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ABSTRACT

Merge conflicts often occur when developers concurrently change the same code
artifacts. While state of practice unstructured merge tools (e.g git merge) try to automati-
cally resolve merge conflicts based on textual similarity, semistructured and structured
merge tools try to go further by exploiting the syntactic structure and semantics of the
involved artifacts. Previous studies compare semistructured and structured merge with
unstructured merge concerning the number of reported conflicts, showing, for most projects
and merge situations, a reduction in favor of semistructured and structured merge. This
evidence, however, might not be sufficient to justify industrial adoption of advanced merge
strategies such as semistructured and structured merge. The problem is that previous
studies do not investigate whether the observed reduction on the number of reported
conflicts actually leads to integration effort reduction (Productivity) without negative
impact on the correctness of the merging process (Quality). Besides, it is unknown how
semistructured merge compares with structured merge. So, to decide whether we should
replace our state of practice unstructured merge tools, we need to compare these merge
strategies and understand their differences. We then first compare unstructured and
semistructured merge. Our results and complementary analysis indicate that the number
of false positives is significantly reduced when using semistructured merge when compared
to unstructured merge. However, we find no evidence that semistructured merge leads to
fewer false negatives. Driven by these findings, we implement an improved semistructured
merge tool that further combines both approaches to reduce the false positives and false
negatives of semistructured merge. Semistructured merge has shown significant advantages
over unstructured merge, especially as implemented by our improved tool. However, before
deciding to replace unstructured tools by semistructured merge, we need to investigate
whether structured merge is a better alternative than semistructured merge. So, we com-
pare semistructured and structured merge. Our results show that semistructured and
structured merge differ on 24% of the scenarios with conflicts. Semistructured merge
reports more false positives, whereas structured merge has more false negatives. Finally, we
observe that adapting a semistructured merge tool to resolve a particular kind of conflict
makes semistructured and structured merge even closer. Overall, our findings suggests
that semistructured merge is a better replacement of unstructured tools for conservative
developers, having significant gains with a closer behavior to unstructured tools than
structured merge. Besides that, practitioners might be reluctant to adopt structured merge
because of the observed performance overhead and its tendency to false negatives. So,
when choosing between semistructured and structured merge, semistructured merge would
be a better match for developers that are not overly concerned with semistructured extra
false positives.

Keywords: Software merging. Collaborative development. Version control systems.



RESUMO

Conflitos de integração frequentemente ocorrem quando os desenvolvedores alteram si-
multaneamente os mesmos artefatos de código. Enquanto que as ferramentas de integração
não-estruturadas, que representam o estado da prática (por exemplo, git merge), tentam
resolver conflitos automaticamente, baseadas em semelhança textual, as ferramentas de
integração semiestruturada e estruturada tentam ir além explorando a estrutura sintática e
a semântica dos artefatos envolvidos. Estudos anteriores comparam as estratégias semiestru-
turada e estruturada com a não-estruturada em relação ao número de conflitos reportados,
mostrando, para a maioria dos projetos e situações de integração, uma redução a favor das
estratégias semiestruturada e estruturada. O problema desses estudos anteriores é que eles
não investigam se a redução observada no número de conflitos realmente leva à redução
do esforço de integração (Produtividade) sem impacto negativo na corretude do processo
de integração (Qualidade). Além disso, não se sabe como a estratégia semiestruturada
se compara com a estruturada. Para ajudar os desenvolvedores a decidir que tipo de
ferramenta usar e entender melhor suas diferenças, conduzimos dois estudos empíricos. No
primeiro, comparamos a integração não-estruturada e a semiestruturada. Nossos resultados
e análises complementares indicam que o número de falsos positivos é significativamente
reduzido ao usar a estratégia semiestruturada quando comparado à não-estruturada. No
entanto, nós não encontramos evidências de que a integração semiestruturada leva a menos
falsos negativos. Motivados por essas descobertas, implementamos uma ferramenta de
integração semiestruturada que combina ainda mais as duas estratégias para reduzir os
falsos positivos e os falsos negativos da integração semiestruturada. No segundo estudo,
comparamos as integrações semiestruturada e estruturada. Nossos resultados mostram que
as integrações semiestruturada e estruturada diferem em 24% dos cenários com conflitos. A
estratégia semiestruturada reporta mais falsos positivos, enquanto a estruturada tem mais
falsos negativos. Finalmente, observamos que adaptar uma ferramenta semiestruturada
para resolver um determinado tipo de conflito torna-a ainda mais próxima à integração
estruturada. No geral, nossas descobertas sugerem que a estratégia semiestruturada é
uma melhor alternativa à não-estruturada para desenvolvedores conservadores, possuindo
ganhos significativos com um comportamento mais próximo ao das ferramentas não-
estruturadas do que ferramentas estruturadas. Além disso, os usuários podem relutar em
adotar a estratégia estruturada por causa do seu impacto no desempenho e sua tendência
a falsos negativos. Dessa forma, a estratégia semiestruturada seria mais apropriada para
desenvolvedores que não são muito preocupados com seus falsos positivos extras.

Palavras-chaves: Integração de Software. Desenvolvimento colaborativo. Sistema de
controle de versões.
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1 INTRODUCTION

In a collaborative software development environment, developers often independently
perform tasks, using individual copies of project files. So, when integrating contributions
from each task, one might have to deal with conflicting changes, and dedicate substantial
effort to resolve conflicts. These conflicts might be detected during merging, building,
and testing, impairing development productivity, since understanding and resolving con-
flicts often is a demanding and tedious task (ZIMMERMANN, 2007; BRUN et al., 2011;
BIRD; ZIMMERMANN, 2012; KASI; SARMA, 2013). Perhaps worse, conflicts might not be
detected during integration and testing, escaping to production releases and compromising
correctness.

To better detect and resolve code integration conflicts, researchers have proposed
tools that use different strategies to decrease integration effort and improve integration
correctness. For merging software code artifacts, unstructured, line-based merge tools are
the state of practice, relying on purely textual analysis to detect and resolve conflicts (MENS,
2002; ZIMMERMANN, 2007; KHANNA; KUNAL; PIERCE, 2007). Structured merge tools are
programming language specific and go beyond simple textual analysis by exploring the
underlying syntactic structure and static semantics when integrating programs (APEL;

LESSENICH; LENGAUER, 2012). Semistructured merge tools attempt to hit a sweet spot
between unstructured and structured merge by partially exploring the syntactic structure
and static semantics of the artifacts involved (APEL et al., 2011; CAVALCANTI; BORBA;

ACCIOLY, 2017). For program elements whose structure is not exploited, like method bodies
in Java, semistructured merge tools simply apply the usual textual resolution adopted by
unstructured merge.

Previous studies compare these merge strategies with respect to the number of reported
conflicts, showing, for most but not all projects and merge situations, reduction in favor of
semistructured (APEL et al., 2011; CAVALCANTI; ACCIOLY; BORBA, 2015) and structured
merge (APEL; LESSENICH; LENGAUER, 2012). For instance, in merge situations where
semistructured merge reduces the number of reported conflicts, Apel et al. (2011) show an
average reduction of 34% compared to unstructured merge. In a replication of this study, we
find a larger average reduction of 62%, again in favor of semistructured merge (CAVALCANTI;

ACCIOLY; BORBA, 2015). This reduction is mainly due to the automatic resolution of
obvious unstructured merge false positives that are reported when, for example, developers
add different and independent methods to the same file text area.

This evidence, however, is not enough to justify industrial adoption of semistructured or
structured merge, and to convince practitioners to replace their merge tools. The problem
is that previous studies do not investigate whether the observed reduction of reported
conflicts actually leads to integration effort reduction (productivity) without negative
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impact on the correctness of the merging process (quality). Although one might expect
only accuracy benefits from the extra structure exploited by semistructured and structured
merge, we have no guarantees that this is the case. This means that the observed reduction
could have been obtained at the expense of missing actual conflicts between developers
changes (false negatives). In that case, semistructured and structured merge users would
be simply postponing conflict detection to other integration phases such as building and
testing, or even letting more conflicts escape to users. Moreover, given that the set of
conflicts reported by semistructured and structured merge in previous studies is often
smaller but not a subset of the set reported by unstructured merge, they could even be
introducing other kinds of false positives that might be harder to resolve than the ones
they eliminate. Finally, it is unknown how semistructured merge compares with structured
merge. Thus, if we want to move forward on the state of the practice on merge tools, and
figure out whether we should replace them, it is important to have solid evidence and
further knowledge about the differences among these merge strategies.

So, to help developers decide which kind of tool to use, and to better understand how
merge tools could be improved, we first compare unstructured and semistructured merge,
identifying false positives (conflicts incorrectly reported by one strategy but not by the
other) and false negatives (conflicts correctly reported by one strategy but missed by the
other) (CAVALCANTI; BORBA; ACCIOLY, 2017). In a sample of more than 30,000 merge
scenarios from 50 projects, we found that the number of false positives is significantly
reduced when using semistructured merge, and we found evidence that its false positives
are easier to analyze and resolve than those reported by unstructured merge. On the other
hand, we found no evidence that semistructured merge leads to fewer false negatives, and
we argue that they are harder to detect and resolve than unstructured merge false negatives.
Although our comparison process favors unstructured merge whenever we are not able to
precisely classify a reported conflict, this last finding, and the associated lack of evidence
in support of semistructured merge, might justify non adoption of semistructured merge
in practice. Nevertheless, our findings shed light on how merge tools can be improved.
So, we benefit from that and implement an improved semistructured merge tool that
further combines both merge strategies to reduce the false positives and false negatives
of semistructured merge. We found evidence that the improved tool, when compared to
unstructured merge in our sample, reduces the number of reported conflicts by half, has
no additional false positives, has at least 8% fewer false negatives, and is not prohibitively
slower.

Although we found evidence that semistructured merge has significant advantages over
unstructured merge, it is imperative to investigate how semistructured merge compares to
structured merge before deciding which kind of tool to use. So, in a second empirical study,
we assess how often semistructured and structured merge report different results, and we
also identify false positives and false negatives (CAVALCANTI et al., 2019). Surprisingly, in
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a sample of more than 40,000 merge scenarios from more than 500 projects, we found that
the two strategies rarely differ for the scenarios in our sample. Considering only scenarios
with conflicts, however, the tools differ in about 24% of the cases. A closer analysis reveals
they differ when integrating changes that modified the same textual area in the body of a
declaration, but the modifications involve different abstract syntax tree (AST) nodes in the
structured merge representation of that body. They also differ when changes in the same
AST node correspond to different text areas in the semistructured merge representation of
the same declaration body. We also found that semistructured merge reports false positives
in more merge scenarios (66) than structured merge (6), whereas structured merge has
more scenarios with false negatives (45) than semistructured merge (8).

Overall, our findings suggest that semistructured merge is a better replacement of state
of practice unstructured tools for conservative developers, having significant gains with a
closer behavior to unstructured tools than structured merge. Besides that, practitioners
might be reluctant to adopt structured merge because of the observed performance
overhead and its tendency to false negatives. So, when choosing between semistructured
and structured merge, semistructured merge would be a better match for developers that
are not overly concerned with semistructured extra false positives. Finally, adapting a
semistructured merge tool to report conflicts only when changes occur in the same lines
(resolving conflicts caused by changes to consecutive lines) might be the way to achieve a
sweet spot in the relation between structure and accuracy in non-semantic merge tools.

The remainder of this document is organized as follows:

• In Chapter 2, we present the essential concepts used throughout this work;

• In Chapter 3, we describe our first empirical study, comparing unstructured and
semistructured merge with respect to the occurrence of false positives and false
negatives. We then present our improved semistructured tool and how it compares
to unstructured and original semistructured merge. This chapter is published in
Cavalcanti, Borba e Accioly (2017), with the co-authoring of Paola Accioly and
Paulo Borba. They both reviewed and guided this work. They helped in understating
semistructured merge in detail too. Paola Accioly also helped with the elaboration
of the mining scripts.

• In Chapter 4, we describe our second empirical study, assessing how often semistruc-
tured and structured merge report different results, and identifying false positives
and false negatives between these two merge strategies. This chapter is published in
Cavalcanti et al. (2019), in collaboration with Paulo Borba, Georg Seibt and Sven
Apel. They reviewed and provided essential feedback and guidance. Georg Seibt and
Sven Apel were fundamental in understanding structured merge in depth. Georg
Seibt and Paulo Borba also helped with the extensive manual inspections necessary
in this work.
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• In Chapter 5, we present our concluding remarks, and future and related work.
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2 BACKGROUND

In this chapter, we explain the main concepts used in this work. Initially, in Section 2.1,
we discuss the fundamentals of version control systems (VCSs). In this context, we explain
how software artifacts are merged in Section 2.2. Afterwards, we describe characteristics
of the unstructured, semistructured, and structured merge tools, and define the criteria
we adopt to compare these merge strategies in Section 2.3. Finally, we present the role of
Continuous Integration in Section 2.4.

2.1 VERSION CONTROL SYSTEMS

Collaborative software development is only possible thanks to software configuration
management (SCM) and the consequent use of VCSs. In particular, SCM manages the
evolution of large and complex software systems (TICHY, 1988). It provides techniques and
tools to assist developers in performing coordinated changes to software products. These
techniques include version control mechanisms to deal with the evolution of a software
product into many parallel versions and variants that need to be kept consistent and from
which new versions may be derived via software merging (CONRADI; WESTFECHTEL, 1998).
This became necessary when there were several developers working together in projects,
and a standardized way of keeping track of the changes were needed. If there would be no
control, the developers would overwrite each other’s changes (ESTUBLIER et al., 2002). In
practice, VCSs allow developers to download and modify files in their local working area,
which is periodically synchronized with the repository that contains the main version of
the files. How the repositories are disposed and how the developers access them determine
the version control paradigm.

In a Centralized Version Control System (CVCS), such as CVS (CVS, 2019) and
Subversion (SUBVERSION, 2019), there is one central repository, which can accept code,
and everyone synchronizes their work with it (see Figure 1). Relying on a client-server
architecture, a number of developers are consumers of that repository and synchronize
to that one place. This means that if two developers are working based on the same
repository and both make changes, the first developer to send their changes can do so
with no problems. The second developer must merge in the first one’s work before sending
changes, so as not to overwrite the first developer’s changes.

Conversely, a Distributed Version Control System (DVCS), such as Mercurial (MERCU-

RIAL, 2019) and Git (GIT, 2019), relies on a peer-to-peer architecture. The main idea is,
instead of getting and sending data to a single server, each developer holds its own reposi-
tory, including project data and history, and synchronizes on demand with repositories
maintained by other developers (see Figure 2). Rigby et al. (1996) makes an interesting
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Figure 1 – Centralized version control paradigm.

differentiation between CVCSs and DVCSs: "With CVCSs changes flow up and down (and
publicly) via a central repository. In contrast, DVCSs facilitate a style of collaboration
in which work output can flow sideways (and privately) among collaborators, with no
repository being inherently more important or central.” DVCSs have seen an increase in
popularity relative to traditional CVCSs, mainly on the open source community (BIRD et

al., 2009; BRINDESCU et al., 2014; GOUSIOS; PINZGER; DEURSEN, 2014).

Figure 2 – Distributed version control paradigm.

Regardless of the VCS paradigm, they allow the creation of parallel versions of a



18

software system. The challenge, however, is in figuring out how to merge them back into
a single version (PERRY; SIY; VOTTA, 2001). While the VCS’s synchronization protocol
allows rapid parallel development, it also allows developers to make conflicting changes
inadvertently.

2.2 MERGING SOFTWARE ARTEFACTS

To merge multiple source code artifacts, it is essential to compare them and extract the
differences. For this purpose, a two-way merge attempts to merge two revisions directly
by comparing two files without using any information from the VCS. Therefore, each
difference between the two revisions leads to a conflict since it cannot decide whether only
one of the revisions introduced a change to the code or both. It also cannot determine
whether a certain program element has been created by one revision or has been deleted
by the other one. In turn, with three-way merge, which is used in every practical VCS,
the information in the common ancestor is also used during the merging process. As a
consequence, three-way merge has more information to decide where a change came from
and whether it creates a conflict or not (PERRY; SIY; VOTTA, 2001; O’SULLIVAN, 2009).

