
3σ′
x 0.2 m

3σ′
y 0.2 m

3σ′
ψ 3.4 mrad

Measurement
3σx 1 m
3σy 1 m
3σψ 17.4 mrad

TABLE II: Noise parameters values. The measurement noise
corresponds to α = 1.

III. THE LEARNING BASED OBSERVER

We present here the core of our method to build our
observer. First, we concentrate on the data generation, that
is a particularly important step: we need to generate 3 sets
of data: for training, where the main point is to get diversity;
for validation, in order to stop the training and avoid over-
fitting; and finally for testing. We use different data generation
algorithms to minimize the risk of bias. Second, we introduce
several architectures which observing performance will be
evaluated.

In what follows, the kinematic bicycle model is assumed to
be fully observable, with noisy measurements. The learning-
based observer will be used to observe its actual states. The
data generation algorithms are presented in Section III-A, and
the observers to be trained in Section III-B.

A. Data Generation Algorithms

We focus on generating a fairly distributed training data set
over the behaviors of the vehicle; a validation data set that
assesses the performance of the model while training; and a
testing data set to test the learning-based observer after training
it. The three generation algorithms are different to confirm the
performance of the observer on different data sets. In what
follows, we present the training data generation algorithm
in Section III-A1, the validation and testing data generation
algorithms in Section III-A2.



1) Training Data Generation: Our training set should de-
pict most of the behaviors of the vehicle represented in our
case by the kinematic bicycle model. This will be represented
by a fair distribution of the accelerations on a predefined
friction circle. The friction circle represents an envelope for
the possible accelerations of a vehicle; and the position of an
acceleration set of a vehicle in the friction circle determines
the harshness of the effected behavior. The used friction circle
has a radius of 0.5g representative of the domain in which
the kinematic bicycle model can give a good representation of
the model of the vehicle [16]. The distribution of the heading
angles and the velocities will be taken into consideration as
well.

A discrete simulator that implements the kinematic bicycle
model is used based on Equation (2), and the goal is to
determine the inputs that should be applied at each time step
to generate the desired diverse data. Note that the defined
process noise is implemented, low measurement noise is added
after generating the data as we are dealing with an open
loop controller. The kinematic bicycle model equations are
differentiated to link the longitudinal and lateral accelerations
to the inputs that should be applied to the vehicle. The
differentiation of Equation (1) in discrete time leads to:

ax,k = Vk+1 − Vk
∆t cosψk −

Vk+1 tan δk+1

L
Vk sinψk (4)

ay,k = Vk+1 − Vk
∆t sinψk + Vk+1 tan δk+1

L
Vk cosψk (5)

Where ax,k, ay,k are the longitudinal and lateral accelerations
at time step t = k, the remaining parameters being defined
before, with ∆t = 0.02 s. Having given longitudinal and
lateral accelerations, the velocity and steering angle to be
applied in the next time steps can be solved from the two
above equations.

The friction circle to be filled is represented by a 2D grid
with a preassigned radius. Inputs to the model are chosen such
that the resulting accelerations fill the less dense parts of the
grid. One thousand 40-second trajectories are generated, each
starting with a vehicle state x = 0, y = 0 and a randomly
generated initial heading in the interval ψ ∈ [−π, π[. Running
the algorithm has generated a training data set made of 2
million samples and the distribution on the friction circle
shown in Figure 2. Measurement noise in the training data
set has a noise level of α = 1. We create the validation and
testing data sets next.

2) Validation and Testing Data Generation: Validation data
is used to give an unbiased evaluation of the network’s
performance during the training process; testing data is used to
evaluate the performance of the network after training it. Both
show how the learning-based observer is performing on data
different than the training data. In our case, we use clothoid
functions to create both sets. They result in smooth paths
(C2 continuous). After generating the path to be followed, the
pure-pursuit lateral controller [17] is used to follow it with a
continuous velocity vector that changes according to random
accelerations. The measurement noise in the validation data

−4 −2 0 2 4

ax (m/s2)

−4

−2

0

2

4

a
y

(m
/s

2
)

