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Abstract— In this paper, we present a novel formulation to
model the effects of a locked differential on the lateral dynamics
of an autonomous open-wheel racecar. The model is used in a
Model Predictive Controller in which we included a micro-steps
discretization approach to accurately linearize the dynamics
and produce a prediction suitable for real-time implementation.
The stability analysis of the model is presented, as well as a brief
description of the overall planning and control scheme which
includes an offline trajectory generation pipeline, an online local
speed profile planner, and a low-level longitudinal controller.
An improvement of the lateral path tracking is demonstrated
in preliminary experimental results that have been produced on
a Dallara AV-21 during the first Indy Autonomous Challenge
event on the Monza F1 racetrack. Final adjustments and tuning
have been performed in a high-fidelity simulator demonstrating
the effectiveness of the solution when performing close to the
tire limits.
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I. INTRODUCTION

The vehicle models used within model-based motion plan-
ning and control algorithms for autonomous driving depend
on a trade-off between simplicity and accuracy, which is
closely tied to the specific application. The most common
models in the literature are the point-mass model, kinematic
single-track model, dynamic single-track model, double-
track model, and multi-body model [1]. In urban scenarios,
where motion can be identified through purely geometric
approaches, due to the minimal slip angles, it is generally
sufficient to use a kinematic single-track model [2][3].

In more complex maneuvers that produce not negligi-
ble lateral accelerations, the dynamic single-track model is
commonly used. Dynamic effects, such as tire forces, and
additional states such as lateral velocity, are considered.
In [4][5], the model is used in a feedback-feedforward
steering control scheme guaranteeing accuracy and stability.
In more recent works, the Model Predictive Control (MPC)
using the single-track model has become widely used [6].
Several researchers demonstrated the effectiveness of this
approach to control sport road cars close to the limit of
handling exploiting more accurate tire models to represent
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Fig. 1. Dallara AV-21 - TII UNIMORE Racing during the Indy Au-
tonomous Challenge at MIMO 2023 in the Monza F1 circuit. ©Autodromo
Nazionale Monza

the lateral forces [7][8][9]. We implemented a similar so-
lution competing as the TII Unimore Racing team to the
Indy Autonomous Challenge (IAC1), an autonomous racing
competition among universities from all around the world.
Relying on the modeling of a single-track model exploited
in an MPC, we achieved a top speed of 270 km/h and a
maximum lateral acceleration of up to 25 m/s2 in the first
events on oval tracks [10]. To get a better overview of the
methods used in the autonomous racing literature we refer
to [11].

Despite the overall effectiveness of the bicycle model,
its classical formulation has some limitations for an open-
wheel racecar, e.g. assuming an open-differential. This leads
to neglecting the contribution of longitudinal forces on the
yaw moment. Indeed, on a road course like the Monza
F1 racetrack, where the latest event of the IAC has been
held, this model presents limitations because it is not able
to distinguish between tight curves and wide-radius curves.
Consequently, it cannot reproduce any dynamic behavior,
such as nose-in/nose-out [12], caused by a locked differen-
tial. Potentially, the parameters of the constitutive equations
can be tuned to enhance optimal accuracy in only one of the
two scenarios mentioned above. However, this can lead to
highly unbalanced axle characteristics (high rear cornering
stiffness), resulting in numerical instability of the model at
low speed.

In response to these challenges, the main contributions of
this paper are as follows:

1https://www.indyautonomouschallenge.com/
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• A three-wheel model (tricycle model) has been de-
veloped to account for the dependence on the path
curvature. By estimating the longitudinal forces at the
rear axle and, consequently, the contribution on the
yaw moment, we can anticipate a possible nose-out
resulting in an improvement of the vehicle modeling
and therefore the trajectory tracking. To the best of our
knowledge, the model proposed is new in the literature.

• Due to the characteristics of the system at low speed,
a kinematic model has been used for low-speed ma-
neuvers. To keep this speed threshold low, a stability
analysis of the dynamic model has been performed
finding the suitable discretization step time needed to
keep the model stable, and implementing a micro-step
discretization approach in the MPC to make it suitable
for real-time execution.