Conflicts appear not only as overlapping textual edits, but also as subsequent build
and test failures (ZIMMERMANN, 2007; BRUN et al., 2011; aES; SILVA, 2012; KASI; SARMA,
2013). These conflicts emerge because developers are not aware of others’ changes, and
conflicts become more complex as changes grow without being integrated and as further
developments are made. Some developers even do not merge as frequently as desirable
because of difficult merges, and rush their tasks to avoid being the ones responsible for
the merge (SOUZA; REDMILES; DOURISH, 2003). To prevent conflicts, tools using different
strategies have also been proposed (BRUN et al., 2011; Sarma; Redmiles; van der Hoek, 2012;
aES; SILVA, 2012; KASI; SARMA, 2013). However, it is not always possible to detect conflicts
before code integration, and as a consequence, when the developers decide to merge their
changes, one likely has to dedicate substantial effort to resolve the conflicts, often using
some merge tool.

Although VCSs have evolved over the years, together with tools and practices to better
support collaborative software development, merge tools have not evolved much. The
state of the practice is still textual, line-based, unstructured merge based on the diff3
algorithm (MENS, 2002). When merging files, unstructured merge tools typically compare,
line by line, two modified files in relation to their common ancestor (the version from which
they have been derived) and detect sets of differing lines (chunks), during the three-way
merging process. For each chunk, such merge tools check whether the three revisions have
a common text area that separates chunks’ content. If such separator is not found, the tool
reports a conflict (KHANNA; KUNAL; PIERCE, 2007). The benefits of a textual merge are its
generality and its performance. It can be applied to all non-binary files, even to very large
ones, so there is only one tool needed regardless of which programming languages are used
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within a project. If the amount of changes is very small in comparison to the input files, or
if there are no changes at all, this strategy is very effective. However, as this kind of merge
does not utilize knowledge about the structure of the input documents and the syntax of
respective languages, it might report too many unnecessary conflicts, and it might produce
syntactically incorrect output (HORWITZ; PRINS; REPS, 1989; BUFFENBARGER, 1995). For
instance, (re)formatting of code produces unnecessary conflicts in Java when unstructured
merge is used, because the position of brackets and the indentation style (e.g., tabs or
spaces) might be different between the merged versions.

Conversely, tools that leverage and take advantage of information on the syntax and
semantics of the programs involved in the merging process to resolve as many conflicts
as possible have been proposed (WESTFECHTEL, 1991; GRASS, 1992; BUFFENBARGER,
1995; APIWATTANAPONG; ORSO; HARROLD, 2007; APEL; LESSENICH; LENGAUER, 2012;
LESSENICH et al., 2017; ZHU; HE; YU, 2019). Structured merge exploits language-specific
knowledge and attempts to compare and merge software artifacts more precisely than
unstructured merge. The underlying data structure for structured merge is usually ASTs,
which requires the merge tool to parse the programs in advance and generate the cor-
responding trees (MENS, 2002). Comparing two programs for strucutured merge means
traversing trees and finding the differing nodes (APEL; LESSENICH; LENGAUER, 2012). As
the merge is applied to the trees after parsing the program, code formatting is no longer
relevant. When the merging process has finished, the output document is generated by
pretty-printing the AST. However, this strategy has disadvantages as well. Structured
merge is much slower than textual merges, mostly due to the complexity of their tree
algorithms. It requires the input files to be syntactically correct, otherwise the parser is
not able to build the AST. Furthermore, it is restricted to certain file types since it uses
syntactic knowledge of the programming languages in which the programs to be merged
are written. So, supporting additional programming languages might require a lot of work.
Changes in the specification of a language might break the correctness of a merge tool,
which then must be subsequently adapted to the specification (e.g. from Java 6 to 8). Also,
by default, the original code formatting done by the developers is lost after the structured
merge.

Finally, in an attempt to hit a sweet spot between unstructured and structured
merge, semistructured merge (APEL et al., 2011) exploits only part of the language syntax
and semantics. Such tools represent part of the program elements as trees, and rely on
information about how nodes of certain types (methods, classes, etc.) should be merged.
Such trees include some but not all syntactic structural information. Concerning Java, for
example, classes, methods and fields appear as nodes in the tree, whereas statements and
expressions in method (or constructor) declarations appear as plain text in tree leaves.1 To
merge leaves, semistructured merge simply invokes unstructured merge. The semistructured
1 From now on, we use method declarations to refer both to method and constructor declarations.
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merge algorithm is itself implemented via superimposition of trees, working recursively and
beginning at the root nodes (APEL; LENGAUER, 2008). The principle of superimposition
is illustrated in Figure 3. The example illustrates the process of trees superimposition
with the corresponding code. The original version (BasicStack) is composed with a derived
version (TopOfStack). The result is a new version (CompStack), that is represented by
the superimposition of the previous trees. The nodes util and Stack are composed with
their counterparts, and their subtrees (i.e., their methods and fields) are merged in turn.
Note that nodes are matched and merged based on structural and nominal similarities.
This approach implies that method bodies only have to be merged if the signature of two
methods is identical. In this case, unstructured merge is launched to merge the method
bodies.
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Figure 3 – Superimposition of Stack class declarations, based on a example of Apel e
Lengauer (2008). Bold lines indicate added nodes.
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2.3 COMPARING MERGE STRATEGIES

To compare these merge strategies, and decide if we should replace our state of practice
unstructured tools by semistructured or structured merge, we could simply measure how
often they are able to merge contributions. The preference would be for the strategy that
most often generates a syntactically valid program that integrates both contributions.
Under this criteria, semistructured and structured merge would be superior to traditional
unstructured merge because they often report fewer conflicts, as shown in previous
studies (APEL et al., 2011; APEL; LESSENICH; LENGAUER, 2012; CAVALCANTI; ACCIOLY;

BORBA, 2015).
Given that merging contributions is the main goal of any merge tool, in principle

that criterion could be satisfactory. However, in practice merge tools go slightly beyond
that and might detect other kinds of conflicts that do not preclude them from generating
a valid program, but would lead to build or execution failures. So, from a developer’s
perspective, it is important to use a comparison criterion that considers not only the
capacity of generating a merged program, but also the possibility of missing or early
detecting conflicts that could appear during building or execution.

Consequently, we adopt, and we are guided by a broader notion of conflict. We rely
on the notion of interference defined by Horwitz, Prins e Reps (1989): two contributions
(changes) to a base program interfere when the specifications they are individually supposed
to satisfy are not jointly satisfied by the program that integrates them; this often happens
when there is, in the integrated program, data or control flow between the contributions.
We then say that two contributions to a base program are conflicting when there is no
valid program that integrates them and has no interference.

2.4 CONTINUOUS INTEGRATION

Since it is not always possible to prevent the occurrence of conflicts, nor always properly
resolve them automatically, regardless of the kind of adopted merge tool, practitioners need
other tools and practices to better support collaboration. In the context of collaborative
software development, Continuous Integration (CI) is, nowadays, one of the mostly adopted
software engineering practices.

(FOWLER, 2006) defines Continuous Integration (CI) as "a software development practice
where members of a team integrate their work frequently, usually each person integrates at
least daily— leading to multiple integrations per day". To enable this practice, each merged
program should be verified by an automated build — including tests — to detect build
and test errors as quick as possible. According to (ZHAO et al., 2017), CI practices have the
potential to speed up development and help maintain code quality. CI has originally arisen
as one of the twelve Extreme Programming (XP) practices (BECK, 2000), and it is seeing a
broad adoption with the increasing popularity of decentralized VCSs such as Git and their
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web-based repository hosts such as GitHub. Among the most popular GitHub-compatible,
cloud-based CI tools are Travis CI (TRAVIS, 2019) and Jenkins (JENKINS, 2019).

A CI build process may be composed of many phases, these include a build and
compilation phase, and a testing phase. The process is sequential; if a phase fails, all
subsequent phases are aborted. The build and compilation phase basically attempts to
translate a program into a form in which it can be executed by a computer. Problems
such as source code not respecting the surrounding programming language syntax (for
instance, a missing semicolon in the end of a line in Java), or an attempt to use a method
or variable not declared yet in the program, are verified in this phase, and would lead
the build process to fail. During the build and compilation phase, the dependencies of
a program are also verified aiming to build the software as an artifact. If a dependency
could not be satisfied (for instance, due to unavailability of dependency repositories), the
build process will break. (SEO et al., 2014), for instance, verifies that around 65% of all
build process break due to problems related to unsatisfied dependencies.

After the build and compilation phase, the testing phase is responsible for verifying
whether the merged program presents the expected behavior. Testing phase is not manda-
tory allowing some projects to skip this important quality verification. A report, using
Travis information, shows that 20% of all projects do not include tests in their build
process (in Java this percentage increases to 31%) (BELLER; GOUSIOS; ZAIDMAN, 2017).
For those that include, a number of test types, such as unit, integration and system tests
might be executed. If any test fails or presents errors during its execution (for example, an
exception not handled), the build process breaks and reports the failed test case.

Among the services and tools to support CI, Travis CI (TRAVIS, 2019) is the most used
service offering a free and online service supporting projects hosted on GitHub. Its use
and popularity have increased over time because of its simplicity and support for different
programming languages. A Travis build process starts with an external event (pushes or
pull requests) sent to a GitHub repository properly configured to use Travis CI. When
such event occurs, Travis tries to build the project according to the new changes in the last
commit, executing the phases explained before. Pushes and pull requests might involve
a collection of commits, but only the most recent is built in the moment they are sent
to GitHub. If a problem occurs in the build and compilation phase, Travis returns an
errored status. In case a problem occurs in the testing phase, Travis returns a failed status.
Finally, if the build process does execute all phases without any problem, the passed status
is achieved, meaning the Travis CI build process was successfully performed. Besides the
final build process status, for each build, a log is generated showing how the build process
performed. Part of this log is composed by the output generated by the project’s adopted
build manager (e.g Maven, Gradle and Ant).
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3 EVALUATING AND IMPROVING SEMISTRUCTURED MERGE

To decide whether we should replace our merge tools, we need to compare the merge
strategies and understand their differences, strengths and weaknesses. So, we first compare
unstructured and semistructured merge. Previous studies (APEL et al., 2011; CAVALCANTI;

ACCIOLY; BORBA, 2015) provide evidence that semistructured reduces the number of
reported conflicts when compared to unstructured merge. This reduction is mainly due
to the automatic resolution of obvious unstructured merge false positives. However,
semistructured merge might have its own false positives, or misses actual conflicts (false
negatives). This can make developers reluctant to replace unstructured by semistructured
merge. So, we go further than those previous studies, and we compare these two merge
strategies in terms of false positives and false negatives, based on the comparison criteria
described in Section 2.3.

The challenge associated to the adopted comparison criteria is establishing ground
truth for integration conflicts (and therefore false positives and false negatives) between
development tasks, as this is not computable in this context (BERZINS, 1986; HORWITZ;

PRINS; REPS, 1989). Semantic approximations through static analysis are imprecise and
often too expensive, especially in the case of information flow analysis. Experts who
understand the integrated code (possibly developers of each analyzed project) could
determine truth, but not without the risk of misjudgment. As these options would imply
into a reduced sample and limited precision guarantees, we prefer to relatively compare
the two merge strategies with regard to the occurrence of false positives and false negatives
of one strategy in addition to the ones of the other. We do that by simply analyzing when
the merge strategies report different results for the same merge scenario— each scenario
comprehends the three revisions involved in a three-way merge. We identify conflicts
reported by one strategy but not by the other (false positives), and conflicts reported by
one strategy but missed by the other (false negatives).

3.1 HEURISTICS FOR FALSE POSITIVES AND FALSE NEGATIVES

To better understand that notion of additional false positives and false negatives,
consider the diagram in Figure 4. We illustrate the set of conflicts reported by unstructured
(P(UN )) and semistructured (P(SS)) merge. Unstructured merge’s set (in yellow) includes
its false positives, represented in the bottom part of the yellow circle. This is the union
of the false positives reported by both strategies (FP(UN |SS)) with the false positives
reported only by unstructured merge (aFP(UN )). So we say aFP(UN ) is the set of
additional false positives of unstructured merge. Semistructured merge’s set (in green)
includes conflicts detected by this strategy but missed by unstructured merge (aFN (UN ));
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these are the additional false negatives of unstructured merge. Similarly, semistructured
merge’s set includes its additional false positives (aFP(SS)), and unstructured merge’s set
includes conflicts detected by this strategy but missed by semistructured merge (aFN (SS)).
Finally, the sets also include true positives (actual conflicts) common to both strategies
(TP(UN |SS)). For simplicity, we do not name the sets of true and false negatives common
to both strategies. As our comparison is relative, the common cases do not interest us.

Figure 4 – Sets of conflicts reported by unstructured and semistructured merge. Notation
explained in the text.

To guide our relative comparison, we first tried to understand the differences in the
behavior of representative tools of both strategies. As semistructured merge tool, we use the
original implementation of FSTMerge (APEL et al., 2011)— at the time of the experiment,
the only available semistructured merge tool— with the annotated Java grammar they
provide supporting Java 5, following previous studies (APEL et al., 2011; CAVALCANTI;

ACCIOLY; BORBA, 2015). Besides that, we arbitrarily chose the Kdiff3 tool, which is one of
the many unstructured merge tools available, but is a representative implementation of the
diff3 algorithm.1 We systematically analyzed their implemented algorithms, and empirically
assessed a small sample of Java merge scenarios to observe when they behave differently,
and how this might lead to additional false positives and false negatives. In particular, for
each conflict reported by unstructured merge, we checked whether semistructured merge
also reported that conflict, and vice versa. In case of divergence, we judged if the conflict
was a false positive or a false negative. In the following sections, we describe the observed
kinds of additional false positives and false negatives of each merge strategy. Although we
use toy examples for simplicity, the inspiration comes from concrete merge scenarios from
non trivial open source projects.

3.1.1 Additional False Positives of Unstructured Merge

One of the main weaknesses of unstructured merge is its inability to detect re-
arrangeable declarations. In Java, for instance, a change in the order of method and
1 <http://kdiff3.sourceforge.net/>

http://kdiff3.sourceforge.net/
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field declarations has no impact on program behavior, but unstructured merge might
report false positives— the so-called ordering conflicts— when developers add declarations
of different elements to the same part of the text. Figure 5 illustrates this situation: a
reported conflict caused by different developers adding two different methods (sum and
sub, separated by typical conflict markers) to the same text area. In contrast, this is not
reported as a conflict by semistructured merge. By exploiting knowledge about Java syntax
and static semantics, semistructured merge identifies commutative and associative declara-
tions, and understands that the changes to be merged can be integrated because they are
related to different nodes. As discussed later, not all ordering conflicts are (additional)
false positives of unstructured merge. For example, import declarations are often, but not
always, re-arrangeable.

Figure 5 – Unstructured merge additional false positive: ordering conflict.

3.1.2 Additional False Positives of Semistructured Merge

Renamings challenge semistructured merge, as illustrated in Figure 6, which shows a
false positive renaming conflict: one of the developers renamed the calculate method to
sum, whereas the other developer kept the original signature but edited the method body.
Semistructured merge reports this as a conflict because its algorithm interprets method
renaming as method deletion, consequently assuming that a developer deleted the method
(calculate in this case) changed by the other. In particular, to check whether a base
declaration was changed by both developers, the merge algorithm tries to match nodes by
the type and identifier of the corresponding declaration. In Java, for instance, a method
is identified by its name and the types of its formal parameters. So, when an element is
renamed, the merge algorithm is not able to map the base element to the newly named
element in the changed version of the file, and assumes the element was deleted. Note that
the sum method does not appear in the conflict; that is, it is not surrounded by the conflict
markers (the vertical bars and equal signs separate base code from code to be merged).
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Figure 6 – Semistructured merge additional false positive: renaming conflict.