0

28

56

85

113

142

170

198

227

255

Fig. 2: The friction circle filled with the training data gen-
eration algorithm. The figure shows a fair distribution of the
data over the circle: not even, but diverse enough. The color
represents the density of samples.

set is parametrized by a noise level of α = 1 while it varies
with α ∈ [0; 6] for the testing data set. For the validation
data, we create a sinusoidal shape (using clothoids) alternating
between y = 5 m and −5 m over an x interval of 200 m. The
validation path is made of 995 data points. Its sole usage is
to help define when to stop training, to avoid over-fitting. For
the testing data, we create 15 testing trajectories representing
challenging vehicle maneuvers to be evaluated, resulting in
9,829 data points. The testing trajectories are produced with
variations of measurement noise levels, with noise scaling
factor α varying between 0 and 6 with increments of 0.25:
a total of 245,725 data points.

B. The Observer Architecture

After generating the needed data sets, the architecture of the
learning based observer is to be defined. The learning based
observer should take as input the state measurements xkm, ykm,
ψkm and the inputs to the system V k, δk for k = t − n, n =
0..N , t being the current time, n being a time step, N being a
defined number of previous time steps. The output is the actual
state of the kinematic bicycle model at k = t (the generated
data before noise addition).

We consider two main architectures: A Convolution Neural
Network (CNN) and a Long Short-Term Memory (LSTM).
For each of the networks we consider input window sizes of
N = 20, N = 40, N = 60 and N = 80 time steps, a total of
8 learned observers which will be compared based on metrics
defined later on. Details of the architectures are presented next.

1) CNN Architecture: CNNs are neural networks that in-
volve a series of convolution and pooling layers. They process
data that has a grid-like topology, like the measurements
and inputs for different time steps considered in this paper.
Figure 3 shows the used architecture consisting of a CNN



module followed by fully connected layers. The CNN module
is described by the following:

h0 = X (6a)
h(k) = σ(k)(π(k)(W (k) ∗ h(k−1) + b(k))) k = 1..L (6b)

where X is the input to the CNN module, h(k) is the output
of layer k, h(L) is the output of the CNN module, L is the
number of layers, σ is the used activation function, a sigmoid
function in our case, π is the pooling function and W and
b are the corresponding weights and biases. The used fully
connected layers are described by the following:

h0 = X (7a)
h(k) = σ(k)(W (k)>h(k−1) + b(k)) k = 1..L′ (7b)

where X is the input vector, which is the output of the last
CNN layer in our case, h(k) is the output of layer k, hL

′
is

the output of the network, L′ is the number of layers, σ is
the used activation function, a sigmoid function in our case
and W and b are the corresponding weights and biases. The
used architecture first extracts information from the different
time steps involved so the network entails at first convolutions
and pooling to reduce the length of the input while keeping
the same number of features, then convolving to extract
information from the different features. The network is made
of: two convolution layers with filters of 5x1, followed by a
max pooling layer of 4x1, and then two convolution layers
with a filter of size 1x3; then 2 fully connected layers. Inputs
are processed first separately, then merged.

2) LSTM Architecture: LSTMs are a type of recurrent
neural networks (RNNs). They are suited for time series,
like the measurements and inputs for different time steps
considered in this paper. A representation of a single LSTM
cell is shown in Figure 4 and is described by the following
equations:

it = σ(Wi[ht−1, Xt] + bi) (8a)
ft = σ(Wf [ht−1, Xt] + bf ) (8b)
ot = σ(Wo[ht−1, Xt] + bo) (8c)
C̃t = tanh(Wc[ht−1, Xt] + bc) (8d)
Ct = ft � Ct−1 + it � C̃t (8e)
ht = ot � tanh(Ct) (8f)

where Xt is the input vector, it is the input gate, ft is the
forget gate, ot is the output gate, C is the cell state, ht−1 is
the previous hidden state vector and ht is the output vector;
Wi, Wf Wo, Wc are the weights and bi, bf bo, bc are the
biases. The used architecture (shown in Figure 5) uses four
consecutive LSTM layers involving 8, 16, 32 and 32 LSTM
neurons followed by 2 fully connected (dense) layers. The
fully connected layers follow Equations (7) with X being the
output of the last LSTM layer.