In Section II we present the tricycle model formulation
and its stability analysis. The MPC formulation, including
the micro-step model discretization, is described in Section
III. Even though they do not present any novel contribution,
the high-level planning scheme and the low-level longitudinal
controller used in the whole planning and control scheme are
briefly reported in Section IV and Section V, respectively.
The model validation, preliminary experimental results, and
final results of the proposed solution are presented in Section
VI. Conclusions and future works are discussed in Section
VII.

II. VEHICLE MODELING

The Dallara AV-21, shown in Figure 1, is based on the
chassis and suspension of the Indy Lights IL-15. The internal
combustion engine is equipped with a turbocharger that
increases the engine torque to over 500 Nm. The torque
is transmitted to the rear wheels through a rigid axle (no
differential is installed). For vehicle handling, this represents
a significant limitation, especially on road course tracks
where both tight and wide-radius curves can be found. This,
combined with a stable setup choice, leads the car to exhibit
a nose-out behavior on turn entry, which can become a nose-
in behavior on turn exit [12].

A. Accurate Multi-Body Model

In a context where on-track test sessions are often limited
and expensive, multi-body models can offer detailed and in-
depth simulations, significantly expediting the development
process and allowing engineers to virtually test various sce-
narios and control strategies before transitioning to expensive
and risky physical tests.

An accurate vehicle model is of paramount importance
in this application. It provides an efficient solution to opti-
mize vehicle performance and to test planning and control
algorithms using a reliable ground truth. Therefore, a multi-
body model of the Dallara AV-21 has been developed on the
modeling tool Dymola [13] using the VeSyMA - Motorsports
libraries [14]. The model includes all the longitudinal, lateral,
and vertical dynamics of the real system. Compared to the
previous version mentioned in [15], particular attention has

been focused on modeling the suspension dampers, the tire’s
thermal behavior, and the powertrain inertial characteristic.
Accurate sub-models for the locked differential, the braking
system, and the centrifugal clutch have been included as well.

Fig. 2. A comparison between experimental data and the multibody model
is presented. The slip angle is plotted on the x-axis, and the estimated wheel
force is shown on the y-axis. It can be observed that the inner wheels (right
side), where there is less vertical load acting, are working in the non-linear
region of the tire.

Fig. 3. Comparison between the experimental measurement of the yaw
moment due to the locked differential (through slip ratio calculations), used
as a reference (in blue), and the estimation from the multi-body model (in
orange). The noisy reference is related to the accuracy of the estimation and
the highly nonlinear nature of the measurement. The higher the curvature,
the greater the resisting yaw moment to turn in. Here, the central section
of the Monza track is shown, including Variante 2 and the Lesmo turns.

As can be seen in Figures 2 and 3, the overall accuracy
is good enough for the objective, thus the model is used
as ground truth for calibrating the simplified model and for
testing the control algorithms.

B. Locked Differential Tricycle Model

For what concerns the front axle, the tricycle formulation
is derived from the classic single-track model expressed
in curvilinear coordinates, while the rear axle is derived
from the double-track model. The final structure is shown



in Figure 4. The new state-space model is described by the
state vector x̃ = [s;n;µ; vx; vy; r; δ;D] and the input vector
ũ = [∆δ; ∆D] , where s, n, and µ represent the progress
along the path, the orthogonal deviation from the path, and
the local heading. The motion equations are expressed as the
derivative of the longitudinal vx and the lateral vy velocities
and the yaw rate r. δ represents the steering angle and D is
the desired longitudinal acceleration. ∆δ and ∆D represent
the derivatives of the inputs. The whole set of equations can
be found in [10].

(vx , vy , r)

vx,rl

vx,rr

δ

Fy,r

Fx,rr

Fx,rl

Fy,f

Fx,f

n

μ
s

Fig. 4. Scheme of the three-wheels model, in curvilinear coordinates,
included in the MPC.

In the motion equations, we included the longitudinal
forces required for traction and braking F cmdxf and F cmdxr ,
and the contribution of the longitudinal forces on the total
yaw moment, Mdiff. The set of equations is presented here:

v̇x =
1

m

(
F cmdxr − Fd − Fyf sin(δ) + F cmdxf cos(δ) +mvyr

)
,

(1a)

v̇y =
1

m

(
Fyr + Fyf cos(δ) + F cmdxf sin(δ)−mvxr

)
, (1b)

ṙ =
1

Iz

(
Mdiff + lf

(
Fyf cos(δ) + F cmdxf sin(δ)

)
− lrFyr

)
, (1c)

where m and Iz are the mass and the inertia of the vehicle,
and lf and lr are the front and rear wheelbase. Fyf and
Fyr are the lateral forces generated in the interface between
the road and the tires, and Fd is the aerodynamic drag. The
rolling resistance is included in the longitudinal equilibrium
as well. From now on, the index ith is used to identify the
axle (front, rear), while the index jth identifies the vehicle
side (left, right).

