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Abstract— Open Retrieval Conversational Question Answering
(OrConvQA) answers a question given a conversation as context
and a document collection. A typical OrConvQA pipeline consists
of three modules: a Retriever to retrieve relevant documents from
the collection, a Reranker to rerank them given the question
and the context, and a Reader to extract an answer span. The
conversational turns can provide valuable context to answer the
final query. State-of-the-art OrConvQA systems use the same
history modeling for all three modules of the pipeline. We
hypothesize this as suboptimal. Specifically, we argue that a
broader context is needed in the first modules of the pipeline to
not miss relevant documents, while a narrower context is needed
in the last modules to identify the exact answer span. We propose
NORMY, the first unsupervised non-uniform history modeling
pipeline which generates the best conversational history for each
module. We further propose a novel Retriever for NORMY, which
employs keyphrase extraction on the conversation history, and
leverages passages retrieved in previous turns as additional con-
text. We also created a new dataset for OrConvQA, by expanding
the doc2dial dataset. We implemented various state-of-the-art
history modeling techniques and comprehensively evaluated them
separately for each module of the pipeline on three datasets:
OR-QUAC, our doc2dial extension, and ConvMix. Our extensive
experiments show that NORMY outperforms the state-of-the-art
in the individual modules and in the end-to-end system.

Index Terms—question answering, history modeling, conversa-
tional, retriever, reranker, reader

I. INTRODUCTION

Conversational Question Answering (CoQA) has recently
attracted a lot of attention due to the widespread adoption
of voice assistant platforms such as Siri, Alexa, and Google
Assistant, and the advances in deep learning [1]–[3]. Given
a text passage and a conversation, the goal of CoQA is to
extract the answer to the last question of the conversation from
the passage. CoQA is an extension to Question Answering
(QA) where the input is just one question instead of a
conversation [4]–[6]. However, in practice users do not provide
an input passage when performing QA or CoQA. This led
to the newer problems of Open Retrieval QA (ORQA) [7]–
[9] and Open Retrieval Conversational Question Answering
(OrConvQA) [10], where the input is a whole document
collection.

State-of-the-art works on OrConvQA (also for ORQA)
employs a pipeline of three modules [10]–[12]. The first one is
a Retriever, which retrieves a set of relevant passages from the

collection. Both term-based (TFIDF/BM25) and embedding-
based approaches may be used by the Retriever. A Reranker
module then re-ranks the already retrieved documents to better
match the question, and finally, a Reader module extracts an
answer span from the re-ranked documents. Recent advances
in transformers have produced pre-trained models like BERT
which are highly effective in reader tasks [13].

A key challenge in CoQA and OrConvQA is that the final
user question may have co-references or ellipses, that is, some
terms may refer to terms in the past conversation, while other
useful contexts may be missing from the question. Further,
previous (historic) turns of the conversation may add valuable
context to the question being asked. Clearly, some of the past
turns may be more useful than others as context for the last
question. Blindly adding all turns may lead to a noisy history
model. Including all turns may also be infeasible for some
models like BERT, which can only support 512 tokens as the
query and passage.

Previous CoQA works propose different approaches to
model the conversational history: some append all history turns
to the final query making it a one big query and use it to
retrieve the answer [1], [2], or use a backtracking algorithm
which selects/disregards a particular history turn using deep
reinforcement learning [14], or rewrite the final query using
the context of the whole conversation [15]–[17]. Previous
OrConvQA works either use the previous 6 turns [10], [11] or
all turns with predicted answers [12] as context.

Despite the different history modeling approaches of these
previous works, they all use the same history model for
all three modules of the pipeline. We hypothesize that this
is suboptimal. Specifically, our hypothesis is that as we
move towards the right of the Retriever→Reranker→Reader
pipeline and the number of the input passages (or documents)
decreases, the history context should become shorter and more
focused. That is, the Retriever should have access to broader
context to not miss any relevant documents, whereas the
Reader should have little context to help it identify the exact
text span that answers the user question.

For example, in Figure 1 we see that modeling the history
with Full Conversational Context (FC) returns the most rele-
vant passage (top one) which has all the necessary information
needed to answer the query. In contrast, narrower context –
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Who did he star with? 
(LQR: Who did Bing
Crosby star with?) 

q0: What motion pictures
did Bing Crosby star in?

q1: Did he win any awards?

q2: What were the titles for
the seven road to musical

comedies?

q3: What year did Road to
Hong Kong release?

Not every star was available... Bing
Crosby, for example, was not able to

join including Karin Booth...