The loss function used is the mean squared error. The Xavier
initialization is used to set the initial weights for the network.
Hyperparameter optimization is done using grid search for

N = 20 for both architectures and then applied to N = 20,
N = 40, N = 60 and N = 80.

Fig. 3: CNN Architecture

Fig. 4: LSTM Cell

Fig. 5: LSTM Architecture

IV. RESULTS AND ANALYSIS

After generating the required data sets and training the
defined networks, the performance of the learned observers
should be compared to the performance of the EKF. The
testing set is made of data never seen by the trained networks
in terms of the generated trajectories and the noise levels. The
procedure will start by comparing the four observers of each
architecture together; then, the best performing CNN observer
and the best performing LSTM observer will be both compared
to the EKF. In what follows the used metric will be detailed,
followed by the comparison of the CNNs, the comparison of
the LSTMs, and the comparison of the observers with the EKF.

A. Metric

To compare the performance of the different observers a
clear metric should be defined. Having a 3-dimensional error
(1 dimension for each state variable x, y and ψ) the error
will be reduced to a scalar. For this purpose, we introduce the
normalized root mean square error (NRMSE). It is normalized
to 1 for the reference, i.e. for the root mean squared error
(RMSE) of the EKF at low noise (α = 1). It allows to describe
the performance of an observer with a single error. The
introduced metric gives similar weight to the three variables.
The normalized error metric is defined as:

NRMSE =
√
wxE2

x + wyE2
y + wψE2

ψ (9)



E2
x, E2

y , E2
ψ being the mean square error for each of the three

variables and wx, wy and wψ being the weights given to each
variable based on the reference EKF low noise case, such that
wx = 1

3E2
ref,x

, wy = 1
3E2

ref,y

, wψ = 1
3E2

ref,ψ

, with: Eref,x =
0.24 m, Eref,y = 0.23 m and Eref,ψ = 4.1 mrad. Having
the metric to be used, the comparison between the different
observers is presented next.

B. CNN observers comparison

The defined metric is applied to the predictions of the four
CNN observers on the previously defined testing data set. The
plot in Figure 6a shows the evolution of the four observers
with respect to noise increase. It can be seen that for all
observers, the performance deteriorates with the increase of
the noise level. The N = 20 and N = 80 observers have
close performance. The N = 60 observer shows lower errors
for all noise levels and will be used for the comparison with
the EKF.

C. LSTM observers comparison

The NRMSE metric is as well applied to the predictions
of the four LSTM observers on the previously defined testing
data set. The plot in Figure 6b shows the evolution of the
four observers with respect to noise increase. LSTM observers
show more robustness to noise than CNN observers but have
higher errors. The N = 80 and N = 20 observers show a close
performance especially for higher noise levels. The N = 60
observer shows the highest errors. The N = 80 observer has
the lowest errors and will be used for the comparison with the
EKF.

D. Comparison with the EKF

Having compared the different models with different input
window shapes, the best performing observers can be com-
pared with the EKF. Tables III and IV present the RMSE
for the three predicted variables for each of the observers
for α = 1 and α = 6 respectively. The tables show that
the EKF clearly outperforms the learned observers for α = 1
while it is outperformed by both learned observers for α = 6.
It is remarked as well that for the x and y predictions the
CNN clearly outperforms the LSTM while the performance
is close for the ψ predictions. The NRMSE metric defined
above is used to compare the three observers. The plot in
Figure 6c shows the performance of the three observers in
terms of the noise scaling factor α. It can be seen that for
lower noise the EKF performs better than the two learned
observers. Both learned observers show their best performance
in low noise domains, which is logical as they have been
trained on low noise data. Though, their performance in these
domains cannot beat that of the EKF. But, the performance
of the EKF deteriorates gradually (almost linearly) with the
increase of the noise scaling factor, showing low robustness
to noise increase. On the other hand, learned observers show
higher robustness to noise increase. The CNN based observer
shows lower NRMSE scores than the LSTM one for all
levels of noise. It is estimated that the CNN outperforms the

EKF at α ' 2 and that the LSTM outperforms the EKF at
α ' 3. A sample of the performance difference between (x, y)
estimations of the CNN and the EKF for α = 3 is shown
in Figure 7: the CNN estimations are more accurate than
the EKF estimations. The presented results and our analysis
confirm a rather logical behavior: for low measurement noise,
meaning the measurements are reliable, model-based observers
are able to overcome the noise more efficiently than our
learned-based observers. However, the learned observers deal
better with higher levels of measurement noise, meaning when
measurements are less reliable.