The yaw moment is derived from the rotational equilib-
rium of the rear axle in the Z-axis direction:

Mdiff =
1

2
(Fx,rr − Fx,rl) · tr. (2)

where tr represents the rear axle track. The longitudinal
forces include both the contribution of the locked differential
and the traction dynamics: Fx,rj = F ′

x,rj + F cmdx,rj . The
longitudinal forces experienced during vehicle coasting are
estimated using the non-linear Pacejka tire model:

F ′
x,rj =Dx,rj sin

(
Cx,r tan

−1(Bx,r kx,rj)
)

(3)

Dx,rj = µrFz,rj , Br and Cr are the macro-parameters of
the magic formula [18] and Fz,rj represents the vertical load
on the jth wheel, as will be shown in 6. The slip ratio is
expressed as

kx,rj =
vx − vx,rj

vx
(4)

and depends on the ideal speed of the rear wheels, taking
into account the vehicle’s geometry and the track’s layout:

vx,rj = r ·
(
R± tr

2

)
. (5)

In the equation 5, R is the turning radius. To account for
the traction forces, we have included a straightforward for-
mulation based on the commanded acceleration. We defined
F cmdx,r = f(D), which is distributed between the rear wheels
through the lateral load transfer. In this way, we can check
for a possible nose-in during the phase of turn-exit.

Considering the tricycle structure, it proved necessary to
include a model for estimating the lateral load transfer and,
consequently, to distribute the vertical load on each wheel.
Hence, the standard model based on the roll axis [19] has
been included. This has been employed exclusively for the
rear axle, as the axle effective characteristic is used for the
front one. The vertical load on each wheel is computed:

Fz,rj =
1

2
Fz,r ±∆F latz,r (6)

where the global load on the rear axle Fz,r is the sum of
the static load F 0

z,r, the aerodynamic effect F aeroz,r [10] and
the longitudinal load transfer ∆F longz,r contributions [19]. The
lateral load transfer is estimated with the relation:

∆F latz,r = Fy,r
hr
tr

+
My

tr

Kr

Ktot
, (7)

where hr is the height of the roll axis at the rear axle, Kr

and Ktot are the rear axle roll stiffness and the total roll
stiffness. My = m ·ay ·q and Fy,r represent the moment and
force generated by the inertia on the roll axis. To estimate
the latter, a rotational equilibrium of the whole vehicle on
the Z-axis is performed, from which it follows that:

Fy,r = (m · ay · lf +M0
diff) ·

1

l
(8)

Here, l and q represent, respectively, the wheelbase and the
Z-distance between the center of gravity and the roll axis.
M0

diff represents the yawing moment calculated by the model
in the previous integration step and ay is calculated starting
from the motion field.

The employment of this simplified roll-axis model for the
load transfer estimation is an acceptable approximation since
the roll motion of an open-wheel vehicle is negligible. This
module allows the model to improve the accuracy in the
calculation of the longitudinal forces, and consequently the
prediction of the vehicle’s pose.

The longitudinal forces are also used to account for the
combined slip on the tires. The formulation is based on
a friction ellipse, through which a weight factor Gy,ri is
computed as in [10]. Likewise, the weight factor is defined
for the front axle.



C. Model Stability Analysis

Representing a racecar with a mathematical model always
requires special care. This is because the parameters of
the model, especially those concerning the tires, can make
the differential equation system very stiff and subject it to
numerical instability if the integration method (or the step
size) is not carefully chosen. The original setup proposed
for oval tracks uses the numerical method Runge-Kutta 4
(RK4) and a time-step h = 0.04s [10], which guarantees the
stability only for longitudinal speed greater than 28 m/s on
the single-track, and 32m/s on the three-wheels model. This
is not suitable for a road course track like Monza, where the
speed can reach a minimum of 12 m/s (i.e. Variante 1). To
guarantee the numerical stability of the dynamic model at
low speeds, it has been chosen an integration step size small
enough to include the poles of the linearized system within
the stability region defined by the numerical method [16].