In the illustrated case, merging the new signature with the new body would be a safe
valid integration of both contributions; there is no conflict because the changes do not
affect the developers’ expectations: the method will behave as desired by one developer,
and will be called as wanted by the other developer. This is exactly what unstructured
merge does. It does not report a conflict because the changes occur in distinct text areas;
in the example, the “{" in line 9 separates the two changed areas. If this character was in
line 8, unstructured merge would also report a conflict, and this would be a common false
positive. This helps to explain why a renaming conflict involving a field declaration is an
additional false positive only when the declaration is split into multiples lines of code.

Renaming conflicts are often false positives, but they might be true positives too.
For example, consider the case where one of the developers renames a method, and the
other developer not only changes the same method body but also adds new calls to it.
Merging the new signature with the new body, which corresponds to the integration of
both contributions, would lead to an invalid program that calls an undeclared method.
Although semistructured merge does not actually realize that the merge would lead to an
invalid program, it soundly does not perform the merge and reports a conflict. In contrast,
unstructured merge would unsoundly merge the contributions provided there is a separator
as in the illustrated example.

3.1.3 Additional False Negatives of Unstructured Merge

The additional false negatives of unstructured merge are mostly caused by failing to
detect that the contributions to be merged add duplicated declarations. For example,
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unstructured merge reports no conflict when merging developers contributions that add
declarations with the same signature to different areas of the same class. This leads to an
invalid resulting program with a compiler duplicated declaration error. Figure 7 illustrates
this situation: both developers added methods with the same signature but with different
bodies, in clearly separated areas, not leading to an unstructured merge conflict. As
semistructured merge matches elements to be merged by their type and identifier, it would
detect the problem and correctly report a conflict.

Figure 7 – Unstructured merge additional false negative: duplicated declaration error.

Besides that, renaming conflicts might also be additional false negatives of unstructured
merge. As explained at the end of the previous section, renaming conflicts detected by
semistructured merge might be true positives. But these would only be detected by
unstructured merge in case the changes occur in the same text area. For instance, consider
an example similar to the one in Figure 6, but where developer A also added a call to
method calculate in an area not changed by developer B. As there are separators between
developers changes, unstructured merge would erroneously not report a conflict.

3.1.4 Additional False Negatives of Semistructured Merge

As mentioned in Section 3.1.1, ordering conflicts involving import declarations are often,
but not always, false positives. In fact, merging developers contributions that add import
declarations to the same text area (so unstructured merge reports conflict) might lead to
additional false negatives of semistructured merge, as it assumes that such declarations
are always re-arrangeable. For example, this might lead to a type ambiguity error (see
Figure 8) when the import declarations involve members with the same name but from
different packages. In the illustrated case, both imported packages have a List class.
As the import declarations appear in the same or adjacent lines of code, unstructured
merge correctly reports a conflict, whereas semistructured merge lets the conflict escape.
In other situations, semistructured merge’s assumption about import declarations might
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lead to behavioral errors instead. In the illustrated example, suppose that developer A
had written import java.awt.List. As the ambiguous members might share methods
with the same signature but different behaviors, the presence of both declarations might
affect class behavior. In the example, both List members have add methods behaving
differently. Again, semistructured merge would miss the conflict, which would be reported
by unstructured merge.

Figure 8 – Semistructured merge additional false negative: type ambiguity errors.

Besides the issue with import statements, semistructured merge has additional false
negatives due to the way it handles initialization blocks. Since it uses elements types and
identifiers to match nodes, the algorithm is unable to match nodes without identifiers.
This leads to problems like the one illustrated in Figure 9; as the two independently
added initialization elements have no identifier, semistructured merge cannot match them,
and therefore keeps both. A conflict should have been reported so that developers could
negotiate how the class field should be initialized. In case the initialization blocks are
added to the same text area, unstructured merge reports a conflict.

Semistructured merge has also other kinds of additional false negatives. Although
they do not conform to a small set of recurring syntactic patterns, they all result from
unstructured merge accidentally detecting conflicts that would otherwise escape if changes
were performed in slightly different text areas. For example, this might occur when
developers change or add, in the same text area, different but dependent declarations. In
particular, we observed that when one developer added a new declaration that references
an existing one edited by the other developer. In such cases, the developer who added the
new declaration might not be expecting the changes made to the referenced one, possibly
leading to an improper behavior on the merged program. This is illustrated in Figure 10,
where the new method triple references the calculate method, which was changed
by the other developer. Although one might assume that methods provide the lowest
level of information hiding and modularity (with its signature as interface), in practice,
an unchanged method interface is not sufficient to ensure that the method behavior is
also unchanged. So, we consider this situation as a semistructured merge additional false
negative. In fact, as the changes correspond to different elements (technically, different
nodes in the semistructured merge tree), semistructured merge reports no conflict. In
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Figure 9 – Semistructured merge additional false negative: initialization blocks.

contrast, unstructured merge might accidentally detect such conflicts when the changes
are in the same text area.

Figure 10 – Semistructured merge additional false negative: new element referencing edited
one.

3.1.5 Common False Positives and False Negatives

The kinds of false positives and false negatives described in the previous sections
correspond only to the differences between semistructured and unstructured merge algo-
rithms. As our interest here is to compare both strategies relatively— not to establish how
accurate they are in relation to a general notion of conflict— we do not need to measure
the occurrence of false positives and negatives when both strategies behave identically. For
example, when processing changes inside method bodies, semistructured merge actually
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invokes unstructured merge, so they present common false positives and false negatives.
As an example of a common false positive, consider that developers edit consecutive lines
in a method body, but one of them does not change behavior (simply refactors or changes
spacing). A common false negative would be edits to different method lines, in different
areas of the body, but with a harmful data flow dependency between the statements in
such lines. Besides that, it is important to note that unstructured merge might accidentally
report renaming false positives in case changes occur in the same area, or miss the same
kinds of semistructured merge false negatives described in the previous section, in case
changes are not in the same area. However, these cases do not interest us because both
merge tools would behave identically. Although important for establishing accuracy in
general, these are not useful for relatively comparing merge strategies.

3.2 EMPIRICAL EVALUATION

Our evaluation investigates whether the reduction in the number of conflicts by using
semistructured merge, in relation to unstructured merge (APEL et al., 2011; CAVALCANTI;

ACCIOLY; BORBA, 2015), actually leads to integration effort reduction (productivity)
without negative impact on the correctness of the merging process (quality). We do that
by reproducing merges from the full development history of different GitHub projects,
while collecting evidence about the occurrence of conflicts, and the kinds of additional false
positives and false negatives described in the previous section. In particular, we investigate
the following research questions:

• RQ1 When compared to unstructured merge, does semistructured merge reduce
unnecessary integration effort by reporting fewer false positives?

• RQ2 When compared to unstructured merge, does semistructured merge compromise
integration correctness by having more false negatives?

To answer RQ1, we compute the metric overestimated number of additional false positives
of semistructured merge— aFP(SS) (false positives reported by semistructured merge and
not reported by unstructured merge). We also compute the metric underestimated number
of additional false positives of unstructured merge— aFP(UN) (false positives reported by
unstructured merge and not reported by semistructured merge). As the metrics names
suggest, they are approximations. To consider a large sample, as discussed in Section 3.1, we
aim to evaluate the merge strategies by computing the number of diverging false positives
and false negatives of each strategy. However, precisely computing that is hard, as discussed
later in this section. Nevertheless, if we find that an overestimated number is inferior to
an underestimated number, we can conclude that the precise value represented by the
overestimated number is lower than the precise value represented by the underestimated
one. This was indeed observed in dry runs of our study, giving us confidence that we
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could adopt this design. As different reported conflicts might demand different resolution
effort (MENS, 2002; PRUDêNCIO et al., 2012; SANTOS; MURTA, 2012), comparing conflict
numbers might not be sufficient for understanding the impact on integration effort. So, to
better understand the effort required to resolve different kinds of false positives, we conduct
a number of complementary analyses to estimate the impact on integration effort. Our
goal with these analyses is to simply check that the computed metrics are not obviously
bad choices as proxies for integration effort.

For answering RQ2, we compute the metrics overestimated number of additional false
negatives of semistructured merge— aFN(SS) (conflicts missed by semistructured merge and
correctly reported by unstructured merge), and the underestimated number of additional
false negatives of unstructured merge— aFN(UN) (conflicts missed by unstructured merge
and correctly reported by semistructured merge). We also discuss the integration effort
impact of the kinds of false negatives of both strategies, but this does not require further
elaborated analyses.

To answer these questions and compute the related metrics, we adopt a three-step
setup: mining, execution, and analysis. In the mining step, we use tools that mine GitHub
repositories to collect merge scenarios — each scenario is composed by the three revisions
involved in a three-way merge. In the execution step, we use an unstructured and a
semistructured merge tool to merge the selected scenarios and to find potential additional
false positives and false negatives. In the analysis step, we confirm the occurrence of
additional false positives and negatives. Finally, we use R scripts to perform data analysis
and to generate reports. We now detail these steps, jointly explaining the execution and
analysis steps for simplicity.

3.2.1 Mining Step

To select meaningful projects, we first searched for the top 100 Java projects with
the highest number of stars in GitHub’s advanced search page.2 From this search result,
due to execution time constraints, we selected 50 projects having a certain degree of
diversity (NAGAPPAN; ZIMMERMANN; BIRD, 2013) with respect to a number of factors
described later. We restricted our sample to Java projects because the execution and
analysis steps demand language dependent tool implementation and configuration. After
selecting the sample projects, we used tools to mine their GitHub repositories and collect
merge scenarios from their full histories. In particular, we used the GitMiner tool to convert
the entire development history of a GitHub project into a graph database.3 Subsequently,
we implemented scripts to query this database and retrieve a list of the identifiers of all
merge commits— commits having a true value for their isMerge attribute— and their
parents. As a result, we obtained 34,030 merge scenarios from the 50 selected Java projects.
2 <https://github.com/search/advanced>
3 <https://github.com/pridkett/gitminer>

https://github.com/search/advanced
https://github.com/pridkett/gitminer
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Given that part of the execution and analysis steps are language dependent, we only
process the Java files in these scenarios, missing conflicts in non-Java files. As the compared
tools could easily be adapted to behave identically for non-Java files, this is not a major
problem. Moreover, the number of non-Java files not merged corresponds to 1.73% of the
total number of files in the sample (we discuss this threat later in Section 3.5).

Although we have not systematically targeted representativeness or even diversity (NA-

GAPPAN; ZIMMERMANN; BIRD, 2013), we believe that our sample has a considerable degree
of diversity with respect to, at least, the number of developers, source code size, and domain.
It contains projects from different domains such as databases, search engines, and games.
They also have varying sizes and number of developers. For example, retrofit, a HTTP
client for Android, has only 12 KLOC, while OG-Platform, a solution for financial
analytics, has approximately 2,035 KLOC. Moreover, mct has 13 collaborators, while
dropwizard has 141. Besides that, our sample includes projects such as cassandra,
Junit, and Voldemort, which are analyzed in previous studies (BRUN et al., 2011; KASI;

SARMA, 2013; CAVALCANTI; ACCIOLY; BORBA, 2015). The list of the analyzed projects,
together with the tools we used, is in our online appendix (CAVALCANTI, 2019).

3.2.2 Execution and Analysis Steps

After collecting the sample projects and merge scenarios, we use the KDiff3 unstruc-
tured tool, and the FSTMerge semistructured tool to merge the selected scenarios. We
then identify and compare the occurrence of additional false positives and false negatives,
as described in Section 3.1. These tools take as input the three revisions that compose a
merge scenario (here we call them as base, left, and right revisions) and try to merge their
files. To identify false positives and false negatives candidates, we intercept FSTMerge
during its execution. Given that the tool is structure-driven, we are able to inspect the
source code and the conflicts in terms of the syntactic structure of the underlying language
elements. This would not be possible with a textual tool. To confirm the occurrence of
the false positives and false negatives, we use a number of scripts; some of them rely
on the parsing and compiler features of the Eclipse JDT API.4 For brevity, here we
overview how we compute the metrics, and leave the detailed explanation to the online
appendix (CAVALCANTI, 2019), where we also point to the version of FSTMerge that
contains the interceptors we implemented for our study.

3.2.2.1 Computing the Underestimated Number of Additional False Positives of Unstructured
Merge— aFP(UN)

The additional false positives of unstructured merge are due to its inability to perceive
that some declarations are commutative and associative, and therefore avoid the ordering
4 <http://www.eclipse.org/jdt/>

http://www.eclipse.org/jdt/
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conflicts (see Section 3.1.1). We found no specific patterns of ordering conflicts that
would allow us to identify them by systematically inspecting the reported conflicts. We
can, however, compute this metric in terms of the others. As explained earlier, Figure 4
illustrates the set of conflicts reported by unstructured and semistructured merge. For
instance, unstructured merge set includes its additional false positives (aFP(UN )). The sets
also include true and false positives common to both strategies, denoted by TP(UN |SS)
and FP(UN |SS). Based on the diagram, we can infer that

aFP(UN ) = P(UN ) − (FP(UN |SS) + TP(UN |SS)) − aFN (SS)

Observe that we can estimate FP(UN |SS) + TP(UN |SS) in terms of P(SS) (in green
in the diagram). To compute a lower bound of aFP(UN ), we need an upper bound of
FP(UN |SS) + TP(UN |SS) because it is a subtractive factor. This upper bound is reached
when aFP(SS) is at its minimum (zero). Finally, we can derive the underestimated number
of unstructured merge additional false positives as follows:5

aFP(UN ) > P(UN ) − P(SS) + aFN (UN ) − aFN (SS)

Note that P(SS) and P(UN ) can be simply computed by running the merge tools and
observing the reported conflicts.

3.2.2.2 Computing the Overestimated Number of Additional False Positives of Semistructured
Merge— aFP(SS)

The additional false positives of semistructured merge, as explained in Section 3.1.2,
are due to renamings. To identify these false positives, we first intercept conflicts detected
by FSTMerge. We then check whether the involved triple of base, left and right elements
contains a non-empty base, and an empty left or right element. Not having the left
or right version, represented by the red empty string in Figure 11, indicates that the
semistructured merge algorithm could not map the element (method in this case) to
its previous version. This happens when the element was renamed or deleted. Since we
cannot precisely guarantee there was a deletion (the best option would be a similarity
analysis on method bodies), we conservatively analyze all such cases. For simplicity, we
also conservatively assume that unstructured merge did not report the same conflict, in
case there were no separators between the changes.

3.2.2.3 Computing the Underestimated Number of Additional False Negatives of Unstructured
Merge— aFN(UN)

The main pattern of unstructured merge additional false negatives occurs, as explained
in Section 3.1.3, when developers independently introduce duplicated declarations in
5 We formally derive the formula in the online appendix.
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Figure 11 – Intercepting the FSTMerge tool to find renaming false positives (aFP(SS))
candidates.

different areas of the program text. To identify such situations, we intercept FSTMerge
when it matches triples of elements with an empty base, and non-empty left and right
elements. This indicates the addition of two new elements with the same signature. To
confirm that the elements were added to different areas, we merge the files with the
unstructured tool and verify that there is no reported conflict that contains the duplicated
declaration. In case there is such a conflict, the additional false negative candidate is
discarded. If there is no such a conflict, we compile the resulting file and search the compiler
output for duplicated declarations errors related to the identified elements.

Whereas we are able to precisely compute the number of duplicated declaration errors,
it would be harder to precisely compute the other kinds of additional false negatives—
such as true renaming conflicts— of unstructured merge. So, we actually compute the
underestimated number of additional false negatives of unstructured merge.

3.2.2.4 Computing the Overestimated Number of Additional False Negatives of Semistructured
Merge— aFN(SS)

As explained in Section 3.1.4, the additional false negatives of semistructured merge
are related to three major causes: reordering import statements that involve types with
the same identifier, not matching initialization blocks, and unstructured merge accidental
conflict detection.