Neil Patrick Harris, star of popular
TV show said in an interview....

... 

Retriever ReaderConversation History

...director Norman Panama's
Road to Hong Kong (1962)...series

of seven films.. starring Bob Hope.... 

FC

FC
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NC

Context
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CANNOTANSWER
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Fig. 1: Example of the impact of non-uniform conversational history modeling. Full Conversational Context (FC) retrieves the
most relevant passages in the Retriever module, while a narrower context, Last Question Rewrite (LQR) predicts the correct
answer span in the Reader module.

Last Question Rewrite (LQR) or No Context (NC) – returns
suboptimal passages that do not contain the answer. Once
documents are retrieved, additional context (FC) may act as
noise for the Reader module, whereas more focused context
(LQR) is able to extract the right span.

In addition to using the same context, the state-of-the-art
pipelines [10]–[12] and history modeling approaches [14]–
[16] depend fully on training data to fine-tune the Retriever,
Reranker, and Reader modules. Finding quality training data
for various domains of OrConvQA datasets is challenging.
Ideally, a pipeline should be domain-agnostic and use appro-
priate history modeling to capture the context. In this paper,
we contribute in three ways towards solving the OrConvQA
problems: (a) we propose NORMY1, the first unsupervised
solution pipeline, (b) we build and publish a new dataset, and
(c) we implement and experimentally compare various state-
of-the-art history modeling algorithms for each of the three
modules of the Retriever→Reranker→Reader pipeline.

Our proposed system, NORMY, uses a non-uniform history
context for the three pipeline modules. We also propose a
novel history modeling algorithm for the Retriever module
that produces improved results over state-of-the-art baselines.
Unlike previous approaches where the passages retrieved in
previous turns are discarded, our Retriever algorithm considers
past passages as candidates and proposes a ranking function
that combines turn-based decay with context-based reranking
of each passage. This ensures we do not miss an important
passage due to noise being added in later turns. Table I sum-
marizes the related work landscape, where we see that none of
the previous work addresses all aspects of the problem. Only
NORMY is question answering, open retrieval, conversational,
performs history modeling, and it is non-uniform.

We evaluate our individual modules and the overall pipeline
using three varied datasets. First, we use the ORQUAC
dataset [10], which is an extension of the CoQA dataset [1].
A drawback of this dataset is that it does not portray natural

1Non-UnifORM HistorY Modeling

TABLE I: Comparison of selected tasks and datasets on the
dimensions of Question Answering(QA), Open Retrieval(OR),
Conversational (Conv), History Modeling (HM) and Non-
uniform History Modeling (NHM)

Task/Dataset QA OR Conv HM NHM
NQ [4], SQuAD [6] ✓ ✗ ✗ ✗ ✗
TriviaQA [18],
MSMarco [7],DrQA [19] ✓ ✓ ✗ ✗ ✗
CoQA [1],
QuAC [2],ShARC [20] ✓ ✗ ✓ ✗ ✗
HAE [21], RL [14], RW [15] ✓ ✗ ✓ ✓ ✗
OrConvQA [10], d2d [22] ✓ ✓ ✓ ✗ ✗
NORMY[ours] ✓ ✓ ✓ ✓ ✓

dialogue conversation, as the chat is limited to asking ques-
tions and getting answers. Thus, we selected the doc2dial [22]
dataset for additional evaluation. However, this dataset is not
created for the open retrieval conversational QA task as there
are only a small number of documents as a corpus and
the focus was to generate natural language answers and not
text spans. For that, we created an updated doc2dial dataset,
which we call doc2dial-Or. Third, we conduct experiments
on ConvMix [23], where the corpus includes single-sentence
passages and the history turns contain fewer co-references
than previous datasets mentioned. NORMY outperforms the
state-of-the-art in all three datasets. In summary, we make the
following contributions in this paper:

• We identify the problem of uniform history modeling
in conversational QA and propose the first end-to-end
pipeline for OrConvQA that uses non-uniform history
modeling.

• We propose NORMY, a new unsupervised non-uniform
universal history modeling pipeline. NORMY employs
a novel history modeling approach for the Retriever
module, which builds on keyphrase extraction principles,
and leverages returned passages from previous history
turns.