In brief, the proposed CNN architecture is able to outper-
form the LSTM architecture for all the considered levels of
measurement noise, and to outperform the EKF at a specified
measurement noise domain.

Variable EKF CNN LSTM
x (m) 0.24 0.28 0.65
y (m) 0.23 0.23 0.90

ψ (mrad) 4.1 11 13

TABLE III: RMSE comparison of the observers on low noise
data (α = 1). The EKF shows the lowest errors. The CNN
performs better than the LSTM.

Variable EKF CNN LSTM
x (m) 1.56 0.91 0.98
y (m) 1.88 0.89 1.10

ψ (mrad) 26 20 19

TABLE IV: RMSE comparison of the observers on high noise
data (α = 6). The EKF shows the highest errors. The CNN
performs better than the LSTM except for ψ prediction where
the performance is close.

V. CONCLUSION

In this paper, we presented a method to build and train
a learning-based observer. A kinematic bicycle model was
used to generate its training, validation and testing datasets.
We focused on generating an unbiased dataset in terms of
accelerations to be representative of the full behavior of the
model, while keeping the model valid. Two networks were
considered: CNN and LSTM, with different considerations
to the input window shape. The best performing observers
were then compared to an EKF observer based also on a
kinematic bicycle model for the prediction step. The results
showed that our approach was able to outperform the EKF
when the measurement noise increases which confirms our
point: learning-based observers can outperform classical ones
even for simple models. The CNN architecture outperformed
the LSTM one. The CNN architecture can be adapted to many
systems even with more inputs than in our study.

A point for future analysis is the inability of the learned
observers to take benefit of low measurement noises. It may be
due to a lack of diversity in the training, regarding noise levels:
the network was trained with a constant noise level. This
shows the friction circle probably does not describe enough
the needed diversity for training.



0 1 2 3 4 5 6
α

0

1

2

3

4

5

6

N
R

M
S

E

N = 20

N = 40

N = 60

N = 80

(a) NRMSE plot for the four CNN based observers.
The N = 60 observer has the lowest errors.

0 1 2 3 4 5 6
α

0

1

2

3

4

5

6

N
R

M
S

E

N = 20

N = 40

N = 60

N = 80

(b) NRMSE plot for the four LSTM based ob-
servers. The N = 80 observer has the lowest
errors.

0 1 2 3 4 5 6
α

0

1

2

3

4

5

6

N
R

M
S

E

LSTM, N = 80

CNN, N = 60

EKF

(c) NRMSE comparison between the N = 80
LSTM, N = 60 CNN, and EKF observers. The
CNN outperforms the LSTM and surpasses the
EKF with noise increase.

Fig. 6: NRMSE comparison plots between different observers.

10 20 30 40 50 60
x (m)

0

10

20

30

40

50

y
(m

)

Ground truth

EKF

CNN

Fig. 7: Comparison between the (x, y) estimations of the CNN
observer and the EKF for a sample testing trajectory with
α = 3. The estimates of the CNN observer are overall closer
to the ground truth than the estimates of the EKF.

Future work will focus on applying learning-based observers
to real vehicles and considering more complex vehicle models.
These models are challenging for classical observers, because
the more details it catches, the more parameters it gets, leading
to increased model errors. Also, mathematical derivation of
observers becomes tricky, due to many non-linearities, while
our CNN structure can scale easily. Creating diverse enough
training data becomes more challenging.

REFERENCES

[1] H. Cherouat, M. Braci, and S. Diop, “Vehicle velocity, side slip angles
and yaw rate estimation,” in Proceedings of the IEEE International
Symposium on Industrial Electronics, 2005. ISIE 2005., (Dubrovnik,
Croatia), pp. 349–354, IEEE, 2005.

[2] U. Kiencke and A. Daiß, “Observation of lateral vehicle dynamics,”
Control Engineering Practice, vol. 5, pp. 1145–1150, Aug. 1997.