To compute the first kind of false negative, we use FSTMerge to identify attempts to
merge trees that contain at least a pair of introduced or modified import declaration nodes.
We then try to merge the corresponding files with unstructured merge, and check if it
reports a conflict involving the pair of imports statements. If it does not report, we have a
common true or false negative of both strategies; so no further action is needed. If it does
report such a conflict, we further check if the import declarations lead to type ambiguity
errors. We do that by compiling the resulting file merged by semistructured merge and
searching for type ambiguity compilation errors. This works for when both developers add
or edit imports to packages, or members. We also check if the import statements might
lead to behavioral issues— when one developer adds or edits imports to packages, and
the other imports to members— we search for the name of the member imported by one
developer in the changes introduced by the other, and vice versa. This is a grep-based
analysis, having as search scope the file containing the import statements. With a positive
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result in one of the checks, we conservatively consider the pair of import statements as a
conflict missed by semistructured merge (additional false negative).

To identify the second kind of false negative, we use FSTMerge to identify all nodes
representing initialization blocks in the different tree versions. Using textual similarity,
based on the Levenshtein distance algorithm (LEVENSHTEIN, 1966) with 80% of degree of
similarity, we group triples of similar initialization nodes. These triples are then merged
with unstructured merge. If they conflict, we conservatively compute the conflicts as
additional false negatives. As the same block might have been substantially changed by
both developers, they might not satisfy our similarity threshold. This way we could miss
false negatives. To make sure this is not the case, we carry on a manual analysis. We discuss
this threat in Section 3.5. Choosing a lower threshold could be too conservative, and not
substantially reduce the number of cases to be manually analyzed. An alternative metric
could consider the number of edited initialization blocks as the number of additional false
negatives of this kind. However, this might not be conservative as changes to initialization
blocks might lead to more than one conflict.

All other conflicts reported by unstructured merge but missed by semistructured merge
are conservatively classified as additional false negatives, except in the following two
cases. In both cases, we are able to parse the text of the unstructured merge conflict and
then classify the reported conflict. First, when the reported conflict contains only field
declarations that do not reference each other. Such reported conflicts are unstructured
false positives instead because there is no dependence among the field declarations. Second,
when the conflict resolution keeps all changes from both left and right revisions, and adds
no new code. We assume that the developer correctly analyzed the conflict and decided
there was no problem (we discuss this threat later in Section 3.5); so that would be an
unstructured false positive, not a semistructured false negative. We check that by parsing
and inspecting the original merge commit in the project repository.

More precise analyses, such as those based on testing or information flow, could
possibly reduce our upper bound of semistructured merge false negatives, but would still
be imprecise and reduce the analyzed sample, as explained earlier.

3.3 RESULTS AND DISCUSSION

By analyzing a total of 34,030 merge scenarios from 50 Java projects, we identified
19,238 conflicts when using unstructured merge, and 14,544 using semistructured merge.
This represents a semistructured merge reduction of approximately 24% in the total number
of reported conflicts. As each merge scenario might have conflicts reported by both tools,
only one, or none, we observed that the 19,238 conflicts reported by unstructured merge
occurred in 8.8% of the sample merge scenarios. Moreover, the 14,544 conflicts reported by
semistructured merge occurred in 7.1% of the sample merge scenarios. We also observed
that in 54.6% of the sample merge scenarios having at least one conflict, regardless of



37

the tool, semistructured merge reported fewer conflicts than unstructured merge. This
is similar to previous studies, differing at most by 5% (APEL et al., 2011; CAVALCANTI;

ACCIOLY; BORBA, 2015). In these scenarios, the observed reduction in the total number
of conflicts was of 71% ± 30% (average ± standard deviation), compared to 62% ± 24%
in our previous study (CAVALCANTI; ACCIOLY; BORBA, 2015), and 34% ± 21% in the
study of Apel et al. (2011). This evidence of conflict numbers, however, is not enough for
justifying the adoption of a merge tool because of the risk of missing actual conflicts (false
negatives), or introducing new kinds of false positives. Considering the merge scenarios
having conflicts, we found that in 27.1% of them one strategy detected at least one conflict,
and the other none. In 17.1% of them the strategies reported the same conflicts, and in
25.9% the strategies detected only different conflicts. So, when they report conflicts, they
differ more substantially than we originally expected. In the remaining of the section, we
further present descriptive statistics, structured according to our research questions, and
discuss their implications. Detailed results for the analyzed projects are available in the
online appendix (CAVALCANTI, 2019).

3.3.1 When compared to unstructured merge, does semistructured merge reduce
unnecessary integration effort by reporting fewer false positives?

To answer RQ1, we compare the number of additional false positives of each merge
strategy. Our results show that, in our sample, when using an unstructured merge tool,
6.58% ± 6.07% of the merge scenarios have at least one estimated additional false positive
(aFP(UN)). Moreover, 43.47% ± 19.01% of the reported conflicts are additional false
positives according to our metric (aFP(UN)). This is bigger than the percentage of
semistructured merge additional false positives (aFP(SS)): 30.21% ± 20.68%. In addition,
only 3.12% ± 3.55% of the merge scenarios have at least one additional false positive
(aFP(SS)). So, considering the aggregated scenarios of all projects, we conclude that
semistructured merge has fewer additional false positives and fewer scenarios with additional
false positives. In practice, we should expect a bigger difference in favor of semistructured
merge since aFP(UN) is underestimated and aFP(SS) is overestimated. However, these
findings do not uniformly hold across projects: aFP(SS) is greater than aFP(UN) in 26%
of our sample projects. In contrast, in only 2% of the projects, semistructured merge had
more merge scenarios with more additional false positives

The large error bounds, and the lack of uniformity of the results across projects, are
caused by variations in the analyzed projects. For example, project histories containing
renaming of directories might significantly increase the number of renaming conflicts
reported by semistructured merge. We observed that in projects such as OG-Platform
and Equivalent-Exchange-3, which have a greater number of scenarios containing
directory renamings, and consequently show semistructured merge false positive rates
substantially above the average. In such cases, unstructured merge reports, for each file
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of the renamed directory, a single large conflict; it cannot map the files of the renamed
directory to the corresponding files of the other revision. Conversely, due to semistructured
merge finer granularity, the conflicts are reported per element (method, constructor, etc.)
in the files of the renamed directory, substantially increasing the number of reported
conflicts. When ignoring these directories renamings, the average number of semistructured
additional false positives drops by about 5%. The error bounds are also explained by
projects such as AndEngine, mct, and Voldemort, in which most conflicts occur inside
method bodies. In these situations, the tools behave identically and report a large number
of common conflicts, decreasing the percentage of additional false positives.

Given that our data is paired, and deviates from normality, we analyze differences in
the computed metrics with the paired Wilcoxon Signed-Rank test. It shows that the merge
strategies present statistically significant different means of percentages of merge scenarios
with false positives (p-value = 1.13e-09 <0.05). Besides that, we observed a large effect
size (r = 0.82>0.5, based on the Pearson Correlation Coefficient). There is also significant
difference between the percentages of additional false positives (p-value = 0.001047<0.05),
with medium effect size (r = 0.46>0.3). This tendency can also be observed in the box
plots of Figure 12. Note, for instance, that in both cases (merge scenarios and conflicts)
the 3rd quartile in the box plots of the semistructured strategy is inferior to the median in
the box plots of unstructured merge. The difference on the shapes of the boxplots suggests
that, overall, projects have a high level of agreement with each other in terms of merge
scenarios with semistructured merge additional positives (Figure 12(a) in blue), but the
projects hold quite different number of semistructured merge additional false positives
(Figure 12(b) in blue). This means that, among projects, altough the number of scenarios
with semistructured merge additional false positives is close, the number of semistructured
merge additional false positives is not. Conversely, unstructured merge results in a close
number of scenarios with its additional false positives, and overall number of additional
false positives among projects.

3.3.1.1 Additional False Positives of Semistructured Merge are Easier to Analyze and Resolve

Semistructured merge reduction in the number of additional false positives for most
projects and scenarios suggests that it might reduce integration effort. However, a more
accurate comparison would measure the actual effort required for analyzing and discarding
false positives. This is important because different conflicts often demand different effort
to be analyzed, and then discarded or resolved. Thus, to better understand the impact
of false positives on integration effort, we manually analyzed 100 randomly selected
merge scenarios: 50 containing semistructured merge additional false positives (renaming
conflicts), and 50 with unstructured merge additional false positives (ordering conflicts).
These are appropriate sample sizes for estimating proportion (ENG, 2003) considering
margins of error of 10% and 15%, respectively, for renaming and ordering conflicts (we
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Figure 12 – Box plots describing the percentage, per project, of additional false posi-
tives in terms of merge scenarios and conflicts. Unstructured merge in red,
semistructured in blue.

(a) Merge scenarios (b) Conflicts

further discuss this in Section 3.5). For each scenario, we observed the reported conflicts
and attempted to resolve them to understand how easily they could be analyzed and
discarded. We also observed the corresponding merge commit, in the project history, to
understand how each developer contribution was integrated. Similarly to Menezes et al.
(2018), we assume that resolutions including only changes from the merged contributions
(without new code, nor combination of contributed code) demand less effort. We believe
this is a fair approximation of the time needed to fix the code— which is part of the
total integration effort— but not of the time needed to reason about the conflict and then
decide how to fix it. The manual analysis considers this last part.

The manual analysis revealed that semistructured merge false positives are easy to
analyze and resolve. As explained before and illustrated in Figure 6, this kind of reported
conflict shows the original element name with its new body (as left, for example), and its
original body (as base). The integrator can then easily find a corresponding element with
a new name and original body.6 Resolution basically consists of declaring a single element,
with the new name and the new body. However, we have also observed cases where the
integrator discarded the new name or the new body.

With respect to unstructured merge false positives, only part of the manually analyzed
cases was easy to analyze and resolve. We believe that reported conflicts caused by
the introduction of declarations (methods or fields) in the same text area can often be
analyzed and resolved with little effort. The integrator simply has to choose one of the
6 Not finding such an element indicates deletion (instead of renaming), which implies into a true positive,

not being useful for our analysis.
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declarations, or decide to keep them all. However, we also observed a challenging kind
of ordering conflict that does not respect the boundaries of Java syntactic structures—
so we name it a crosscutting conflict. Such reported conflicts involve incomplete parts
of different language structural elements (methods, fields, etc.). We illustrate this in
Figure 13, observed in a merge scenario from project cassandra. Note that parts of the
getColumn and validateMemtableSetting methods conflict because the changes occurred
in the same text area. Such conflicts are more difficult to analyze and resolve because they
demand one to map code chunks to corresponding syntactic structures; in the illustrated
example, it is not clear which method contains the for and if statements. As such kind
of conflict involves different syntactic elements (and then different nodes in a parse tree),
semistructured merge automatically resolves them.

Figure 13 – Crosscutting ordering conflicts.

To understand how these findings are related to our entire sample, we carried on further
automatic analysis. By trying to parse code of the unstructured merge additional false
positives, we found that 44.81% of the conflicts are crosscutting; that is, we could not
parse the conflict text because it does not correspond to a single valid language element.
When analyzing how these conflicts were resolved, we found that 92.76% of the resolutions
involved no new code. This suggests that a significant part of unstructured merge false
positives might be hard to analyze, but their resolution is rarely hard. In fact, conflict
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analysis might be so hard that resolution might simply correspond to discarding one of
the contributions.

Summary: In our sample, though not uniformly across projects, semistructured merge
reduced the overall number of reported conflicts and has fewer additional false positives
than unstructured merge. Furthermore, we argue that semistructured merge additional
false positives are easier to understand and resolve.

3.3.2 When compared to unstructured merge, does semistructured merge compro-
mise integration correctness by having more false negatives?

To answer RQ2, we compare the number of additional false negatives of each merge
strategy. Our results show that the number of semistructured merge additional false
negatives (aFN(SS)) is 20.60% ± 21.30% with respect to the total number of reported
conflicts, compared to 9.62% ± 16.29% of unstructured merge (aFN(UN)). We also
observed that 4.42% ± 5.53% of the merge scenarios have at least one semistructured merge
additional false negative (aFN(SS)), compared with 0.88% ± 1.08% of unstructured merge
(aFN(UN)). So, considering the aggregated merge scenarios of all projects, semistructured
merge has more additional false negatives and more scenarios with additional false negatives.
However, in practice, we should expect a lower, or even no advantage in favor of unstructured
merge since aFN(SS) is overestimated and aFN(UN) is underestimated. So, in this aspect,
looking only at numbers, our study brings no conclusive evidence to answer RQ2, then we
resort to manual analysis as explained later. Besides, as for RQ1, this does not uniformly
hold across projects: aFN(UN)>aFN(SS) in 18% of the sample projects. Additionally, in
only 2 projects (closure-compiler and Essentials), unstructured merge had more
merge scenarios with more additional false negatives (aFN(UN)).

As in the previous section, the observed error bounds are partly explained by some
projects having high rates of common conflicts. But here, they are additionally influenced
by some projects having high rates of accidental detection of conflicts by unstructured
merge. In fact, projects such as AntennaPod and mockito presented considerably above
the average percentage of additional false negatives (aFN(SS)) due to accidental detection
of conflicts by unstructured merge (when unstructured merge detects actual conflicts that
would otherwise escape if changes were performed in slightly different text areas). Most of
these conflicts were conservatively classified as semistructured additional false negatives,
but turned into false positives (aFP(UN)) after further analysis. Conversely, analyzing
unstructured merged additional false negatives (aFN(UN)), we found projects with a
higher incidence of duplicate simple methods declarations such as getters and setters, or
methods containing common words from developers’ vocabulary such as initialize, execute,
run, or load. We also found that copy and paste across repositories was a common practice
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in some projects. For example, in a certain commit one developer added a method. Then,
on a divergent branch, another developer copied this method and made a few changes.
When merging these changes, the conflict occurred with semistructured merge, but not
with unstructured merge. We even found examples where, instead of copying one method,
the developer copied entire files from one repository to the other. All these situations led
to above average percentage of additional false negatives (aFN(UN)) in projects such as
atmosphere, cloudify and gradle.

Wilcoxon Signed-Rank tests show that there is statistically significant difference when
comparing the two strategies, both in terms of merge scenarios and in terms of conflicts
(p-value equals to, respectively, 4.18e-09 and 5.54e-06<0.05). We also observed a large effect
size in terms of merge scenarios (r = 0.8>0.5), and in terms of conflicts (r = 0.57>0.5).
This tendency can be observed in the box plots of Figure 14. In the case of merge scenarios
with additional false negatives (Figure 14(a)), observe that the maximum whisker of the
unstructured merge box plots is inferior to the median of the semistructured merge box
plot. Besides, in terms of conflicts (Figure 14(b)), the 3rd quartile in the box plots of the
unstructured strategy is inferior to the 1st quartile in the box plots of semistructured
merge.

Figure 14 – Box plots describing the percentage, per project, of the additional false neg-
atives in terms of merge scenarios and conflicts. Unstructured merge in red,
semistructured in blue.

(a) Merge scenarios (b) Conflicts

We were expecting a numerical advantage of unstructured merge due to the imprecision
of our metric (aFN(SS)), but not at the observed level. When distinguishing among the
kinds of semistructured merge additional false negatives (see Section 3.1.4), we found that
only 0.46% of them are type ambiguity errors, 6.78% are due to initialization blocks, and
92.76% are due to unstructured merge accidental conflict detection. So, to understand
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how high our upper bound could be, we manually analyzed 50 randomly selected possible
additional false negatives of semistructured merge. We checked if they indeed represent
missed conflicts. From the 50 analyzed cases, only 6 were confirmed false negatives. Among
these, consider the conflict illustrated in Figure 15(a), where both developers added
parameters to the same method; as the developers might not be expecting the extra
parameter, the conflict is appropriate since this will likely affect the build. Semistructured
merge is unable to detect this conflict because the method signature was changed; it
assumes both developers deleted the original method and added two new methods with
different signatures. Contrasting, Figure 15(b) illustrates a situation incorrectly classified
as additional false negative by our metric. Developer A added a comment to the getTable

declaration, while developer B added an access modifier. These changes clearly do not
conflict. Accordingly, as they correspond to different parts of the node representing the
getTable declaration, semistructured merge does not report conflict. Unstructured merge
does report a false positive because the changes occurred in the same text area.