• We perform an extensive comparison and analysis of
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Fig. 2: The architecture of NORMY. The input is the current question qn, all history questions qn−1
i , and the document

collection D. The Retriever module models the history using keyphrase extraction per history turn and retrieves passages
P0 · · ·Pk using BM25. Our novel History Aware Decay Scoring module refines all returned passages and outputs top-k. The
Reranker reranks the passages using most recent w turns and Reader uses coreference resolution to rewrite the last query qn
and outputs the best answer span combining all three modules’ scores.

various history modeling techniques for each module of
the pipeline, on three diverse and structurally different
datasets, and show that using the same modeling is
suboptimal.

• We expand the doc2dial dataset for the OrConvQA task
and make our full source code and dataset available to
the community 2.

The rest of the paper is organized as follows. An overview
of the problem and solution are presented in Section II. We
present the details of NORMY including our novel Retriever
algorithm in Section III. We present the datasets and results
of our experimental evaluation in Section IV. We discuss the
related work in Section V and finally conclude in Section VI.

II. PROBLEM DEFINITION AND OVERVIEW OF NORMY

Problem Definition. The input to the OrConvQA problem is
a question qn, the conversational history C = q0, · · · , qn−1,
and a document collection D. As in previous work, the
history does not contain the answers to the questions, we
also assume no access to the ground truth answers [10].
The output is an answer span an, extracted from one of the
documents in D, which best answers qn. The solution pipeline
is shown in Figure 2. There are two key decisions we have to
make for each module. First, pick what algorithm to employ
(e.g. BM25 [24] or BERT [13] and so on) and with what
parameters. Second, define what conversational context C to
input to the algorithm. In this work, we employ the state-of-
the-art algorithm for each module and focus on the choice of
conversational context for each module.

Overview of NORMY. NORMY, as shown in Figure 2,
generates a different model of the conversational history for
each module of the pipeline. Given the Retriever’s history

2https://github.com/shihabrashid-ucr/normy

model discussed below and the collection, the Retriever se-
lects the top k passages using BM25. Then, using a his-
tory of the last w turns, the Reranker reranks the k pas-
sages using transformer-based similarity measures. Finally,
the transformer-based Reader module models the history by
rewriting the final query into a self-contained query, using
coreference resolution, to find the best answer span. The
answer span with the highest combined score from all three
modules is the final answer. Note that our whole system is
designed in an unsupervised fashion. There is no training data
needed.

III. MODULES OF NORMY

A. Retriever

The Retriever module retrieves the k most relevant passages
from a document collection D, given a query qn and context
C. We considered two types of search algorithms: classic
Information Retrieval BM25-style ranking methods, and dense
retriever methods. Although dense retriever approaches like
ORQA [25] and DPR [26] which use encodings of documents
using ALBERT [27], have shown to provide better results,
they require training data for fine-tuning. Their vanilla pre-
trained models without training do not perform as well as
BM25 (shown in Section IV). Further, BM25 is more scalable
for large collections. Hence, given that the main focus of this
paper is history modeling, we picked BM25 for our Retriever.
Specifically, we index the documents using Lucene3. Then
we retrieve top k documents using BM25, which is a term
frequency based document ranking algorithm.

History Modeling. NORMY’s Retriever has two key nov-
elties. First, we use a keyphrase extraction-based candidate
selection algorithm to identify the key context from the whole

3https://lucene.apache.org/pylucene/

https://github.com/shihabrashid-ucr/normy


Algorithm 1 NORMYRetriever

Input: Context C, qn
Output: SEL: Top k returned passages

1: SEL← [], P ← []
2: for each turn i ∈ 1 · · ·n do
3: R(qi)← Y AKE(qi)
4: R(C)← R(q0) ∪ · · · ∪R(qi)
5: Pi ← Retrievek(R(C)) //top-k by BM25
6: P ← P ∪ Pi

7: for each passage p ∈ Pi do
8: Compute score Srt(p) using Eq. 2
9: SEL← SelectTopk(P ) //based on Srt(p)

10: return SEL

conversational history. Second, we consider all passages re-
turned by previous turns alongside passages returned by final
turn as candidate passages, and rank them using history aware
decay scoring method to return top k.

Our retrieval algorithm is shown in Algorithm 1. We extend
the keyphrase extraction algorithm YAKE [28] to select y
best keywords per conversation turn using the YAKE formula
shown in Equation (1). YAKE considers features like the
casing of the word, word positions, word frequencies, word
relatedness to context, etc. to assign a score S(b) to each word
b.