[3] “Estimation of sideslip angle and cornering stiffness of an articulated
vehicle using a constrained lateral dynamics model,” Mechatronics,
vol. 85, p. 102810, Aug. 2022.

[4] S.-H. Lee, Y. Son, C. M. Kang, and C. C. Chung, “Slip Angle Esti-
mation: Development and Experimental Evaluation,” IFAC Proceedings
Volumes, vol. 46, pp. 286–291, June 2013.

[5] L.-H. Zhao, Z.-Y. Liu, and H. Chen, “Design of a Nonlinear Observer
for Vehicle Velocity Estimation and Experiments,” IEEE Transactions
on Control Systems Technology, vol. 19, pp. 664–672, May 2011.

[6] L. Imsland, T. A. Johansen, T. I. Fossen, H. Fjær Grip, J. C. Kalkkuhl,
and A. Suissa, “Vehicle velocity estimation using nonlinear observers,”
Automatica, vol. 42, pp. 2091–2103, Dec. 2006.

[7] M.-s. Kim, B.-j. Kim, C.-i. Kim, M.-h. So, G.-s. Lee, and J.-h. Lim,
“Vehicle Dynamics and Road Slope Estimation based on Cascade Ex-
tended Kalman Filter,” in 2018 International Conference on Information
and Communication Technology Robotics (ICT-ROBOT), pp. 1–4, Sept.
2018.

[8] M. A. Wilkin, W. J. Manning, D. A. Crolla, and M. C. Levesley, “Use
of an extended Kalman filter as a robust tyre force estimator,” Vehicle
System Dynamics, vol. 44, pp. 50–59, Jan. 2006.

[9] W. Sun, Z. Wang, J. Wang, X. Wang, and L. Liu, “Research on a Real-
Time Estimation Method of Vehicle Sideslip Angle Based on EKF,”
Sensors, vol. 22, p. 3386, Jan. 2022.

[10] G. Reina and A. Messina, “Vehicle dynamics estimation via augmented
Extended Kalman Filtering,” Measurement, vol. 133, pp. 383–395, Feb.
2019.

[11] J. Liu and G. Guo, “Vehicle Localization During GPS Outages With
Extended Kalman Filter and Deep Learning,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1–10, 2021.

[12] D. Chindamo and M. Gadola, “Estimation of Vehicle Side-Slip Angle
Using an Artificial Neural Network,” MATEC Web of Conferences,
vol. 166, p. 02001, 2018.

[13] P. Polack, F. Altché, B. D’Andrea-Novel, and A. de La Fortelle, “Guar-
anteeing Consistency in a Motion Planning and Control Architecture
Using a Kinematic Bicycle Model,” in 2018 Annual American Control
Conference (ACC), pp. 3981–3987, June 2018. ISSN: 2378-5861.

[14] R. Rajamani, “Lateral Vehicle Dynamics,” in Vehicle Dynamics and
Control (R. Rajamani, ed.), Mechanical Engineering Series, pp. 15–46,
Boston, MA: Springer US, 2012.

[15] G. H. Elkaim, M. Lizarraga, and L. Pederseny, “Comparison of low-
cost GPS/INS sensors for Autonomous Vehicle applications,” in 2008
IEEE/ION Position, Location and Navigation Symposium, pp. 1133–
1144, May 2008. ISSN: 2153-3598.

[16] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?,” in 2017 IEEE Intelligent Vehicles
Symposium (IV), pp. 812–818, June 2017.

[17] R. C. Coulter, “Implementation of the Pure Pursuit Path Tracking
Algorithm,” undefined, 1992.


	I Introduction
	II The kinematic bicycle model
	III The Learning Based Observer
	III-A Data Generation Algorithms
	III-A1 Training Data Generation
	III-A2 Validation and Testing Data Generation

	III-B The Observer Architecture
	III-B1 CNN Architecture
	III-B2 LSTM Architecture


	IV Results and analysis
	IV-A Metric
	IV-B CNN observers comparison
	IV-C LSTM observers comparison
	IV-D Comparison with the EKF

	V Conclusion
	References