Figure 15 – Unstructured merge conflicts classified as semistructured merge additional
false negatives.
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3.3.2.1 Additional False Negatives of Semistructured Merge are Harder To Detect and Resolve

When comparing false negatives, at first thought, the reasoning seems straightforward
because the greater the number of false negatives, the greater the number of post-merge
build and behavioral errors. Therefore, the weaker the correctness guarantees of the
merging process. In that sense, the achieved results suggest that unstructured merge
beats semistructured merge for most, but not all, scenarios and projects. However, we
cannot ignore that some bugs are more critical than others, and that build problems
can be automatically detected, while behavioral problems are often hard to detect. In
particular, unstructured merge additional false negatives cause compilation errors, guiding
the developers toward the location and cause of the problem. Conversely, semistructured
merge additional false negatives might involve subtle errors. For instance, when one
developer adds a new call to a method edited by the other developer, there is no compilation
error, but there might be a behavioral issue. That is, the changes made by one developer
might affect the behavior expected by the other. This situation is illustrated in Figure 16,
showing code from the project AntennaPod. The developer who added the setStatus

method might not be expecting the extra notification added by the other developer on the
bluetoothNotifyChange method (referenced by the first developer). We believe that, in
such cases, the detection and resolution of the issue is likely more difficult and demands
more effort. In situations like that, while semistructured always miss a conflict because
changes correspond to different nodes, unstructured merge might accidentaly detect a
conflict depending on changes’ area.

Figure 16 – Observed new element referencing edited one.
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Summary: We found no evidence that semistructured merge has fewer false negatives
than unstructured merge. Moreover, we argue that semistructured merge additional
false negatives are harder to detect and resolve.

3.4 IMPROVING SEMISTRUCTURED MERGE

Even considering that our comparison process favors unstructured merge whenever
we are not able to precisely classify a reported conflict, our findings about conflicts and
false positives’ reduction are hardly sufficient to justify adoption of semistructured merge
in practice. Practitioners might still be reluctant to adopt semistructured merge because
of the risk of loss in part of the merge scenarios, and also because of the extra risk and
complexity associated to its false negatives. In fact, if renaming is a common practice in a
project, developers might have to deal with too many false positives renaming conflicts if
they opt for semistructured merge. Similarly, if project changes often occur in the same
text area, conflicts that would otherwise be detected by unstructured merge might escape
the merging process. Our findings, nevertheless, shed light on how merge tools can be
improved. They help us to better understand the technical justification that might prevent
the adoption of semistructured merge tools in practice, and motivates us to propose an
improved tool. So, we benefit from that and propose a merge tool that further combines
both merge strategies to reduce the false positives and false negatives of semistructured
merge.

3.4.1 Improvements

Our improved merge tool implements the algorithms underlying the scripts we used to
detect false positives and false negatives in our empirical analysis (see Section 3.2.2).7 On
top of a more efficient version of the FSTMerge tool (APEL et al., 2011) we implemented,
we added a module (or handler) for semistructured merge additional false positives and
three kinds of additional false negatives. After the merged tree is constructed, each handler
updates the tree according to specific analyses based on information gathered during tree
construction. We now detail these handlers.

3.4.1.1 Handling Renaming Conflicts

As explained in Section 3.1.2, semistructured merge additional false positives in relation
to unstructured merge are due to renaming of elements. They occur because semistructured
merge’s superimposition is not able to map the renamed element to their counterparts, and
considers the renaming as a deletion instead. So, for instance, when one of the developers
7 Publicly available at <https://github.com/guilhermejccavalcanti/jFSTMerge>.

https://github.com/guilhermejccavalcanti/jFSTMerge
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edits the body of an existing method declaration from the base revision, and the other
developer modifies its signature, a conflict is reported.

The renaming handler first uses the Levenshtein distance algorithm (LEVENSHTEIN,
1966) to map renamed elements, with a 70% degree of textual similarity between the
elements.8 This algorithm measures the difference between two strings sequences (in our
case, we consider the textual representation of the elements). In practice, this means the
minimum number of single-character edits (insertions, deletions or substitutions) required
to change one string into the other. For instance, considering the example in Figure 6,
there is a degree of similarity of 86% between the textual representation of the node
representing the base version of the method calculate, and the method sum added by
right. As this value is above our adopted 70% threshold, sum is selected as the renamed
version of the method calculate. If more than one element satisfies our 70% degree of
similarity, the algorithm picks the element with the greatest value. In case of tie, the
algorithm randomly picks one of the tied.

Afterwards, the handler verifies if unstructured merge has reported a conflict with the
original element’s signature. If that is the case, the improved tool reports the renaming
conflict, now filled with information of the renamed version gathered in the first step. In
case no element satisfies our 70% degree of similarity, the conflict is reported without the
information of the element with the new signature. A renaming conflict is characterized
by the presence of the original element’s signature in the conflict text. So, if unstructured
merge does not report conflict with such signature, there is no guarantee that the renaming
conflict is an additional false positive; thus the improved tool does not report the conflict.
This is a major concern for the design of our improved tool: ensuring that, whenever
possible, it is not worse than an unstructured merge tool, by invoking unstructured merge
where the underlying algorithms are not accurate. For example, eliminating such a false
positive could result in a false negative, but a common one to unstructured merge.

3.4.1.2 Handling Type Ambiguity Errors

To reduce semistructured merge additional false negatives, we implement three kinds
of handlers. Beginning with the additional false negatives related to import declarations,
as explained in Section 3.1.4, the issue arises because semistructured merge assumes that
import declarations are always re-arrangeable. This might lead to a type ambiguity error
when the import declarations involve members with the same name but from different
packages.

So, the type ambiguity error handler uses compiler features to search for compilation
problems related to import statements, avoiding all extra false negatives of this kind. The
handler checks that by using Eclipse JDT. In particular, during semistructured merge’s
superimposition, we identify and store pairs of nodes representing introduced or changed
8 The degree of similarity adopted by the handlers was chosen on an ad hoc basis.
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import declarations in the files being merged by semistructured merge. Afterwards, the
handler compiles the files merged by semistructured merge, having the identified pair of
import declarations, and searches for the compilation problems corresponding to type
ambiguity error. In case the handler detects compilation problems, a conflict is reported
with the involved import declarations. Note that compilation is a complex feature that
impair performance and is not exactly going to work in any situation because of parsing
errors. Nevertheless, this is not a major issue for our tool because (1) compilation is only
necessary in three merge scenarios of our sample, and (2) when the tool cannot parse a
code, it resort to unstructured merge.

The type ambiguity error handler also deals with import declarations that might
cause behavioral errors instead of compilation problems. Such cases occur when one of
the developers imports all members from a package, and the other developer imports a
member with the same name of an existing member in the package imported by the first
developer (see Section 3.1.4). The handler then checks, with a grep-based analysis, if the
changes introduced by the developer who imported all members from the package contain
the name of the member imported by the second developer. In case of a positive check,
the handler reports a conflict involving the import declarations, but only if unstructured
merge has reported a conflict with them too. Again, we guarantee that the improved tool
is not worse than an unstructured merge tool: if unstructured merge has not reported
conflicts with the import declarations, this would be a common false negative of both
strategies.

3.4.1.3 Handling Matching of Initialization Blocks

Superimposition uses nodes’ identifier to match them with their counterparts. So, for
instance, a method declaration can be easily matched through its signature. However, not
all elements have identifiers. As seen in Section 3.1.4, when semistructured merge attempts
to merge initialization blocks, it cannot because these blocks do not have identifiers, so
semistructured merge is unable to match them. This results in blocks being duplicated,
even if developers have not changed them. The problem arises when developers do change
initialization blocks in a conflicting manner: the conflict is missed by semistructured merge
because they are not matched.

To deal with this kind of false negative, the initialization blocks handler uses the
Levenshtein distance algorithm to match triples (from base, and the derived versions) of
similar initialization nodes, using 80% of degree of similarity. The handler then invokes
unstructured merge to integrate the matched elements, reporting the conflicts it reports.
When there is only a single block, this is the match. In case there is no matching among
initialization blocks, no conflict is reported. If more than one initialization block is matched,
the handler takes the first one with the highest similarity.

Note that using unstructured merge as oracle for this handler was not possible. In par-
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ticular, checking if unstructured merge conflicts involve initialization blocks is challenging,
as initialization blocks have no identifiers. Thus, there is no precise way to determine if
unstructured merge conflicts solely identify an initialization block. This way, trying to
reduce false negatives, the improved tool could potentially create new false positives. We
opted for this design because of the small risk and reduced impact involved.

3.4.1.4 Handling Accidental False Negatives

In Section 3.1.4 we explain that not all semistructured merge additional false negatives
conform to a set of recurring syntactic patterns, they result from unstructured merge
accidentally detecting conflicts that would otherwise escape if changes were performed in
slightly different text areas. One of these situations occur when developers change or add,
in the same text area, different but dependent declarations.

The new element referencing edited one handler, with a grep-based analysis, checks
whether added elements textually reference edited ones. In such situations, there might
be a harmful data or control flow between the elements, and, as there is no matching
between these elements, a conflict is never reported by semistructured merge. If a reference
is found, and unstructured merge also reports a conflict involving the elements, our tool
also reports a conflict. This way we eliminate a possible false negative, making sure we are
not adding an additional false positive in relation to unstructured merge.

As in this context false negatives might be more disruptive than false positives (BERRY,
2017), increasing the chances of detecting more false negatives at the expense of possible
new false positives could be an option for the design of the new tool. However, aiming
at reducing trade-offs and facilitating industrial adoption, we opted for a design that
attempts to ensure that the new tool is not worse than unstructured merge with regard
to false positives. This is why this handler only reports conflicts if unstructured merge
reports a similar one.

In future versions, we should investigate the feasibility, benefits and drawbacks of
incorporating static semantics information in the trees. For instance, with this kind of
information, we could precisely determine that a deleted method by one developer was
invoked by an edited method by the other developer (call to undeclared method declaration),
and report a conflict. Such a feature possibly impairs parsing complexity and performance,
so a detailed analysis is necessary to find out the tradeoff between the benefits and
drawbacks.

3.4.2 Usability

The tool is universally applicable by simply calling unstructured merge for files it cannot
process (invalid Java files or non-Java files). This way, the tool can be used wherever
unstructured merge is used, including projects with multiple programming languages.
Regarding Java support, the tool uses an updated annotated grammar to support Java 8.
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Annotating other languages grammars, and implementing specific false positive and false
negative handlers for these languages would make semistructured merge benefits more
widely applicable.

We should indeed investigate how applicable to other kinds of languages, and to other
parsers and grammar mechanisms, such as ANTLR, semistructured merge is (and, as a
consequence, our tool). Also, whether the same implementation of the semistructured
algorithm can deal with different languages. For instance, (TRINDADE et al., 2019) attempted
to implement semistructured merge for JavaScript, which supports statements at the same
syntactic level of commutative and associative elements such as function declarations.
They found that current semistructured merge algorithms and frameworks are not directly
applicable for scripting languages like JavaScript. By adapting the algorithms, they are
still able to implement semistructured merge for JavaScript. However, the gains are much
smaller than the ones observed for Java-like languages, suggesting that semistructured
merge advantages might be limited for languages that allow both commutative and
non-commutative declarations at the same syntactic level.

Our tool can be configured to resolve false positives due to code indentation: it
compares elements content ignoring spacings. Finally, after installation, the tool is entirely
integrated with git version control system (integration with others VCS is likely not hard
too); whenever a user calls the git merge command, the tool is automatically invoked,
generating results in the same format as default git merge. The tool can also be used
standalone, likewise available diff3 tools.

3.4.3 Gains

Based on the sample and results of our empirical evaluation (see Section 3.3), Table 1
summarizes how conflict numbers of the improved tool compare to unstructured merge
and the original semistructured merge tool. Considering the aggregated scenarios of all
projects, the improved tool reduces the number of reported conflicts by approximately 51%
in relation to unstructured merge, and by 36% compared to the original semistructured
tool; exploring another viewpoint, the table shows increasing rates. A similar reduction
pattern, but with less intensity, can be observed for the number of merge scenarios with
conflicts; the table shows the percentages in relation to the total number of scenarios
followed by the increasing rates.

Table 1 – Comparing conflict numbers of unstructured, semistructured, and improved
tools.

Unstructured tool Semistructured tool Improved tool
Reported Conflicts 19,238 (206%) 14,544 (156%) 9,343 (100%)

Merge Scenarios with Conflicts 2,995 (8.8% / 155%) 2,420 (7.1% / 125%) 1,935 (5.7% / 100%)
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With respect to false positives and false negatives, Table 2(a) summarizes the main
result discussed in Section 3.3. Contrasting, Table 2(b) shows how the improved tool
compares to unstructured merge. In our sample, the improved tool completely eliminates
semistructured merge additional false positives. Although our initialization blocks handler
might lead to false positives, as discussed in Section 3.5, we had no such case. Moreover,
as the new element referencing edited one handler of the improved tool uses unstructured
merge as oracle to reduce false negatives, it might actually have new false positives in
common with unstructured merge. In our sample, this corresponds to at most 535 conflicts,
in case all conflicts detected by that handler are inaccurate. So, the reported numbers of
additional false positives of unstructured merge in relation to the original and improved
tool (see both tables) differ in approximately 7%.

Table 2(b) also shows that the improved tool eliminates a few kinds of false negatives,
leading to a reduction of approximately 23% in the number of additional false negatives
in relation to the original semistructured tool. This way, the improved tool is superior
to unstructured merge with respect to the overall number of additional false negatives:
it misses at least 8% fewer false negatives than unstructured merge.9 Due to the quite
conservative nature of our metric, and the results of our manual analysis (which suggests
that the semistructured merge false negatives numbers might be around 12% of the
reported numbers), we expect the advantage in favor of the improved tool to be much
higher. Those advantages of the improved tool do not uniformly hold across projects, but
most projects follow this pattern.

Table 2 – Comparing false positives and false negatives numbers of the improved and
original tools with unstructured merge. Arrows indicate whether the number
is underestimated (↑, meaning the numbers should be bigger in practice) or
overestimated (↓).

(a)

Unstructured tool Semistructured tool
Additional False Positives 7,958 ↑ 5,201 ↓
Additional False Negatives 2,714 ↑ 3,260 ↓

(b)

Unstructured tool Improved tool
Additional False Positives 7,423 ↑ 0
Additional False Negatives 2,714 ↑ 2,489 ↓

Notice that only part of the false negatives is eliminated with the improved tool.
The false negatives that were not eliminated are hard to detect because they do not
follow a syntactic pattern. Our oracle for detecting them in the study relies on analyzing
the merged code, which is appropriate for our retrospective analysis, but not for using
9 Remember that our metrics are approximations.
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the tool in practice. So a handler could not rely on that. For instance, as explained in
Section 3.2.2.4, when the resolution of an unstructured merge conflict does not keep all
developers’ changes, or adds new code, we consider the conflict as a semistructured merge
false negative. However, this information is only available after the merge result has been
committed. Finally, as the renaming handler uses unstructured merge as oracle to reduce
false positives, it might lead to new common false negatives with unstructured merge.
However, as our metric of unstructured merge false negatives does not include renaming
conflicts, the corresponding numbers are the same in both tables.

Summary: In our sample, the improved semistructured tool, when compared to
unstructured merge, reduces the number of reported conflicts, has no additional false
positives, and has fewer false negatives.

3.4.4 Performance Evaluation

Although performance was not a priority for our design, we evaluated the improved
tool performance on a random subsample of 1731 merge scenarios from 25 projects. This
is a subset of the full sample described in Section 3.2.1, considering only scenarios that
reported at least one conflict, regardless of the merge strategy. For each merge scenario, we
invoked the original, improved and unstructured tools, 5 times each, measuring execution
time. We conducted the evaluation on a desktop machine with Intel Core i5, 4 cores @4.0
GHz, 16 GB RAM and Windows 10 64 bits.

