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Abstract— LIDAR (Light Detection And Ranging) is widely used 
in forestry applications to obtain information about tree density, 
composition, change, etc. An advantage of LIDAR is its ability to 
get this information in a 3D structure. However, the density of 
LIDAR data is low, the acquisition of LIDAR data is often very 
expensive, and it is difficult to be utilised in small areas. In this 
article we present an alternative to LIDAR by using a UAV
(Unmanned Aerial Vehicle) to acquire high resolution images of 
the forest. Using the dense match method a dense point cloud can 
be generated. Our analysis shows that this method can provide a 
good alternative to using LIDAR in situations such as these.
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I. INTRODUCTION

Using point data one can extract an object’s 3D information 
and structure. Point matching means matching corresponding 
points between two or more images of the same scene and this 
is an important feature of many computer vision and pattern 
recognition tasks, including object recognition and tracking 
and 3D scene reconstruction. This makes point data a very 
important source for data mapping purposes.  Because of the 
importance of point cloud data for many applications LIDAR 
data is widely used in many projects. As Bartels and Wei [11] 
comment “is an important modality in terrain and land 
surveying for many environmental, engineering and civil 
applications”. However, when using LIDAR to extract the 
parameters and characteristics of forest areas there are a 
number of problems with the approach namely: data 
resolution, cost, and data processing requirements. The 
Unmanned Aerial Vehicle (UAV) has many advantages. A 
key feature of the UAV is that it is especially applicable to 
capturing high resolution images in small areas. Overall, it is a 
low-cost system when compared to LIDAR systems. However, 
the images captured by the UVA are of low resolution. The 
UAV only possess a regular GPS receiver and a standard 
digital photogrammetry system on board. 

When a collection of images are captured by the UAV they 
must be processed using computer vision techniques to 
proceed to the stage of point cloud extraction. Some software 
options are already available for use. Baltsavias et al [2] and 
Waser et al [3] developed a new image matching software 
package. They demonstrated its application in 3D tree 
modelling by comparing this to data obtained by the airborne 
laser. It showed that photogrammetric DSM (Digital Surface 

Models) can be denser than a DSM generated by LIDAR. 
Leberl et al [4] compared point clouds from aerial and street-
side LIDAR systems with those created from images. They 
show that the photogrammetric accuracy compares very well 
with the LIDAR method. However the key advantage of the 
photogrammetric approach is that the density of surface points 
is much higher from the images than from the LIDAR method. 
The authors conclude that “throughput is commensurate with 
a fully automated all-digital approach''. When image capture 
has been completed the next step is to manage and process the 
collection of images. Snavely [6] developed some new 3D 
reconstruction algorithms for his PhD thesis. These algorithms 
operate on large, diverse, image collections. Microsoft Live 
Labs have recently developed a commercial software package 
called Photosynth [12]. Photosynth works by taking a 
collection of digital photographs, mashing them together, and 
recreating a 3D scene from them which has 360o providing 
users with a photo-realistic experience.  Yasutaka [8] uses a 
simple but effective method for turning a patch model into a 
mesh suitable for image-based modelling. In this article we 
describe an approach to process the images captured by our 
UAV using computer vision algorithms and techniques to 
generate point cloud data. We show that a good quality point 
cloud can be generated from the UAV captured images.

The remainder of our paper is organised as follows. In 
section II we outlined the algorithm in detail providing 
information about its configuration and mathematical basis. In 
Section III we present an experimental example. The final 
section, section IV, we provide some conclusions. 

II. ALGORITHM DESCRIPTION

  In this section we will provide the details of our algorithm 
for extracting dense point clouds from UAV captured images. 
In this work we are using the Scale-Invariant Feature 
Transform (SIFT) feature extraction algorithm to extract 
feature points. SIFT is invariant to image scaling and rotation 
and partially invariant to change in illumination and 3D 
camera viewpoint. There are four components of SIFT: (1) 
Scale-space extrema detection, (2) keypoint localization, (3) 
orientation assignment, and (4) computation of the keypoint 
descriptors. We will now discuss each of these in detail in the 
remainder of this section. 