S(b) =
WRel ·WPos

WCase + (Wfreq/WRel) + (WDifS/WRel)
(1)

where WRel is the relatedness to context score, WPos is the
word position score, WCase is the word casing score, Wfreq

is the word frequency divided by the sum of mean term
frequency and standard deviation σ, and WDifS is calculated
based on how many times a particular word appears in other
sentences. The detailed equations of all the terms can be found
in [28]. We compute the union R(C) of the reformulated
questions R(q0) · · ·R(qn) to retrieve the top k passages (line
4-5). Each passage returned has a BM25 score assigned to it.

History-Aware Decay Scoring. After retrieving k passages
for the current turn n, we refine their scores by considering
their similarity to the retrieved passages. Further, we assign
less weight to passages returned from previous turns. Specif-
ically, we use a decay weight λ to update the scores of
older passages. The passages returned from previous turns
may be relevant for subsequent modules but they do not share
equal weight to passages returned from current turn n. Next,
to assess the relevance of each passage Pnj , {j = 1 · · · k}
from turn n, we compute the average pairwise similarity with
passages returned in the previous turn P(n−1)i, {i = 1 · · · k}.
This ensures that the passages returned has relevance to the
whole conversation. Passages returned from irrelevant conver-
sation turns will be scored less. To compute the similarity,
we use SBERT [29] to produce embeddings of passages and
perform cosine similarity. We update the score of Pnj using
this similarity. Finally, we rank all the passages using updated

scores Srt and select top k. The retriever score of a passage
p is shown in Equation (2).

Srt(qn, C, p) = max(BM(R(C∪qn), p)−λ, 0)·
k∑

i=1

sim(p, P(n−1)i)/k

(2)
where BM(.) is the BM25 score of a passage and sim(.) returns
semantic similarity between two passages.

B. Reranker

The Reranker module reranks the retrieved top k pas-
sages using transformer-based encoders and a neural network
to compute passage relevance score. The transformer based
Reranker augments BM25 ensuring an extra layer of passage
relevance. As k <<total size of collection, using a transformer
encoder is inexpensive. A Reranker has been shown to improve
the overall performance of the end-to-end system with little
additional cost [10], [30]. However, we show that using the
same history modeling as the previous module or using the
context from all history turns do not give the best results as
now we have grounded documents as evidence. Our experi-
mental results show that using a context with a history window
size w works best. The input to the module is the final query
qn, the context C, and k passages retrieved by the Retriever.
A reranking score Srr is assigned to every passage.

Encoder. Our Reranker module uses BERT to encode the
input representation. We use the last w history turns before
qn and concatenate them together to model the history. We
then concatenate the retrieved passage pj , j = {1 · · · k} to
the appended history turns to create the final input sequence
(qn, C, pj) = [CLS] qn−w [SEP] · · · [SEP]qn−1 [SEP]qn
[SEP]pj . We use the contextualized vector representation of
the input sequence ν[CLS], and use it as input to a fully
connected feed-forward layer that classifies the given passage
as either relevant or non-relevant and outputs a classification
score Srr:

ν[CLS] = W[CLS]BERT (qn, C, pj)[CLS] (3)

Srr = P (Rel = 1|qn, C, pj)
△
= softmax(ν[CLS]) (4)

where ν[CLS] ∈ RT , T is the model embedding dimension,
which is 768, and W[CLS] is a projection of the [CLS]
representation to obtain the sequence representation ν[CLS].
We compute the score for each passage in top k independently
and rerank them based on Srr.

C. Reader

The Reader module inputs the final query qn, the context
C and the reranked passages {p1, p2....pk} and outputs a span
from one of the passages as the answer.

History Modeling. As the documents have already been
narrowed down using the conversational context in previous
modules, we show that using a history modeling with full
contextual information produces worse results than a history
model that uses less context. This happens due to: 1) The
passages already hold the necessary contextual information



TABLE II: Dataset Statistics

ORQUAC doc2dial-OR ConvMix

# Dialogues 771 661 1679
# Questions 5571 4253 2284

# Avg tokens/qstn 6.7 10 6.39
# Avg tokens/ans 12.2 21.6 2.17

# Avg questions/conv 7.2 6.4 5.00
# Passages 11M 11.6M 5.94M

from the history, 2) Previous history questions in the context
misdirects the BERT Reader model into predicting incorrect
answer spans. The naive idea would be to use just the final
query as input. However, the final query is prone to co-
references and ellipses as users will not use self-contained
utterances in a natural conversation. Thus, we use a co-
reference resolution model to generate a resolved final query
qn

′ using the previous context. We adapt the huggingface
neural co-reference model 4 which uses two neural networks
to assign a score to each pair of mentions (or co-references)
in the input and their antecedents [31]. The history turns q0
to qn−1 are concatenated and used to rewrite qn into qn

′.
Encoder. Our Reader module uses similar BERT architec-

ture as the previous module to encode the input. The input
sequence ”[CLS]qn

′[SEP ]pj” is used to generate a represen-
tation of all tokens in the input. Two sets of parameters, a
start vector Ws and an end vector We are used to compute
the score for the m-th token.