Taking the median of the measured times, the improved tool took approximately 24
minutes to merge the entire sample, compared to only 45 seconds of the unstructured
merge tool. Note that our implementation could be optimized in a number of ways to
reduce this large difference. For example, we explore no parallelization, and merge files
sequentially. However, due to the handlers and complexity of the tree merging algorithm
we use, we expect that an optimized tool would still be much slower than unstructured
merge. It is though, much faster than the original semistructured merge tool, which took
123 minutes to merge the entire sample. We observed that the original tool has severe
performance issues due to its prototype nature. In particular, the original tool creates
a single representation (tree) in memory for all files in the merge scenario— including
unchanged files, and files differing only by spacing. This leads to complex trees with
expensive node matching, and slow tree merges. We address this issue by creating a tree
per changed merged file, ignoring files that only had spacing related changes. We kept the
tree merging algorithm, but the fewer and simpler trees substantially improve performance.
These optimizations more than compensate the extra complexity associated to the false
positives and false negatives detection handlers we implemented.
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We also observed that, in practice, the performance difference between the improved
and unstructured tool is often non prohibitive. In more than 80% of the scenarios, our
tool took less than 1 second to merge the involved files. It took more than 5 seconds in
only 2% of the scenarios, with a maximum of 67 seconds in a lucene-solr scenario that
merges 303 files, resulting in 618 conflicts and 17,567 LOC of conflicting code. For the
same scenario, unstructured merge took 6 seconds, resulting in 866 conflicts and 27,397
LOC of conflicting code. In our sample both the improved and unstructured tool spent,
on average, less than 1 second per merge scenario (0,83 ± 2,47 seconds with the improved
tool, compared to 0,03 ± 0,09 seconds with unstructured merge, but 4,27 ± 14,75 seconds
with the original tool).

Summary: The improved semistructured tool, when compared to unstructured merge,
is not prohibitively slower in our sample.

3.5 THREATS TO VALIDITY

Our empirical analyses and evaluation naturally leave open a set of potential threats
to validity explained in this section.

Our analysis of integration effort is based on the number of false positives reported by
the merge strategies, the nature of renaming and ordering conflicts, and how contributions
were integrated in the project repositories. Further analysis involving integrators would be
important to reinforce our conclusions. Also, a more rigorous analysis based on conflict
detection and resolution timing data, in the spirit of Berry (2017), could differently weight
false positives and false negatives and better assess integration effort reduction. We also
conducted a manual analysis to estimate the impact of false positives on integration
effort. As explained in Section 3.3, the number of analyzed cases (50) is appropriate
considering margins of error of 10% and 15%, respectively, for renaming and ordering
conflicts. Reducing the margins of error would increase the accuracy of our conclusions, but
would substantially increase the number of cases to manually analyze. Note, however, that
the adopted margins are safe for the reached conclusions, which show large differences.

As our metrics are approximations, one can argue that we perhaps could not compare
them properly, but the achieved results allowed us to make useful comparisons, especially in
the case of false positives. The main issue is related to the semistructured merge additional
false negatives metric; its upper bound is too high. We confirmed that by manually
inspecting a small sample of merged code. As a consequence of the approximations we
use, the obtained percentages should not be interpreted as the expected percentages of
additional false positives and false negatives, but only as sufficient evidence to support our
conclusions. In addition, having ground truth about integration conflicts (and therefore
false positives and false negatives) would give a better idea of how relevant is the gains
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of semistructured merge. In particular, there might be many false positives and false
negatives common to both strategies, so the presented gains may not be representative
in relation to the total (given by the ground truth). Also, the gains of our improved
tool must be interpreted with caution, because they came from the same sample from
which its improvements are based on. So a more accurate evaluation should consider a
different sample. Still regarding our approximations, we check conflict resolution in projects
repository to classify semistructured merge additional false negatives (see Section 3.2.2.4).
We assume that the developer correctly analyzed the conflict and decided that there
was no problem, so that would be an unstructured false positive, not a semistructured
false negative. The problem is that the changes might still lead to semantic problems not
perceived by the integrator, missing actual conflicts.

As described in Section 3.2.2.4, when textually similar initialization blocks conflict
with unstructured merge, we consider the resulting number of conflicts as the number of
semistructured merge additional false negatives related to initialization blocks. However,
this might not be safe because the triple of initialization blocks that should be matched
might involve elements with less than the adopted degree of similarity (80%). To check this
was not a problem in our sample, we manually analyzed all files merged by unstructured
merge having at least one reported conflict and edited initialization blocks. These necessary
conditions for false negatives of this kind were satisfied only by 40 files in our sample. In
this analysis, we checked if the reported conflicts involve the same initialization blocks
matched by our similarity threshold. If the conflicts involve different initialization blocks,
our metric could be missing actual conflicts. This only happened in a single file of the
cassandra project (Cassandra.java, an atypical file with more than 40K lines of codes
and more than 50 conflicts). Nevertheless, further inspection of this file showed us that
the involved initialization block was not edited, and that the corresponding conflict was
actually a crosscutting conflict— the conflict was an unstructured merge additional false
positive. In all other files, unstructured merge did not report conflicts involving edited
initialization blocks other than those accused by our metric.

Different degrees of textual similarity was adopted not only in the empirical evaluation,
but also in the design of our improved semistructured merge tool (see Section 3.4.1).
Whereas the adopted thresholds values were based on an ad hoc analysis, we could address
this systematically to find optimal values for the different situations in which we rely on
textual similarity.

We analyze public Git repositories that might have suffered the effect of commands such
as rebase and cherry-pick, which rewrite project history (BIRD et al., 2009). Consequently,
depending on the development practices of each project, we may have lost merge scenarios
where developers had to deal with merge conflicts, but that do not appear on Git history
as merge commits. When those commands are used in a systematic way, they dramatically
decrease the number of merge commits. Consequently, to analyze all merge scenarios, we
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would need to have access to developers individual repositories. Therefore, our sample
actually corresponds to part of the conflicts that actually happened in the analyzed projects.
The impact of an increased sample on the results presented here is hard to predict, but we
are not aware of factors that could make the missed conflicts different from the ones we
analyzed.

Additionally, we had to discard Java files that could not be parsed by the semistructured
tool used in the study. So one could argue that we bias the results in favor of the
semistructured merge strategy because we actually miss the false positives and false
negatives present in the discarded files. However, we found that this corresponds only to
0.16% of the total number of Java files in our sample. We believe this has insignificant
impact on our results. We also discarded non-Java files from the analyzed projects. This
corresponds to 1.73% of the total number of files in the sample. Per project, we discarded
on average 15.33% ± 19.46% files. Projects substantially differ in the overall number of
files and non-Java files. For instance, Junit has 539 files, with only 0.90% of non-java files,
whereas clojure has 308 files, with 49.5% of non-java files. So, the results for projects
such as clojure could be different if one considers all kinds of files. Nevertheless, for
both non-Java and invalid Java files, semistructured merge could be easily adapted to
invoke unstructured merge, similarly as it does to method bodies. As a consequence, the
strategies would behave identically and, therefore, present the same numbers for these
files.

Finally, although the semistructured merge tool used in this study supports more
languages, we restricted our sample to Java projects because our setup demands language
dependent tool implementation and configuration. However, all the false positives and
false negatives analyzed here are also likely to happen in projects written in other class
based languages similar to Java. Besides, although our sample has a considerable degree of
diversity (see Section 3.2.1), it would be important to systematically address diversity in
further studies, including new dimensions such as programming languages. Finally, we only
explored open source projects, but we are not aware of factors that could make conflicts
present in projects of different nature unlike the ones we analyzed.
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4 THE IMPACT OF STRUCTURE ON SOFTWARE MERGING: SEMISTRUC-
TURED VERSUS STRUCTURED MERGE

We found evidence that semistructured merge has significant advantages over unstruc-
tured merge in Chapter 3. Besides that, there is evidence that structured merge tools report
significantly less conflicts than unstructured merge (APEL; LESSENICH; LENGAUER, 2012).
However, it is unknown how semistructured merge compares with structured merge. (APEL;

LESSENICH; LENGAUER, 2012) argue that structured tools are likely more precise than
semistructured tools, and conjecture that a structured tool reports fewer conflicts than a
semistructured tool. However, as discussed before, the reduction of reported conflicts alone
is not enough to justify industrial adoption of a merge tool, as the reduction could have
been obtained at the expense of missing actual conflicts between developers contributions.
So, before deciding to replace state of practice unstructured tools by semistructured merge,
we need to investigate whether structured merge is a better option than semistructured
merge.

In fact, although one might expect only accuracy benefits from the extra structure
exploited by structured merge, we have no guarantees that this is the case. In Chapter 3,
we found evidence that the extra structure exploited by semistructured merge is not only
beneficial: it helps to eliminate certain kinds of spurious conflicts (false positives) reported
by unstructured merge, but it might introduce others that can only be solved by our
solution that further combines semistructured and unstructured merge (see Section 3.4).
Similarly, the extra structure helps semistructured merge to detect conflicts that are missed
(false negatives) by unstructured merge, but it unfortunately comes with new kinds of false
negatives. So, it is imperative to investigate whether the same applies when comparing
semistructured and structured merge, as this is essential for deciding which kind of tool to
use in practice.

So, to compare and better understand the differences between semistructured and
structured merge, we run both strategies on more than 40,000 merge scenarios from more
than 500 Java projects. In particular, we assess how often the two strategies report different
results, and we identify false positives (conflicts incorrectly reported by one strategy but
not by the other) and false negatives (conflicts correctly reported by one strategy but
missed by the other). In particular, in this chapter we answer the following research
questions:

• RQ1: How many conflicts arise from the use of semistructured and structured merge?

• RQ2: How often do semistructured and structured merge differ with respect to the
occurrence of conflicts?

• RQ3: Why do semistructured and structured merge differ?
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• RQ4: Which strategy reports fewer false positives?

• RQ5: Which strategy has fewer false negatives?

• RQ6: Does ignoring conflicts caused by changes to consecutive lines make the
strategies more similar?

4.1 SEMISTRUCTURED AND STRUCTURED MERGE

As introduced in Section 2.3, the main difference between semistructured and structured
merge is the exploited syntactic granularity. Merging programs for the structured strategy
consists of traversing trees to find the differing nodes, much similar to semistructured
merge (APEL; LESSENICH; LENGAUER, 2012). The difference, however, is that, while
semistructured merge builds a syntax tree for the source code until the level of declarations,
for instance, method declarations, representing statements and expressions in the syntax
level of method body as plain text, structured merge builds a syntax tree for the entire
source code.

When comparing the input trees level-wise, a key point for structured merge is the
distinction between ordered nodes (which must not be permuted) and unordered nodes
(which can be permuted safely). For ordered nodes, the positions relative to the parent
node are decisive: if they overlap, the nodes are flagged as conflicting. Whether unordered
nodes are in conflict, depends on their type and name. The matching of nodes depends
on their syntactic category. For instance, two method declarations are matched if their
signatures are equal, again similar to semistructured merge. That similarity with respect
to unordered nodes, between semistructured and structured merge, implies that structured
merge shares semistructured merge false positives and false negatives described in Chapter
3. Besides, structured merge is also able to resolve unstructured merge ordering conflicts,
and to merge duplicated declarations.

In summary, semistructured and structured merge differ only on how they represent
the bodies of method, constructor, and field declarations. In a structured tool, such bodies
are also represented as AST nodes. In a semistructured tool, they are represented as
strings, and are merged by unstructured merge line-based algorithm. We illustrate how
this difference impacts merging in Figure 17, which shows different versions of part of a
method body.1 The base version at the top shows a method call that adds a new key-value
entry to a map. The structurally merged version at the bottom highlights, in red, the
changes made by developer A, who simply refactored the code by extracting key. It also
highlights, now in blue, the changes made by developer B, who added an extra argument
to the constructor call. As the two developers changed different AST nodes from the
base version, corresponding to different arguments of the method call, structured merge
1 Based on method createDefaultParametersToOptimized merged in merge commit <https://git.io/

fjneH> from our sample.

https://git.io/fjneH
https://git.io/fjneH
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successfully integrates their changes. Contrasting, semistructured merge reports a conflict
because the two developers changed the same line of code in the method body.

Figure 17 – Merging with Semistructured and Structured Merge (False Positive).

As explained in Section 2.3, to compare semistructured and structured merge, we
could simply measure how often they are able to merge contributions as in the illustrated
example. The preference would be for structured merge: the strategy that reports fewer
conflicts. Given that merging contributions is the main goal of any merge tool, in principle
that criterion could be satisfactory. However, in practice, merge tools go beyond that
and detect other kinds of integration conflicts that do not preclude the generation of a
valid program, but would lead to build or execution failures. For instance, consider the
situation now illustrated on Figure 18, where developer A, besides extracting the key

variable, also changed its value to "j". The merge tools would behave exactly as in the
original example. In this case, however, the changes interfere (HORWITZ; PRINS; REPS,
1989), and the behavior expected by A (new key with old value) and B (old key with new
value) will not be observed when running the integrated code. In this case, the preference
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then would be for a semistructured tool, the tool that reports a conflict when integrating
these changes.

Figure 18 – Merging with Semistructured and Structured Merge (True Positive).

Whereas the original example in Figure 17 illustrates semistructured merge reporting a
false positive (incorrectly reported conflict), the modified example illustrates a structured
merge false negative (missed conflict). This shows that our comparison criteria should go
beyond comparing the number of reported conflicts. We should also consider the number
of false positives and false negatives, that is, the possibility of missing or early detecting
conflicts that could appear during building or execution. Such comparison should be
based on the differences between the merge strategies. By definition, they differ only when
merging the bodies of method, constructor, and field declarations.

4.2 RESEARCH QUESTIONS

To quantify the differences between semistructured and structured merge, and to help
developers decide which strategy to use, we analyze merge scenarios from the development
history of a number of software projects, while answering the following research questions.

RQ1: How many conflicts arise when using semistructured and structured merge?

To answer this question, we integrate the changes of each merge scenario with semistruc-
tured and structured merge. For the results of each strategy, we count the total number of
conflicts, that is, the number of conflict markers in the files integrated by each strategy.
We then count the number of conflicting merge scenarios, which means scenarios with,
at least, one conflict, with semistructured or structured merge. As explained later in
Section 4.3.2, to control for undesired variations on individual tools implementation, we
have implemented a single configurable tool that, via command line options, selects a
semistructured or structured merge strategy.
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RQ2: How often do semistructured and structured merge differ with respect to the
occurrence of conflicts?

We answer this question by measuring the number of merge scenarios having conflicts
reported by only one of the strategies. In principle, the strategies could still differ when
they both report conflicts for the same scenario, as the reported conflicts might be different.
However, by definition, both strategies report the same conflicts occurring outside of
method, constructor, and field declarations. We also observed that, when semistructured
and structured merge reports conflicts on the same scenarios, the conflicts occurring inside
such declarations are exactly the same or contain slightly different text among conflict
markers, but are essentially the same conflict in the sense that they report the same
issue. Similarly, we observed equivalent conflicts that are reported with a single marker by
semistructured merge, but involve a number of markers in structured merge as illustrated
later.

RQ3: Why do semistructured and structured merge differ?

We answer this question to better explain the differences quantitatively explored by
the previous question. We manually inspect merge scenarios and the code merged with
each strategy for a sample of scenarios that have conflicts reported by only one of the
strategies, so we can understand the difference on the behavior of the two strategies that
leads to diverging conflicts.

RQ4: Which of the two strategies reports fewer false positives?

A merge tool might report spurious conflicts in the sense that they do not represent
a problem and could automatically be solved by a better tool. These are false positives,
which lead to unnecessary integration effort and productivity loss, as developers have to
manually resolve them. To capture true positives, as explained in Section 2.3, we rely on
the notion of interference by Horwitz et al. (HORWITZ; PRINS; REPS, 1989), who state
that two contributions (changes) to a base program interfere when the specifications
they are individually supposed to satisfy are not jointly satisfied by the program that
integrates them. This often happens when there is, in the integrated program, data or
control flow between the contributions. We then say that two contributions to a base
program are conflicting when there is not a valid program that integrates them and is free
of interference.