A. Scale-space extrema detection
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The first stage of computation searches over all scales and 
image locations. This is implemented efficiently by using a 
Difference-of-Gaussian (DoG) function to identify potential 
interest points. These points will be invariant to  scale and 
orientation.
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To perform this the image is convolved with Gaussian 
filters at different scales. After this the difference of 
successive Gaussian-blurred images are computed. Keypoints 
are then extracted as maxima/minima of the difference of 
Gaussians which occur at multiple scales. Specifically, a DoG 
image is given by

( , , ) ( , , ) * ( , )L x y G x y I x y� ��

Where ( , , )L x y � is the convolution of the original image

( , , ) ( ( , , ) ( , , ))* ( , ) ( , , ) ( , , )D x y G x y k G x y I x y L x y k L x y� � � � �� � � �
The process is explained in Figure 1 below. For scale-space 

extrema detection using the SIFT algorithm the image is first 
convolved with Gaussian-blurs at different scales.  Then the 
difference-of-Gaussian images are taken from adjacent 
Gaussian-blurred images on a per octave basis.

Fig.1.Diagram showing the blurred images at different scales, and the 
computation of the difference-of-Gaussian images

In the discrete case, the algorithm will compare the nearest 
26 neighbours in a discretized scale-space volume, as shown 
in Figure 2. The 26 neighbors are coloured green. 

Fig.2.Local extrema detection, the pixel marked x is compared against its 26 
neighbors in a 3*3*3 neighborhood that spans adjacent DoG images

B. Keypoint localization
The next component in SIFT is keypoint localization. At 

each keypoint candidate location a model must be fitted to  
determine location and scale. Keypoints are selected based on      
measurement of their stability. The interpolation is performed 
using the quadratic Taylor expansion of the Difference-of-
Gaussian (DoG) function scale-space function.
This Taylor expansion is given by: 
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Where x=(x,y,) is the offset from this point.

C. Orientation assignment 
One or more orientations are assigned to each keypoint 

location based on the local image gradient directions. All 
future operations are performed on image data that has been 
transformed relative to the assigned orientation scale and
location for each feature thereby providing invariance to these 
transformations. First, the Gaussian-smoothed image 

( , , )L x y � at the keypoint's scale � is taken so that all 
computations are performed in a scale-invariant manner. For a 
sample image ( , )L x y at scale �, the gradient magnitude,

( , )m x y , and orientation, ( , )x y� , are precomputed using
pixel differences. The equations for ( , )x y� and ( , )m x y are 
given as follows:

2 2 2( , ) (( ( 1, ) ( 1, )) ( ( , 1) ( , 1) )m x y L x y L x y L x y L x y� � � � � � � �

( 1, ) ( 1, )( , ) arctan
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D. Keypoint descriptor

The final component of SIFT involves the computation of 
the keypoint descriptors. The local image gradients are 
measured at the selected scale in the region around each 
keypoint, as shown in Figure 3. These local image gradients 
are transformed into a representation that allows for 
significant levels of local shape distortion and change 
illumination.

Fig.3.Sift feature descriptor

SIFT also computes a vector describing the local image 
appearance around the location of that feature. One simple 
example of a descriptor is a window of color (or grayscale) 
values around the detected point. The descriptor used by SIFT 



considers image gradients, rather than intensity values, as 
image derivatives are invariant to adding a constant value to 
the intensity of each pixel. In fact, SIFT looks at the directions 
of these gradients, rather than their raw magnitude, as gradient 
directions are even more invariant to variations in brightness 
and contrast across images. In particular, SIFT computes 
histograms of local image gradient directions. It creates a 4 × 
4 grid of histograms around a feature point, where each 
histogram contains eight bins for gradient directions, resulting 
in a 4 × 4 × 8 = 128-dimensional descriptor. Thus, each 
feature f consists of a 2D location (fx,fy), and a descriptor 
vector fd. The canonical scale and orientation of a feature are 
not used in the remainder of the pipeline. 