ν[m] = BERT ((qn
′, pj))[m] (5)

Ss(qn
′, pj , [m]) = Wsν[m] Se(qn

′, pj , [m]) = Weν[m] (6)

where Ss is the start score of a token and Se is the end score.
The span Reader score Srd is computed as the maximum score
of each token being either the start or end token. The start
token must appear before the end token in the input.

Srd(qn
′, pj , s) = max

[ms],[me]∈(qn′,pj)
Ss(qn

′, pj , [ms])+Se(qn
′, pj , [me])

(7)
where s is the answer span with the start token [ms] and
end token [me]. The answer spans are re-ranked using the
combined score of all three modules and the top answer is
given as a prediction.

S(qn, C, pj , s) = Srt(qn, C, pj) + Srr(qn, C, pj) + Srd(qn
′, pj , s)

(8)

IV. EXPERIMENTAL EVALUATION

A. Datasets

We use three datasets with different conversation structures.
The first dataset: ORQUAC [10] is an aggregation of three
existing datasets: QuAC, CANARD [32], and Wikipedia cor-
pus that serves as a knowledge source for open retrieval. The
Wikipedia corpus is a collection of 11 million passages that
are created from splitting Wikipedia articles into 384 tokens.

4https://huggingface.co/coref/

The second dataset is doc2dial-OR, which was created by
us, as an extension of doc2dial [22] dataset, which consists of
natural information-seeking goal-oriented dialogues that are
grounded in documents. doc2dial has more complex ques-
tions than ORQUAC, associated with multiple sections of
a document. However, this dataset is only grounded to 480
long documents collected from different government websites,
which is not ideal for an open retrieval task. doc2dial-OR
extends doc2dial by having a much larger set of passages
consisting of (a) 11 million Wikipedia passages5, and (b) the
480 documents of doc2dial split into 384-token chunks. The
second difference between doc2dial-OR from doc2dial is that
we convert free-text ground truth answers to exact text spans
from the gold passage in the dataset, to make it suitable for a
span prediction task, as is the case for ORQUAC.

The third dataset is ConvMix [23], which contains doc-
uments from heterogeneous sources: Wikipedia info boxes,
tables, and text snippets (passages). They use the Wikipedia
dump from 2022-01-31. To adapt this dataset for our task, we
selected the 5.94 million textual snippets as our collection and
the question turns in a conversation where the answer can be
extracted from these text snippets. The dataset statistics are
shown in Table II.

B. Experimental Setup

Competing History Models. To the best of our knowledge,
there are no fully unsupervised non-uniform history modeling
approaches. There are supervised systems (OrConvQA [10],
WS-OrConvQA [11]) that uses history window of 6 for
all the modules. ConvADR-QA [12] uses all history turns
along with their predicted answers as context. However, they
require annotated data to train the modules. We adapt their
approaches to an unsupervised setting. There are also conver-
sational closed retrieval systems (RL [14], RW [15]). We adapt
such history modeling methods to an open-retrieval setting.
Further, we also propose some standard history modeling
techniques. Thus, we have identified the following baselines:
1) No History [2]: Where we do not perform any history
modeling. The last question turn is used as input to each
individual module. 2) First-Last: We propose an intuitive
history modeling baseline, where we define the history as the
combination of the immediately previous user utterance and
the first utterance of the conversation. 3) Full History: With
all previous turns concatenated. For the modules where we
use transformer models with token limitation, we prune the
earlier tokens if the total token size exceeds 384. The input
sequence is C = [CLS]q0[SEP ]q1 [SEP ] · · · [SEP ]qn 4)
YAKE [28]: Keyphrase extraction-based history modeling has
not been used previously in any research work. We extract y
keyphrases per history turn and concatenate them with the last
turn to create the input sequence. 5) Backtracking [RL]: We
adapt the immediate reward based history selection proposed
by Qiu et al. [14] for closed retrieval systems. We select a
history turn if the similarity with previously selected history

5https://dumps.wikimedia.org/enwiki/20191020



TABLE III: Retriever Results

Setting ORQUAC doc2dial-OR ConvMix
MRR R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR R@1 R@5 R@10