As interference is not computable in our context (BERZINS, 1986; HORWITZ; PRINS;

REPS, 1989), we rely on build and test information about the integrated code we analyze,
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and, when necessary, resort to manual analysis. Again, we focus on scenarios that have
conflicts reported by only one of the strategies; so only one of the strategies produced
a clean merge. We attempt to build the clean merge and run its tests. If the build is
successful and all tests pass, we manually analyze the clean merged code to make sure the
changes do not interfere; passing all tests are a good approximation, but no guarantee
that the changes do not interfere, as a project’s test suite might not be strong enough, or
even do not cover the integrated changes. If we find no interference in the clean merge, we
count a scenario with false positive for the strategy that reported a conflict.

RQ5: Which of the two strategies has fewer false negatives?

A merge tool might also fail to detect a conflict (false negative). When this happens,
the users would be simply postponing conflict detection to other integration phases such as
building and testing, or even letting conflicts escape to operation. So, false negatives lead to
build or behavioral errors, negatively impacting software quality and the correctness of the
merging process. Similarly to RQ4, we rely on build and test information to identify false
negatives. We attempt to build the clean merge and run its tests. If the build breaks or, at
least, one test fails due to developers changes (when the base version and the integrated
variants do not present build or test issues, but the merge result has issues, so the changes
cause the problem), the strategy responsible for the clean merge has actually missed a
conflict (false negative). Thus, we count a scenario with false negative for the strategy
that yielded the clean merge.

It is important to emphasize that RQ4 and RQ5 consider only the differences between
semistructured and structured merge strategies. Our interest here is to relatively compare
both strategies— not to establish how accurate they are in relation to a general notion of
conflict. So, we do not need to measure the occurrence of false positives and negatives
when both strategies behave identically.

RQ6: Does ignoring conflicts caused by changes to consecutive lines make the two
strategies more similar?

In the example of Figure 17, semistructured merge reports a conflict because developers
A and B changed the same line in a method body. However, even if A had simply
added a single line (even a comment like //updating the map) before the method
call, semistructured merge would report a conflict. This happens because the invoked
unstructured merge reports a conflict whenever it cannot find a line that separates
developers changes. As in the example, structured merge would successfully integrate
the changes. Assuming that changes to the same line are often less critical than changes
to consecutive lines, it would be important to know whether a semistructured tool that
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resolves consecutive lines conflicts would present closer results to a structured tool. So,
to answer this question, we determine whether a semistructured merge conflict is due to
changes in consecutive lines of code — that is, one of the developers changes line 𝑛 and the
other changes line 𝑛 + 1. Then, for each merge scenario, we assess the number of reported
conflicts by semistructured merge, and how many of these conflicts are in consecutive lines.
Finally, answering this research question consists of revisiting previous research questions
contrasting results with and without consecutive lines conflicts.

4.3 EMPIRICAL EVALUATION

To answer our questions and compute the related metrics, we adopt a two-step setup:
mining and execution. In the mining step, we use tools that mine GitHub repositories of
Java projects to collect merge scenarios— each scenario is composed by the three revisions
involved in a three-way merging process associated with a merge commit, that is, a base
commit and the two parents of the merge commit.

In the execution step, we merge the selected scenarios with both semistructured and
structured merge. For each resulting merge free of conflicts, we use a build manager to
build the merged version and execute its tests, as this might helps us to find false positives
and false negatives. We now detail these steps. All the scripts and data used in this study
are available in our online appendix (CAVALCANTI, 2019).

4.3.1 Mining Step

Regarding projects sampling, as our experiment relies both on the analysis of source
code and build status information, for service popularity reasons (Zhao et al., 2017) we opt
for GitHub projects that use Travis CI for continuous integration. Besides, as the merge
tool used in the execution step is language dependent, we consider only Java projects.
Similarly, as parsing Travis CI’s build log depends on the underlying build automation
infrastructure, we analyze only Maven projects because we use its log report information
for automatically filtering conflicts. Considering more languages, build systems, and CI
services would demand significantly more implementation effort.

We start with the projects in the datasets of (MUNAIAH et al., 2017) and (BELLER;

GOUSIOS; ZAIDMAN, 2017), which include numerous carefully selected open source projects
that adopt continuous integration. From these datasets, we select Java projects that satisfy
two criteria. First, the presence of Travis and Maven configuration files, which indicates
that the project is configured to use the Travis CI service, and that the project uses the
Maven build manager.2 Second, the presence of, at least, one build process in the Travis
CI service, and confirmation of its active status, which indicates the project has actually
2 We check if the repository contains both Travis CI and Maven configuration files: .travis.yml and

pom.xml.
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used the service. It is important to note that we opt for a different sample of projects,
instead of the ones in Chapter 3, because many of the projects in Chapter 3 do not satisfy
the selection criteria described above.

After selecting the project sample, we execute a script that locally clones each project
and retrieves its merge commit list— a merge commit represents a merge in the project
history, and therefore can be used to derive a merge scenario (the parents of such a commit,
together with their most recent common ancestor). As most projects adopted Travis CI
only later in project history, we only consider merge commits dated after the first project
build on Travis. For each scenario derived from these merge commits, we check the Travis
CI status of the scenario’s three commits. If any of them has an errored (indicates a broken
build) or failed status (indicates failure on tests), we discard the scenario, as we would not
be able to confirm whether a problem in the merged version was caused by conflicting
changes, they could well have been inherited from the parents, in this case.

As a result of the mining step, we obtained 43,509 merge scenarios from 508 selected
Java projects. Although we have not systematically targeted representativeness or even
diversity (NAGAPPAN; ZIMMERMANN; BIRD, 2013), we argue that our sample has a consid-
erable degree of diversity concerning various dimensions. Our sample contains projects
from different domains, such as APIs, platforms, and network protocols, varying in size
and number of developers. For example, the Truth project has approximately 31 KLOC,
while Jackson Databind has more than 100 KLOC. Moreover, the Web Magic project
has 45 collaborators, while OkHttp has 195. We provide a complete list of the analyzed
projects in our online appendix (CAVALCANTI, 2019).

4.3.2 Execution Step

After collecting the sample projects and merge scenarios, we merge the selected scenarios
with both semistructured and structured merge. To control for undesired variations, we
have implemented a single configurable tool that, via command line options, selects
semistructured or structured merge. This way we guarantee that structured merge behaves
exactly as semistructured merge except for merging the body of method, constructor, and
field declarations. The new implementation adapts and improves previous and independent
implementations of a semistructured (see Section 3.4) and a structured merge tool.3

In particular, our tool is built on top of the semistructured tool. While a standard
semistructured merge tool invokes unstructured merge to merge those declarations body,
our configurable tool also allows structured merge to be invoked on declarations body.
As explained in Section 4.1, by construction, semistructured and structured merge differ
only when merging the bodies of method, constructor, and field declarations. Our tool
ensures this behavior. Thus, when configured as semistructured merge, the tool invokes
the standard and widespread diff3 unstructured algorithm. When configured as structured
3 https://github.com/se-passau/jdime
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merge, the tool invokes, to the best of our knowledge, the most mature and extensively
evaluated structured implementation (APEL; LESSENICH; LENGAUER, 2012; LESSENICH;

APEL; LENGAUER, 2015; LESSENICH et al., 2017; ZHU; HE, 2018; ZHU; HE; YU, 2019).
The tool takes as input the three revisions that compose a merge scenario and attempts

to merge their files. For each merge scenario, the tool generates two merged versions: a
semistructured version and a structured version. For each file in such versions, we count
the number of reported conflicts. For the semistructured merge versions, we also count
the number of conflicts that are due to changes in consecutive lines. To do so, we check
whether the sets of changed lines in the variants are disjoint, and whether the numbers of
the contribution lines in the conflict text are consecutive.4

With the number of conflicts in each merged version, we select scenarios having conflicts
reported by only one of the strategies. The strategies could also differ by reporting different
conflicts for the same scenario, as discussed earlier in Section 4.2. In our sample, however,
we verified that whenever semistructured and structured merge report conflicts in the
same scenario, these conflicts are in the same file. Even so, they could still report different
conflicts in the same file. We have, in fact, observed such cases, but they actually are
equivalent conflicts, reported by the strategies in different ways, using different sets of
markers and associated conflicting text. So, we can consider them to be the same conflict,
but with different textual representations derived from the difference in the exploited
syntax granularity. This is illustrated in Figure 19, in a merge scenario from the neo4j-
framework project. In this example, both developers added different declarations for the
same constructor. As this constructor is not declared in the base version, both strategies
report conflicts. Structured merge reports a conflict for any two syntactic level differences
between the versions, resulting in several small conflicts. Contrasting, semistructured
merge reports a single conflict for the entire declaration.

Figure 19 – Equivalent conflicts with different granularity.

4 We use GNU’s diff command passing the base version and each variant separately.
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Having identified scenarios for which the strategies differ, we then collect evidence of
false positives and false negatives. We use Travis CI as our infrastructure for building
and executing tests for each such scenario, as explained in Section 4.2 and illustrated in
Figure 20. As Travis CI builds only the latest commit in the push command or pull request,
not all commits in a project have an associated build status on Travis CI. The generated
semistructured and structured merged versions certainly do not have a Travis CI build, as
they are generated by our experiment. Because of that, we use a script that forces build
creation for one of the merged versions. Basically, we create a project fork, activate it on
Travis CI, and clone it locally. Then, every push to our remote fork creates a new build on
Travis CI. So, for each scenario for which the strategies differ (by definition one of the
merged versions is clean and the other is conflicting), we create a merge commit with the
clean merged version, and push it to our remote fork to trigger a Travis CI build. Note
that we are only able to build and test code without conflicts, as the conflicts markers
invalidate program syntax.

Figure 20 – Building and testing merge commits. A green check mark indicates no conflict
with one strategy, a red cross indicates conflict with the other strategy.

If the build status on Travis CI of the resulting merge commit is errored— when the
build is broken— or failed— when the build is ok, but, at least, one of the tests failed— we
consider that the corresponding merge scenario has a false negative from the strategy that
did not report a conflict; therefore a true positive reported by the other strategy. However,
it is possible that a build breaks or a test fails due to external configuration problems such
as trying to download a dependency that is no longer available, or exceeding the time to
execute tests. So, we filter these cases as they do not reflect issues caused by conflicting
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contributions. To do so, we analyze, for each generated build, its Maven log report seeking
for indicative message errors. Finally, since we have also filtered merge scenarios having
problematic parents (see Section 4.3.1), if the new merge commit still has build or test
issues, we can conclude that this is because developers changes interfere.

In case the resulting merge commit build status on Travis CI is passed, we are sure
that the merged version has no build error, and all tests pass. Thus, this is a candidate
false positive of the strategy that reported conflict. However, whereas this provides precise
guarantees for build issues, the guarantees for test issues are as good as the project test
suite. Even for projects with strong test suites, unexpected interference between merged
contributions might be undetected by the existing tests. So, to complement test information,
we manually inspect all conflicting files from all merged versions having potential false
positives. In this manual analysis, two persons analyzed the first 5 conflicting files to
consolidate the guidelines. Then, two other persons individually analyzed the remaining
files. In case of divergence between individuals’ classification for the same file, another
person reviewed that file. In case of uncertainty regarding the contributions, a message
was sent to the original committers to clarify the changes. We provide a sheet with the
detailed analysis of all files in our online appendix.

During this manual analysis, we check the changes made by each developer, analysing
whether they interfere, following the definition of interference in Section 2.3. If one of
the developers does not change program semantics, such as when refactoring or simply
changing comments, we consider that there is no interference. The corresponding merge
scenario is then confirmed as having false positives. The same applies when the developers
change unrelated state, or when they change assignments to unrelated local variables.
Conversely, if both developers change program semantics, such as when modifying related
state, or when changing assignments to the same variable, we consider that there is
interference. We then conclude that the corresponding merge scenario has a false negative.
As discussed in Section 4.1, the same applies to the variation of the example illustrated in
Figure 17. For each merge scenario in which we find interference in the merged version, we
add explanation and discuss a test case that fails in the base commit, passes in one of the
parent commits, and fails in the merged version. This is further evidence that the changes
made by the considered parent commit were affected by the changes of the other parent
commit.

4.4 RESULTS

By executing the study design presented in the previous section, we analyze 43,509
merge scenarios from the development history of 508 Java projects. We compare semistruc-
tured and structured merge concerning a number of dimensions. In this section, we
present the results, following the structure defined by our research questions. Detailed
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results for the analyzed projects, including tables and plots, are available in our online
appendix (CAVALCANTI, 2019).

4.4.1 How many conflicts arise when using semistructured and structured merge?

In our sample, we observed 4,732 conflicts when using semistructured merge, and
4,793 when using structured merge. This represents a reduction of 1.27% in the number
of reported conflicts when using semistructured merge. Such result, at first, might be
surprising to those that expect that more structure leads to conflict reduction. However,
as pointed out in Section 4.3.2 and illustrated in Figure 19, structured merge might
report more conflicts due to its structure-driven and fine-grained approach for dealing
with declarations bodies, including expressions and statements. Structured merge leads to
conflicts that respect the boundaries of the language syntax, but might result in many
small conflicts that are reported as a single conflict by semistructured merge.

To control for the bias of conflict granularity, we consider also the number of merge
scenarios with conflicts: 1,007 (2.31% of the scenarios) using semistructured merge, and
814 (1.87%) using structured merge. This time we observe a reduction of 19.17% in the
number of scenarios with conflicts when using structured merge. In a per-project analysis,
we observe similar results: 2.25 ± 4.58% (average ± standard deviation) of conflicting
scenarios with semistructured merge, and 1.8 ± 3.92% with structured merge.

Summary: Semistructured and structured merge report similar numbers of conflicts,
but the number of merge scenarios with conflicts is reduced using structured merge
(by about 19%). In general, conflicts are not frequent when using both strategies (in
about 2% of the scenarios).

4.4.2 How often do semistructured and structured merge differ with respect to
the occurrence of conflicts?

We found 223 (0.51%) scenarios with conflicts reported only by semistructured merge,
and 30 (0.07%) scenarios have conflicts reported only by structured merge. So, the two
strategies differ in 0.58% (253) of the scenarios in our sample. A per-project analysis gives
a similar result: on average, the strategies differ on 0.52 ± 2.06% of the scenarios.

The reported percentages are particularly small because most scenarios are free of
conflicts even when using less sophisticated strategies such as unstructured merge. In
fact, most of them involve only changes to disjoint sets of files, and could not possibly
discriminate between merge strategies because there is no chance of conflict.

So, it is important to consider the relative percentages of conflicting merge scenarios,
which correspond to 2.28% of our sample scenarios. Overall, the strategies differ in 23.67%
of the conflicting scenarios, with an average of 23.22 ± 44.45% in a per-project analysis.
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The observed error bounds are explained by some projects having low rates of merge
scenarios with conflicts. For instance, projects such as clocker, wire and la4j had only
one conflicting merge scenario, and, for this single scenario, the strategies differ as a result
of the reasons we explain on the next research question.

Summary: Semistructured and structured merge substantially differ in terms of
reported number of conflicts when applied only to conflicting scenarios of our sample
(they differ in about 24% of these scenarios).

4.4.3 Why do semistructured and structured merge differ?

To better explain the differences between the merge strategies, based on power and
sample size estimation statistics, we manually analyzed a random sample of 111 merge
scenarios that have conflicts reported by only one of the strategies. This includes 96
scenarios with conflicts reported only by semistructured merge, and 15 scenarios with
conflicts reported only by structured merge. For each scenario, we analyzed developers
changes, the code merged by one of the strategies, and the conflict reported by the other
strategy. This way we associate characteristics of the integrated changes with details of
the strategy that lead to conflicts.