RANSAC is an abbreviation for “random sample 
consensus”[14]. It is an algorithm to estimate parameters of a 
mathematical model from a set of observed data which 
contains outliers.

The input to the RANSAC algorithm is a set of observed 
data values, a parameterized model which can explain or be 
fitted to the observations, and some confidence parameters. 
RANSAC achieves its goal by iteratively selecting a random 
subset of the original data. These data are hypothetical inliers 
and this hypothesis is then tested as follows:

1. A model is fitted to the hypothetical inlier, i.e. all free 
parameters of the model are reconstructed from the data set.

2. All other data are then tested against the fitted model and, 
if a point fits well to the estimated model, also considered as a 
hypothetical inlier.

3. The estimated model is reasonably good if sufficiently 
many points have been classified as hypothetical inliers.

4. The model is re-estimated from all hypothetical inliers, 
because it has only been estimated from the initial set of 
hypothetical inliers.

5. Finally, the model is evaluated by estimating the error of 
the inliers relative to the model.

For each input photo, the pipeline determines the location 
from which the photo was taken and direction in which the 
camera was pointed, and recovers the 3D coordinates of a 
sparse set of points in the scene.

Refine matching using RANSAC +8-point algorithm to 
estimate fundamental matrices between pairs.

It is difficult to initialize all the cameras at once. Because
structure from motion with two cameras is easy. Once we 
have an initial model, it’s easy to add new cameras.

We start with a small seed reconstruction, and grow.
It is necessary to use a strong initial pair of images with 

many matches, but which has as large a baseline as possible. 
By chose two calibrated images with corresponding points, 
compute the camera and point positions. Use the 5-point 
method to find the essential matrix between the images. While 
there are connected images remaining, pick image that sees 
the most existing 3D points, estimate the pose of that camera, 
triangulate any new points, run bundle adjustment.

III. EXPERIMENT
Test site was located in the SiZhouTou of Xiangshan town,

Zhejiang Province, China, as shown in Fig.4. The flying 

system has a size of 830 mm, payload of it is 200g. The 
weight of the system varies between 1 kg and 1.5kg. 

The system is restricted to fly under wind speeds smaller 
than 6m/s. A maximum flight height of 4000m and an 
operation distance of up to 5km are possible. For take-off and 
landing a runway with a length of 5m to 25m is needed.

The sensor on the system is FUJIFILM-FinepixZ10fd 
digital camera, pixel is 720, focal length is 18.9mm.

  According to the photogrammetry requirement, image 
along track overlap should be 60%, couldn’t be small than 
53%, image across track overlap should be 30%, couldn’t be 
small than 15%. Considering the weather condition, the along 
track overlap is 80%, across track overlap is 60%. 

The maximal offset can be expected in our experiment in 
the main flight direction X.

When hotshoe of camera triggers, the flight control system 
records the following data:

Image number, camera roll angle, camera pitch angle,
camera yaw angle, UAV latitude, UAV longitude, UAV 
altitude

Fig. 4 Mosaic image of the whole forest area

Fig. 5 Point cloud of the entire area



Fig. 6 Point cloud of the local area

IV. CONCLUSIONS

In this paper we have described a method for dense point 
cloud extraction from UAV captured imagery for the purposes 
of forestry analysis. We believe that this approach can provide 
a cost-effective alternative to LIDAR methods in performing 
the same task. Following from the experimental detail 
outlined in the previous section we show the point clouds 
generated for the forest area in Figure 4 in both Figure 5 and 
Figure 6.  Figure 5 shows the point cloud for the entire area 
while Figure 6 shows the point cloud for one of the local areas 
with the test mosaic. Our approach generates a very good 
point cloud representation and reconstruction of the 3-D scene 
for the forest area. However, at this initial stage of the work 
we feel that the density of the point cloud is not sufficient to 
allow us to extract information about the tree parameters 
(accurately). In future work by using the navigation pose 
information we shall be able to generate cloud point data 
using geodetic coordinate more quickly. We will also 
investigate changing the density matching algorithm to allow 
for the generation of denser point clouds.
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