No History 0.0312 0.0177 0.0516 0.0649 0.2564 0.2003 0.3320 0.3907 0.1027 0.0696 0.1449 0.186
First Last 0.1174 0.0739 0.1757 0.2249 0.4283 0.3378 0.5523 0.6381 0.1586 0.109 0.2263 0.281
Full History 0.1361 0.0785 0.1748 0.2178 0.4289 0.3376 0.5584 0.6433 0.1605 0.1077 0.2364 0.2911
Fixed window 0.1222 0.0827 0.1744 0.2189 0.4292 0.3378 0.5584 0.6433 0.1605 0.1077 0.2364 0.2911
Backtracking 0.1160 0.0726 0.1742 0.2238 0.4226 0.3301 0.5494 0.6364 0.1696 0.1169 0.2429 0.3104
Rewriting 0.0516 0.0307 0.0814 0.1080 0.2605 0.2031 0.3369 0.3985 0.12 0.0827 0.1654 0.2123
NORMYRetr[ours] 0.1662 0.1147 0.2367 0.2891 0.4687 0.3809 0.5906 0.6780 0.1757 0.119 0.2513 0.3139
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Fig. 3: (a) and (b) subgraphs show the impact of number of keywords y and history window size w for Retriever and Reranker.

turns is greater than 0.5. For each history turn(i = 1...n) we
calculate the immediate reward with SBERT sentence encoder.
6) Question Rewriting [RW]: We adapt the algorithm of
Vakulenko et al. [15] for closed retrieval systems, which uses a
question rewriting model to resolve ambiguous questions (co-
references) into self-contained questions. Their model requires
training data thus we use neuralcoref to resolve the co-
references of the final query using previous history turns.
There are other query rewriting models like QReCC [33]
which also require annotated data. 7) Fixed Window [Or-
ConvQA, WS-OrConvQA] [10], [11]: WS-OrConvQA is
an improvement over OrConvQA but uses training data to
learn weak supervision signals. Both models use a history
window size w. Window size 6 is shown to produce the best
results for both. To select the baseline, we also compared
different window sizes (2,4,6,8) in a small validation set
and w = 6 has given the best results. 8) Fixed Window
with Ans. [ConvADR-QA] [12]: This model predicts the
answers for each historical question with a teacher model
using annotated query rewrites and appends the predicted
answer to the context along with historical questions. For
a fully unsupervised pipeline, we adapt this approach to
predict an answer for each question using OrConvQA and
append the answer to the context. The input sequence is
C = [CLS]q0a0[SEP ]q1a1 [SEP ] · · · [SEP ]qnan, where an
is the predicted answer for turn n. Implementation Details.
NORMY is fully unsupervised without requiring any training
data. The pre-trained models are implemented with the open-
source library Huggingface. We index our document collection
using PyLucene with StandardAnalyzer as tokenizer Indexing
is done with term frequencies, document frequencies, and po-

sitions. Keyphrase extraction is done with open source library
pke [34]. For computing similarity, we use SBERT’s pre-
trained roberta-large model. For Reranker module, we use pre-
trained BERT model finetuned on MSMARCO dataset [35].
For our Reader module we use a pre-trained bert-large model
finetuned on SQUAD dataset. We make our full code available
to the research community.

C. Retriever Results
Evaluation Methodology. We use the commonly used

Mean Reciprocal Rank (MRR) and Recall (R@k) methods to
measure our retrieval performance. MRR calculates how far
down the ranking the first relevant document is on average,
where higher is better. R@k measures the fraction of times
the correct document is found in the top k predictions, where
higher is better.
Results. We first experiment with different values of the
number of keywords y in the keyphrase extraction shown in
Figure 3a and find that y = 5 performs best. We use y = 5,
k = 10 and λ = 0.1 in Table III. We found that using a larger
k increases the execution time of the system with a very small
accuracy benefit. Figure 3 shows our experimental results for
different parameters used in NORMY.