The overall results of the stability analysis for the tricycle
model are shown in Figure 5. An optimal value of time-
step h = 0.008s was chosen to cover all significant speed
ranges expected on the track, i.e. vminx = 8m/s. Below this
threshold, the kinematic model written in the dynamic model
states is used to avoid numeric oscillations on the solution.
The two models are blended similarly to how it has been
presented in [17].

In the first steps of the development and the experimental
testing, the chosen integration method has been the explicit
Euler, which provides better computation times compared to
higher-order methods (i.e. RK4). As described in Section VI,
this choice has been changed in the final tests.

Fig. 5. Poles for the three-wheels model at vx = 8m/s. The proposed step
size for the integration allows the system poles to lay within the stability
region of the explicit Euler method.

III. MPC PROBLEM FORMULATION

The model in curvilinear coordinates described in Section
II-B is used in an extension of the MPC presented in [10].
The main differences from the previous work are:

• A velocity tracking weight qv instead of a slack variable
to follow more strictly the velocity reference.

• A weight on the yaw rate qr which aims to mitigate
potential oscillations caused by bumpy portions of the
track or disturbances in the steering actuation.

• Additional independent variables, and an improvement
of the model discretization.

• The inputs are the derivative of the steering angle and
the requested longitudinal acceleration instead of using
the throttle and brake commands.

The cost function is formulated as:

JMPC(xt, ut) = qnn
2
t + qµµ

2
t + qvv

2
t + qr + uTRu+B(xt) (9)

where qn and qµ are path following weights. The regular-
ization term B(xk) = qBα

2
r penalizes the rear slip angle,

while uTRu is a regularizer on the input rates where R is a
diagonal weight matrix.

The MPC problem is formulated as

min
X,U

T∑
t=0

JMPC(xt, ut) (10a)

s.t. x0 = x̂ , (10b)

xt+1 = fdt (xt, ut) , (10c)
xt ∈ Xtrack xt ∈ Xellipse , (10d)
at ∈ A, ut ∈ U , t = 0, . . . , T. (10e)

where X = [x0, ..., xT], and U = [u0, ..., uT]. Xellipse

represents a friction ellipse constraints, and Xtrack constrains
the lateral deviation n ensuring that the vehicle stays on the
track. x̂ is the current curvilinear state and T is the prediction
horizon. A and U are box constraints for the physical inputs
a = [δ;D] and their rate of change u.

A. Locked Differential Model Progression

In the definition of the optimization problem, the critical
issue is advancing the prediction without the ability to track
the evolution of Mdiff with respect to the previous iteration.
which is essential for estimating the correct value of the
load transfer and the yaw moment itself. One solution could
be the introduction of an additional variable to the state
vector but this would increase the dimension of the opti-
mization problem raising the computational time. Therefore,
the M0

diff, which is the initial yaw moment for each step
time t in the control horizon, is calculated (with the same
formulation as in Section II) before the execution of the
control optimization, using the states from the latest MPC
prediction horizon, and included as an independent variable.
This is an acceptable simplification considering that having
a stable model, a well-posed optimization problem, and a
high-frequency running control scheme, the prediction of the
MPC should not produce any abrupt change compared to the
previous one.

B. Micro-steps Model Discretization

The MPC is executed in real-time at a frequency of
100Hz and a time horizon of 2.6s with a sampling time of
∆t = 40ms. In the previous version [10], the model was
discretized in time fdt (xt, ut) with the same sampling time
of the optimization:

xk+1 = Φk(xk, uk,∆t), (11)

where Φk is the chosen integrator (Euler or RK4). However,
this does not adhere to the outcome of the stability analysis



presented in Section II-C. Therefore, a micro-step discretiza-
tion approach has been applied

Φk(xk, uk,∆t) = Φk(. . .Φk︸ ︷︷ ︸
∆t/h times

(xk, uk, h), uk, h)) (12)

where h indicates a chosen sampling time divisor of ∆t, in
our case h = 8ms. This can also be seen as performing Φk
with ∆t/h step sizes of h and picking the resulting xk+i at
each ∆t.