We compare different history modeling techniques using
BM25 in Table III. For all three datasets, we see that our
NORMY Retriever performs significantly better than other
baselines. This is due to a couple of factors: 1) We remove
irrelevant information from each history turn rather than elim-
inating the history turn altogether, 2) We consider previously
retrieved passages from previous history turns as candidate
passages. We can also see that history models that use fewer
contexts like Question Rewriting, First-Last, and No History



TABLE IV: Reranker Results

Setting ORQUAC doc2dial-OR ConvMix
MRR R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR R@1 R@5 R@10

No History 0.1408 0.1033 0.1927 0.2891 0.4572 0.3592 0.5901 0.6780 0.2264 0.1834 0.285 0.3139
First Last 0.1779 0.1491 0.2179 0.2891 0.5247 0.4514 0.6301 0.6780 0.2396 0.2052 0.2955 0.3139
Full History 0.1996 0.1702 0.2402 0.2891 0.5401 0.4644 0.6415 0.6780 0.2405 0.2020 0.2944 0.3139
NORMY(Fixed w) 0.2033 0.1767 0.2411 0.2891 0.5478 0.4747 0.6515 0.6780 0.2405 0.2020 0.2944 0.3139
Backtracking 0.1954 0.1661 0.2361 0.2891 0.5325 0.4635 0.6368 0.6780 0.2403 0.2017 0.2940 0.3139
Rewriting 0.1696 0.1344 0.2181 0.2891 0.4583 0.3604 0.5911 0.6780 0.2295 0.1873 0.2867 0.3139
YAKE 0.2008 0.1731 0.2387 0.2891 0.5396 0.4624 0.6377 0.6780 0.2418 0.2031 0.2946 0.3139

TABLE V: Reader F1

Setting ORQUAC doc2dial-OR ConvMix
No History 0.1557 0.1898 0.6785
First Last 0.0996 0.1291 0.4842

Full History 0.0845 0.1196 0.3711
Fixed Window 0.0848 0.1200 0.4859
Backtracking 0.1118 0.1541 0.5591

NORMY(Rewriting) 0.1774 0.2220 0.7393
YAKE 0.1277 0.1551 0.67

TABLE VI: Entire Pipeline F1. ‡ means statistically significant
improvement over baseline with p < 0.5.

Setting ORQUAC doc2dial-OR ConvMix
NORMY[ours] 0.0782‡ 0.1625‡ 0.1723‡

NORMY w/o decay 0.0668‡ 0.1323‡ 0.1490
NORMY w/o sim 0.0695‡ 0.1431‡ 0.1562‡

OrConvQA [10],
WS-OrConvQA [11](BM25) 0.0478 0.0955 0.1314

OrConvQA,
WS-OrConvQA (DPR) 0.0466 0.0948 0.1298

ConvADR-QA [12] 0.0454 0.0897 0.1244

perform significantly worse indicating we need more context
while retrieving from millions of passages.

D. Reranker Results

Evaluation Methodology. We use the same metrics as the
Retriever as both of these modules produce top k passages.
Results. From Table IV we see that the Reranker module
significantly improves the ranks of relevant passages. Using
a fixed window, which sits between a broader context like
Full History and a narrower context like Rewriting produces
the overall best results. We conduct experiments with different
history window sizes w and show the results in Figure 3b.
Fixed window of 6 works best for two of our datasets, which
is supported by the literature [10]. For ConvMix, we see that
YAKE performs slightly better than all other methods and
the results vary very little. This is because the passages in
the collection are single sentences only, leading to multiple
passages being relevant to the question. The Reranker ranks
such passages similarly whereas only one contains the gold
answer. In the real world, it is unusual for the documents to
be single sentences. Note that our hypothesis that the Reranker
needs less context than the Retriever still holds, as YAKE has
less context than Full History.

E. Reader Results

Evaluation Methodology. We treat the evaluation of Reader
module as a span selection task and adopt token level F1 as
the evaluation metric. F1 calculates the similarity between the
ground answer and the predicted span, where higher means
better.
Results. From Table V we can see significant performance
drops when more contexts are added for all three datasets. As
the candidate passages have been reduced to 1, transformer-
based reader model performs significantly better when only
one query is used. Narrower contexts like adding no history
and question rewriting perform much better than broader
context models further proving our hypothesis. Among them,
question rewriting produces a better result. For ConvMix we
can see very high F1 scores for appropriate history models as
the answers are on average two tokens only, which makes the
Reader model easily predict answer spans. However, history
models with broader context have poor F1 scores for this same
dataset indicating the model needs proper history models even
in simpler scenarios.

F. End-to-end Evaluation

In this section, we compare our pipeline with the state-of-
the-art models [10]–[12], which either use a fixed window of
6 or full history with predicted answers uniformly in all mod-
ules. We see in Table VI that SOTA models perform poorly
in a fully unsupervised setting. We also see that, ConvADR-
QA performs worse than OrConvQA, as in an unsupervised
setting, a wrongly predicted answer could misdirect the context
to retrieve irrelevant passages. Our pipeline with non-uniform
history modeling performs significantly better. SOTA models
use fine-tuned dense retriever model (DPR) for their retriever
module instead of BM25 which is used by NORMY. We
use the vanilla pre-trained version of DPR here as we don’t
have access to training data. We also compare to a variant of
OrConvQA that uses BM25 instead of DPR for completeness.
We see that BM25 performs better than dense retriever models.
Note that, uniformly using other baseline history modeling
techniques evaluated in previous subsections does not produce
better results than NORMY in the end-to-end pipeline. We do
not show these in Table VI for brevity.

G. Ablation Studies

The effectiveness of our model relies on some of the design
choices we made. We investigate such choices our novel
retriever NORMYRetr has from equation (2). We present the



ablation results in Table VI. Specifically, we show two ablation
settings as follows:

NORMY w/o decay. We showed that if we disregard
previously returned passages we may miss out on some
relevant information required for subsequent modules. How-
ever, if we gave the same weight to previous passages as
passages returned from current turn n, we see a degradation
in performance. This is due to the current turn holding the
most amount of information. Thus passages returned from the
current turn should be given the most weight.

NORMY w/o sim. If a history turn is related to its previous
turn, the passages returned will also have some similarities.
Here, we disregarded the average pairwise similarity with the
previous turn’s returned passages from equation (2). We again
see a decrease in model performance. By refining retriever
scores with similarity score, we compute the relevance of
passages with relevant conversational history. The ablation
studies further verify that both decay and similarity scores
are crucial for NORMY to perform best.

V. RELATED WORK

Machine Reading Comprehension (MRC). MRC task typ-
ically includes a single-turn query where the answer grounds
in a short passage. It started with TREC [5] in the early days
where the goal was to retrieve the appropriate passage for 200
factoid questions and advanced to recent high-quality datasets
like NQ [4], SQuAD [6], NewsQA [36].
Open Domain QA. Open domain QA introduces large cor-
pus as grounded documents and the task is to retrieve the
appropriate documents and then try to extract the answer span.
For this task, high-quality datasets have been proposed such
as TriviaQA [18], WikiQA [8], QuAX [37]. Some previous
work [38], [39] selects answers from a closed set of passages
or learns to rerank them. End-to-end open domain pipelines
like DrQA [19] and BERTserini [40] use TFIDF/BM25 for the
retrieval of passages and a neural reader to select the answer
span. ORQA [25] and DPR [26] introduce a learnable retriever
module with a dual encoder architecture. These works are all
single-turn QA’s whereas we target multi-turn conversations.
Conversational QA. Conversational QA is a variant of MRC
where the queries are no longer single turn and the role of
retrieval is disregarded [41]. The multi turn questions can be
interconnected (CoQA [1], DoQA [42]), can depend on the
previous history answer(QuAC [2]) or only limited to binary
answers (ShARC [20]). A better understanding of the context
of conversation history is needed to answer the grounded ques-
tion. To capture the context, FlowQA [43] and GraphFlow [44]
use each word as nodes in a graph and use an attention
mechanism to represent the history; HAE [21] considers the
history ground answers as context which is impractical for real
life dialogue agents; Pos-HAE [45] considers the history turn
positions as additional encoding. There are also backtracking
based [14] and query rewriting based [15], [33] models as
mentioned in previous sections.
Open Domain Conversational QA. ODQA models like
OrConvQA [10], WS-OrConvQA [11], ConvADR-QA [12] do

not perform any history modeling and use the same history
window in all of their modules for the end-to-end system.
Other ODQA works like TopiOCQA [46] do not focus on
history modeling and use gold training data to train neural
models for their pipeline. Similar to Extractive QA like this
task (OrConvQA), there are Abstractive pipelines [47] where
the answer is generated using transformers like BART [48]
rather than being extracted from passages. Such pipelines are
sequence-to-sequence tasks and not span predictions.

VI. CONCLUSION

We have presented the first end-to-end pipeline that uses
non-uniform history modeling for open retrieval conversa-
tional question answering. We show that existing systems
are suboptimal due to modeling the context in the same
way for all modules and not utilizing previously returned
passages for the Retriever module. We have also proposed
a novel algorithm to utilize such passages to output higher-
quality passages for subsequent modules. We further updated
the doc2dial dataset to make it appropriate for OrConvQA
task. Extensive experimental evaluation from various history
modeling techniques with different types of data shows that
NORMY significantly outperforms the state-of-the-art in each
individual module and the entire pipeline.
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