IV. PLANNING
A. Global Trajectory

To generate an optimal race line we used the global
planner presented in [10]. Despite its effectiveness in pro-
ducing an optimal path, the generation of different speed
profiles is not trivial and rapid. For this reason, a tool has
been designed to compute and optimize the velocity profile
for the generated path. Its primary objective is to find the
most efficient velocity profile that minimizes lap time while
respecting the specified constraints.

The first constraint pertains to the lateral acceleration,

v2x · ρ < amaxy (vx), (13)

where vx represents the vehicle speed along the path, ρ is
the curvature at a particular point, and amaxy is a function
that defines the maximum allowable lateral acceleration for a
given speed. The values for the maximum lateral acceleration
are obtained from a ramp-steer maneuver simulated in the
multi-body model presented in II-A.

The second and third constraints focus on the negative and
positive longitudinal acceleration.

amaxx+ (vx) >
∆v2x
2∆s

> amaxx− (vx) (14)

The constraints are determined by the rate of change of the
velocity ∆v2x divided by twice the rate of change of distance
∆s. The equation 14 states that this value must be greater
than amaxx− and lower than amaxx+ , which are respectively
the maximum permissible deceleration and acceleration for
a given speed. The evaluation of the negative acceleration
limit is performed by exploiting the braking diagram of the
vehicle, accounting for brake balance set-up, longitudinal
load transfer, and aerodynamic effects. While the longitu-
dinal limit is found by considering both the limitation in the
powertrain and the tire grip.

B. Longitudinal Planner
The Longitudinal Planner dynamically computes speed,

acceleration, and jerk profiles based on the real-time status
of the vehicle. This module is based on a Linear Model Pre-
dictive Control (LMPC) framework, following the standard
formulation:

min
X,U

J = ∥xT − xr,T∥2P +

T−1∑
t=0

(
∥xt − xr,t∥2Q + ∥ut∥2R

)
(15a)

s.t. xt+1 = Axt +But (15b)
x0 = x̂ (15c)
ut ∈ Ut, t = 0, 1, . . . , T − 1 (15d)
xt ∈ Xt, t = 0, 1, . . . , T (15e)

where X = [x0, . . . , xT], U = [u0, . . . , uT-1] and T is the
prediction horizon length; P and Q are the terminal and
stage cost weighting matrices on the deviation of the state x
from the reference xr; R is the control input cost weighting
matrix; x̂ is the current state; Xt and Ut are constraints on
the state and input at time step t. The prediction model is
a double integrator including the longitudinal speed vx and
acceleration ax in the state and the jerk jx as control input:

x =
[
vx ax

]⊤
, u = jx (16)

A =

[
1 Ts
0 1

]
, B =

[
T 2
s /2
Ts

]
(17)

where Ts denotes the sample time. Therefore, the goal is to
plan feasible speed and acceleration profiles while minimiz-
ing the offline speed profile tracking error. Here, most of the
design effort lies on the state and input constraints definition,
i.e. Xt and Ut respectively. Leveraging the preview of path
curvature ρ̂t and speed v̂x,t over the upcoming prediction
horizon, an estimate for lateral acceleration can be derived
as ây,t = ρ̂tv̂

2
x,t. This estimate is then used to compute

the bounds over the prediction horizon on the longitudinal
acceleration, according to the friction ellipse:

a⋆x,t = ā⋆x(v̂x,t)

√
1−

(
ây,t

āmaxy (v̂x,t)

)2

, ⋆ ∈ {max,min}

(18)

where āmaxx (vx), āminx (vx) and āmaxy (vx) are the bounds
on the longitudinal and lateral acceleration considering the
vertical load only. Eventually, given a desired maximum
value of the lateral acceleration amaxy < āmaxy (vx), possibly
time-varying amaxy,t , we compute a bound on the longitudinal
speed vmaxx,t , depending on the path curvature ρ̂t as well.
The advantage of employing an online longitudinal planner
lies in its capacity to guarantee that, whenever the vehicle
significantly deviates from the predefined offline speed pro-
file, the controller is provided with speed and acceleration
profiles that are feasible concerning the vehicle’s dynamics,
thereby enhancing safety. Furthermore, this approach opens
up the opportunity for online adjustment of the vehicle’s
longitudinal performance.

V. LOW-LEVEL LONGITUDINAL CONTROL

The MPC, presented in Section III, produces longitudinal
velocity vmpcx and acceleration ampcx , which are then con-
verted into throttle and brake signals using a combination of
two PI controllers and feed-forward controllers.

To calculate the throttle feed-forward action, the current
engine speed, rpm, and the torque target, Tref, are used to
query a heuristically constructed look-up table. The torque
is determined by the target longitudinal force F refx , the
radius of the rear wheel rw, the gear ratio τi (with i being
the current gear), and the final drive τd. The transmission
efficiency ηt is included as well:

Tref =
F refx · rw · τi · τd

ηt
(19)

The force F refx indirectly incorporates the target velocity
vmpcx through its dependence on Fd and Froll. It also



directly considers the acceleration target ampcx according to
the relationship:

F refx = m · ampcx − Fd − Froll +
J0 · ampcx

r2w
, (20)

where J0 represents the rotational inertia of the mechanics
and Froll is defined as in [10]. To ensure that the target does
not exceed the tire’s longitudinal limit, the actual target used
for throttle calculation is the minimum value between F refx

and F limitx,r . The latter is determined using Pacejka’s peak
factor Dx,r, already mentioned in Section II-B. However,
when the force in 20 is negative, it is converted into a
brake signal using the equation 21. Since braking dynamics
are significantly simpler than powertrain dynamics, a linear
equation can be employed with negligible error:

B =
F tarx

Cb,f + Cb,f
·Bmax (21)

Cb,f and Cb,r are the brake coefficients determined by the
geometry and the characteristic of the braking system, e.g.
the disk dimension, and parameterized on the maximum
pressure that can be applied in the system, Bmax. Likewise
in the throttle calculation, the actual longitudinal force used
in 21 is the minimum between F refx and a new threshold
F limitx,b . Unlike the traction force, braking dynamics involve
both the front and rear axles, thus requiring the assessment
of the maximum force on both axles. Indeed, the braking
limit is proportional to the sum of both Dx,f and Dx,r.

Any errors in the feed-forward actions due to discrepancies
in force estimation and other modeling errors were compen-
sated for by the PI controllers, whose actions were added to
the feed-forward ones.

VI. RESULTS
A. Model Validation

A comparison between the single-track model and the
tricycle model in open-loop is presented in Figure 6. The

Fig. 6. Monza circuit trajectory: the first one displays Variant 1, the tightest
curve on the track, while the second one showcases Parabolica, one of the
curves with the widest radius.

multi-body model serves as a reference. A time horizon
of 2.6s (as the MPC horizon) is set to highlight position
and yaw error over the entire time horizon. It is evident
that the prediction of the single-track model in tight-radius
curves estimates a larger effective curvature radius, whereas
in wide-radius curves the prediction would be the opposite.
Concerning the single-track, this result is achieved through a
proper tuning of the parameters of the constitutive equations,
which represents a trade-off among all the curves of the
Monza racetrack. As preliminary introduced in Section I,
improving the model to perfectly fit tight-radius curves
will decrease performance in wide-radius turns, and vice
versa. The tricycle model enhanced by the contribution of
the locked differential, using a single axle characteristic
calibration, guarantees a better estimation over the entire
track.

The results of the open loop scenarios are summarized in
Table I, where ey and eψ indicate the lateral (m) and heading
(°) error respectively. The Lesmo turns are not included in
the table as they did not produce significant data.

TABLE I
LATERAL ERROR ey AND HEADING ERROR eψ

Variante 1 Variante 2 Ascari Parabolica
st tric st tric st tric st tric

ey 1.22 0.23 1.68 0.80 2.26 0.17 1.97 0.38
eψ 4.14 0.86 4.98 2.19 3.98 0.18 1.87 0.41

B. Preliminary Experimental Results

The on-track experimental results of the controller using
the tricycle model, compared to the single-track model, are
presented. Similarly to [15], an Extended Kalman Filter
(EKF) is used to filter all the signals of the vehicle and
produce the states needed by the controller.

The single-track model is defined by the kinematic model
in the narrow-radius curves and by the dynamic model in the

Fig. 7. Comparison of the two models in the F1 circuit of
Monza, Variante 1. See https://youtu.be/jNc9D9T8inw?si=
X4n-57CwFl1DXTEE for the on-board video of the best lap.

https://youtu.be/jNc9D9T8inw?si=X4n-57CwFl1DXTEE
https://youtu.be/jNc9D9T8inw?si=X4n-57CwFl1DXTEE


wide-radius curves as satisfactory and safe tuning could not
be found for all the turns of the circuit under consideration.

Fig. 8. Comparison of the two models in the F1 circuit of Monza,
Parabolica turn.

Figure 7 shows the lateral tracking error and longitudinal
velocity with the two models. As expected, compared to the
kinematic single-track model, the error using the tricycle
model is significantly lower. Similar results are presented
in Figure 8, where the Parabolica turn is shown. With the
dynamic single-track model, the error increased beyond 1
m, forcing the car to slow down within safe limits. On the
contrary, the tricycle model guaranteed a more consistent and
stable behavior. As can be noticed in Figure 7 and Figure 8,
both the models start the turn maneuvers with a not negligible
lateral error. This has been caused mainly by the deterioration
of the steering actuator performance at angles close to zero
and the setup alignment of the front tires. Another limitation
has been the usage of the Euler integrator. The decision was
initially taken considering mainly the computational burden.
However, this caused an inaccurate discretization when the
tire utilization moved towards the non-linear region.

Fig. 9. Comparison of the two models in a simulation on the 1st sector of
Monza F1 virtual circuit, driven by the Model Predictive Control (MPC)

C. Final Results

Despite the interesting insights of Section VI-B, due to
the described limitations and the different levels of accuracy
in their tuning, we do not consider those results satisfactory
enough for a correct comparison of the two models at their
best. For this reason, and to demonstrate the performance of
the proposed solution close to the very limit of the tire, we
present the results in the Dymola multi-body model simula-
tor. These have been produced using the RK4 integrator and
after a further improvement of the models’ fitting and minor
changes on the cost tuning.

In Figures 9 and 10, a comparison between the MPC
using the two different models is shown. Optimal tuning of
effective axle characteristics has been defined for the single-
track model to allow an acceptable error throughout the entire
track. Furthermore, it should be noticed that differently from
the results of the open-loop validation presented in Section
VI-A, due to the closed-loop feedback control the mismatch
between the two models is reduced. The different behavior
of the single-track model is still evident between slow and
fast turns. On the contrary, the tricycle model is capable of
making sufficiently accurate predictions over the entire lap
and ensuring good consistency in the controller behavior.

In Figure 11, it is visible how the controller is able to ex-
ploit the non-linear region of the tire usage, demonstrating its
effectiveness close to the vehicle handling limit. A colorbar
has been included on the rear tires to highlight the effect
of the longitudinal forces on the lateral characteristic. Here,
positive combined slip values are associated with traction
forces, whereas negative values correspond to braking forces.

VII. CONCLUSIONS

A novel simplified vehicle model, defined as the tricycle
or three-wheel model, and its integration into an MPC have
been presented. Supported by an offline trajectory generation
tool, a longitudinal planer, and a low-level longitudinal
controller, the MPC with the proposed model demonstrated a
reduction of the lateral error and a more consistent behavior
compared to the classical single-track model in experimental

Fig. 10. Comparison of the two models in a simulation on the 2nd sector
of Monza F1 virtual circuit, driven by the Model Predictive Control (MPC)



Fig. 11. The characteristic curves of the tires exported from the telemetry
of the multi-body model are displayed. It is interesting to note that the
controller, with all its modules, can manage the exit phase of the curves at
the traction limit.

tests on the Monza F1 racetrack. Further improvements in the
model integration showed the capability of the controller to
run the vehicle close to its limits on a high-fidelity simulator.

Lastly, it is evident that greater model accuracy can
enhance the controller’s prediction, improving both stability
and performance. However, from the final results, it is clear
that a simpler modeling approach, if well formulated, can
still suffice for the purpose. This confirms that, depending
on the objective and application, model selection has to be
a trade-off. For an edge case application, the ideal raceline
could be close to the edge of the track. In this scenario, it
is important to reduce as much as possible the path tracking
error to avoid touching the gravel or the track barriers which
could lead to a crash or severe instability.

In future works, this model will be evaluated and extended
to adapt to other vehicle configurations like the one with a
limited-slip differential.
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