Starting with scenarios with semistructured merge conflicts, and a structured clean
merge, consider the example in Figure 21. Developer A added the final modifier to
the IOException catch right after the try block. Meanwhile, developer B added a new
catch to ResourceNotFoundException, also right after the try block. As no line separates
these changes in two distinct areas of the text, semistructured merge—which invokes
unstructured merge to integrate method bodies— reports the conflict illustrated in the
figure. Developers then have to manually act and decide which catch should appear
right after the try block. In contrast, structured merge detects that the changes affect
different child nodes of a try node, and successfully integrates the changes by including
the new child node (B’s contribution) and the existing changed node (A’s contribution).
We observed the same kind of situation in every scenario that leads only to semistructured
merge conflicts, including the motivating example illustrated earlier in this chapter.

Summary: Semistructured and structured merge differ when changes occur in over-
lapping text areas that correspond to different AST nodes.

Moving now to scenarios with structured merge conflicts, and a semistructured clean
merge, consider the example in Figure 22(a). Developer A added a call to method viewModel

to an existing method call chain. Developer B changed the argument of method provided

in the same chain. Semistructured merge successfully integrates the changes because it
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Figure 21 – Semistructured merge conflict from project glacieruploader .

detects they occur in non-overlapping text areas: the line that calls method context

act as a separator between the areas. Structured merge reports a conflict because, by
analyzing and matching the base AST with the developers ASTs (see Figure 22(b)), it
incorrectly concludes that the left child of the second MethodCall node was changed by
both developers. Indeed, as marked in red in the figure, the three nodes in this position
are different. Developer B has not actually changed the call to provided, but changed the
call to context position by adding a new method call to viewModel. As tree matching
is top-down and mostly driven by MethodCall nodes in this case (APEL; LESSENICH;

LENGAUER, 2012), structured merge is not able to correctly match the calls, and assumes
that Developer B changed the call to provided by a call to context. That is why the
reported conflict involves these two method calls; the second in the conflict text corresponds
to a base node not changed by the developers (context call). The text does not refer to
the AST node that actually caused the conflict (viewModel call).

Structured merge makes a difference in a second kind of situation, as illustrated in
Figure 23. In this example, developer A deletes an argument from the call to method
doInsertFinalNewLine inside a for statement. Developer B converts the same for state-
ment into a for each statement. Since these changes occur in non-overlapping text areas,
semistructured merge successfully integrates the contributions. Structured merge reports a
conflict because it is unable to match the new for each with the previous for statement
because they are represented by nodes of different types. It correctly detects that the
subtree of the for statement body was changed by one of the developers, but it incorrectly
assumes that the whole for tree was deleted by the other developer. As a consequence,
structured merge does not proceed merging the child nodes from these iteration statements,
and reports a single conflict for the entire statements. Note that the changed method call
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Figure 22 – Structured merge conflict from project mvvmFX .

(a) Code

(b) AST
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doInsertFinalNewLine is accidentally included in this deletion as it is not matched with
the corresponding version in the for each.

Figure 23 – Structured merge conflict from project editorconfig-netbeans .

Summary: Semistructured and structured merge differ when changes occur in non-
overlapping text areas that correspond to (a) the same node, and to (b) different but
incorrectly matched nodes.

4.4.4 Which of the two strategies reports fewer false positives?

As explained in Section 4.3.2, we use Travis CI to build and test the resulting merged
code of the 253 scenarios for which the strategies differ (one reports a conflict and the
other cleanly merges the code). We found 44 scenarios with merged code that successfully
builds and for which all tests pass; their Travis CI status is passed. Although this status
provides precise guarantees that there are no build and test conflicts in these scenarios,
there could still be other kinds of semantic conflicts, as unexpected interference between
merged contributions might be missed by the existing tests. These 44 scenarios are then
potential false positives of the strategy that reported a conflict, but we have to confirm
this with a manual inspection of the merged code and the scenario contributions. Our goal
is to identify possible interference between merged contributions. These scenarios were
analyzed by two individuals separately. In 3 scenarios, there was disagreement between the
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individuals, so the review of another individual was necessary. Besides, in only 1 scenario
the contributions were not clear, so we asked contributions owner for clarification.

From the 44 potential scenarios with false positives, 39 are related to semistructured
merge: they were successfully merged by structured merge and have a passed status in
Travis CI. Conversely, only 5 scenarios are potential false positives of structured merge.

The manual analysis revealed that 36 of the 39 scenarios actually have semistructured
merge false positives. Only 3 scenarios were actual true positives of semistructured merge,
and, as a consequence, false negatives of structured merge. Although the build was
successful, and none of the tests failed, for these three scenarios, we could still observe
interference between the merged contributions. For instance, in a merge scenario from
project swagger-maven-plugin, both developers added elements to the same list. As a
consequence, each developer expects different resulting lists, which are themselves different
from the list that will be obtained by executing the merged code. None of this project’s
tests exercises these contributions, but it is not hard to come up with a test that passes in
the developers versions but fails in the merged version, revealing a conflict. For example,
suppose a test that checks whether the size of the list is n+1 ; if it passes in the developers’
individuals versions, it will fail in the merged version, in which the size of the list will be
n+2.

From the 5 scenarios having potential structured merge false positives, 4 of them were
classified as actual false positives. Only 1 of the 5 scenarios was an actual true positive of
structured merge, and a false negative of semistructured merge. The actual true positive
is a scenario from project resty-gwt. In this scenario, one of the developers edited
the condition and block of an existing if statement, while the other added another if

statement after the previous if statement. Both if statements return different values
based on the value of the same method parameter. However, the first developer’s edited
condition now satisfies both developers conditions, affecting the method result expected
by the other developer, and no test of the mentioned project captures this interference.
A test that captures this interference could be one, added by the second developer, that
checks the value of the mentioned parameter, and then enters into his added if block. The
test passes on second developer’s version, and fails on the merged version because now
it would enter on first developer’s if block, returning a different value. This situation is
illustrated in Figure 24. More specifically, suppose a test that receives an Overlay method
returning a primitive type (int, for instance). The test then checks if result type’s is
OverlayCallback. The test passes on developers B’s version alone (in red in the figure),
and fails on the merged version because of developer A’s changes (in blue).

4.4.5 Which of the two strategies has fewer false negatives?

We found 209 scenarios with merged code that either cannot be successfully built
(Travis CI errored status) or can be properly built but, at least, one of the tests do
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Figure 24 – Structured merge conflict from project resty-gwt .

not pass (Travis CI failed status). By performing a Travis CI log report analysis, we
observe that most scenarios (169) errored and failed status are due to a number of reasons
(Travis CI timeout, unavailable dependencies, etc.) unrelated to the contributions being
merged, and that suggest these are older scenarios that would be hard to compile and
build anyway — we name these as undetermined builds. So, we cannot automatically
classify these undetermined builds as false negatives of the strategy that merged the code
(the other having reported a conflict). Thus, we then focus on 40 scenarios with errored
and failed status caused by the merged contributions (we confirm that by parsing Travis
CI log messages and checking that they are compiler or test related), plus a manual
inspection of 41 scenarios randomly selected from the undetermined builds, based on power
and sample size estimation statistics, to check whether the merged contributions actually
interfere. Since our sample does not include scenarios having broken or failing parents (see
Section 4.3.1), if the resulting merged code presents build or test issues, we conclude this
is due to interference between the merged contributions.
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From the first group of 40 analyzed scenarios, we found only 4 scenarios having
semistructured merge false negatives: 3 with errored status and 1 with failed status for the
corresponding merge result produced by semistructured merge (structured merge having
reported conflicts for these cases). In contrast, we found 36 scenarios having structured
merge false negatives: 23 with errored status and 13 with failed status for the merge result
produced by structured merge (semistructured merge having reported conflicts for these
cases).

Although the merge strategies are somewhat different, we observed common causes for
false negatives due to broken builds. For example, we found situations in clean merges from
both strategies, in projects such as blueprints and Singularity, where one developer
added a reference to a variable while the other developer deleted or renamed that variable.
Consequently, the compiler could not build the file containing the reference to the removed
or renamed element. We also observed situations, in projects such as neo4j-reco and
vraptor, where one developer changed the value passed as an argument, while the
other developer changed the corresponding parameter’s type. After the merge, there is a
compilation error reported due to the mismatch between expected and passed argument.
It is important to emphasize that, although these merge strategies are not meant do detect
build or test issues, they might detect, by accident, other kinds of conflicts that do not
preclude them from generating a valid program, but would lead to build or execution
failures (see Section 2.3).

Regarding test failures causing false negatives, the only failed scenario from semistruc-
tured merge was in project closure-compiler, where the developers changes are respon-
sible to update the same list. Conversely, on failed scenarios from structured merge, we
observed, for example, developers inadvertently changing the same connection creation
in project jedis, or instantiating the same object with different constructors in project
DSpace.

From the manual inspection of the 41 undetermined builds, we classified 3 of them
as having semistructured false negatives, and 6 of them as having structured merge
false negatives. So, from the remaining inspected undetermined builds, 30 had actually
semistructured merge false positives, and 2 of them had structured merge false positives.
We summarize our findings for false positives and false negatives after all analyses on
Table 3.

Table 3 – Numbers for merge scenarios with false positives and false negatives.

Semistructed Merge Structured Merge

False Positives 66 6
False Negatives 8 45
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Summary: Semistrutured merge reports more false positives (9 times more scenarios
with false positives), and structured merge misses more conflicts (has more false
negatives; 8 times more scenarios with missed conflicts).

4.4.6 Does ignoring conflicts caused by changes to consecutive lines make the two
strategies more similar?

Our results shows that our metrics slightly drop if a semistructured merge tool could
resolve conflicts due to changes in consecutive lines. In particular, the number of scenarios
with semistructured merge conflicts is reduced by 3.38%. Besides, the number of scenarios
in which semistructured and structured merge differ is reduced by 11.07%. Note that we
only count consecutive lines conflicts, we actually do not resolve them. Thus, we dot not
have numbers for false positives and false negatives, which demands Travis CI builds of
code without conflicts.

As we observed in projects such as quickml, sejda and sonarqube, this happens
because changes to consecutive lines often correspond to changes to different AST nodes.
In such situations, structured merge does not report conflicts. Thus, when semistructured
merge is able to resolve consecutive lines conflicts, it might avoid conflicts due to changes
to different AST nodes, similar to structured merge.

Summary: A semistructured merge tool that can resolve consecutive lines conflicts
would present even closer number of scenarios with conflicts to structured merge, and
fewer scenarios in which the two strategies differ.

4.5 DISCUSSION

Our results show that, overall, the two merge strategies rarely differ for the scenarios
in our sample, as most of them are free of conflicts. Many of them change disjoint sets
of files, having no chance of leading to conflicts, not mattering which merge strategy
is adopted by the tool one uses. However, for scenarios that reflect more complicated
merge situations, we do observe that the choice of the merge strategy makes a difference:
considering scenarios with conflicts, the strategies differ in about 24% of the cases. This is,
though, maybe surprisingly low given that most code and changes occur inside (method,
constructor, etc.) declarations exploited by the significant extra structure considered by
structured merge. In terms of conflicting scenarios with differing behavior, structure plays
a similar role when moving from unstructured merge to semistructured merge (27%, see
Section 3.3), and when moving from semistructured to structured merge (24%).
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When the strategies differ, semistructured merge reports false positives in more merge
scenarios than structured merge, whereas structured merge has more scenarios with false
negatives than semistructured merge. The extent of the difference in the false positive and
false negative rates are quite similar. Semistructured merge false positives are not hard to
resolve: the fix essentially involves removing conflict markers. Analyzing the changes before
removing the markers might be expensive, but certainly not as in unstructured merge
(with its crosscutting conflicts as illustrated earlier in Figure 13), or as in structured merge
(with its fine granularity conflicts, as illustrated in Figure 19). Contrasting, structured
merge false negatives might be hard to detect and resolve. Most of the observed false
negatives actually correspond to compilation and static analysis issues that escape the
merging process but cannot escape the building phase. These are always detected and are
often easy to resolve. However, a large part of the observed false negatives correspond to
dynamic semantics issues that can easily escape testing and end up affecting users. These
are hard to detect and, when detected, are often hard to solve. A more rigorous analysis
based on conflict detection and resolution timing data, in the spirit of (BERRY, 2017),
could differently weight false positives and false negatives and better assess the benefits of
the strategies.

Based on our findings regarding false positives and false negatives, and given the
observed modest difference between the merge strategies, we conclude that semistructured
merge would be a better match for developers that are not overly concerned with false
positives. This is reinforced by considering the observed performance overhead associated
with structured merge, and the extra effort needed to develop structured tools (APEL et al.,
2011). Together with our consecutive lines result, this discussion points to the development
of a tool that adapts semistructured merge to report textual conflicts only when changes
occur in the same lines (resolving conflicts caused by changes to consecutive lines). Such a
tool could hit a sweet spot in the relation between structure and accuracy in non-semantic
merge tools.

The derived observations from our study, especially the ones that explain when the
strategies differ, shall help researchers and merge tool developers to further explore
improvements to merge accuracy and the underlying tree matching algorithms. In the
same line, our manual analysis of false positives reveal opportunities for making the tool
avoid a number of false positives. For example, by detecting straightforward semantic
preserving changes, we could avoid 42% of the semistructured false positives in our sample.

Combining the two merge strategies in a similar fashion as suggested by (APEL;

LESSENICH; LENGAUER, 2012) seems also promising. One idea is to invoke structured
merge, and when it does not detect conflicts, invoke semistructured merge and return its
result, which would reduce the chances of false negatives. This is a conservative strategy,
which considers the costs associated with false positives to be inferior than those associated
with false negatives. Such a tool would eliminate structured merge false negatives, but
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would still have semistructured merge false negatives. Conversely, in the best case, when
structured merge does detect conflicts, it would present structured merge false positives;
and, in the worst case, the tool would present semistructured merge false positives. A
less conservative combination, in which semistructured is used as long as it does not
detect conflicts, could also be explored by researchers. Actually, a tool implementing these
combinations of strategies should allow users to decide which one is more suitable for their
activities. As a drawback, such a combination of strategies has potentially the performance
overhead of invoking two strategies, so a detailed investigation is necessary to check the
tradeoff between performance and accuracy.

4.6 THREATS TO VALIDITY

We rely on manual analysis to identify interference between merged contributions,
so there is a risk of misjudgment. To mitigate this threat, every scenario was analyzed
separately by two individuals, and in case of disagreement, another individual acted as a
mediator. We also asked the actual contributors for clarification of the changes when they
were not clear, this was only necessary in one occasion.

We opted for a single merge tool that can be configured to work as semistructured
and structured merge. This was necessary to ensure that we have a structured merge
tool working as expected. This single tool is basically an extension of the semistructured
merge tool able to invoke a structured merge tool on declarations’ body. To the best of
our knowledge, these tools are the most mature and evaluated available tools.

In addition, as we discard merge scenarios that we could not properly build on Travis,
or that have broken or failed parents, we might have missed differences in the strategies
behavior. We might have also missed that because we analyze only code integration
scenarios that reach public repositories with merge commits; that is not the case, for
example, of integrations with git rebase, or that were affected by git commands that
rewrite history.

Finally, in this study we focus on open source Java projects hosted on GitHub, using
Travis CI and Maven. Thus, generalization to other platforms and programming languages
is limited. Such requirements were necessary because the merge tools are language specific,
and to reduce the influence of confounds, increasing internal validity.
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5 CONCLUSIONS

In this work, our main goal was to help developers deciding which kind of merge tool
to use. In particular, conflicts are a recurring problem in the context of collaborative
software development. As a consequence, one likely has to dedicate substantial effort to
resolve them. To reduce such effort, unstructured, line-based merge tools, which are the
state of practice, rely on purely textual analysis to detect and resolve conflicts. Structured
merge tools are programming language specific and go beyond simple textual analysis
by exploring the underlying syntactic structure and static semantics when integrating
programs. Semistructured merge tools attempt to hit a sweet spot between unstructured
and structured merge by partially exploring the syntactic structure and static semantics
of the artifacts involved. For program elements whose structure is not exploited, like
method bodies in Java, semistructured merge tools simply apply unstructured merge
textual analysis. Previous studies provide evidence that semistructured and structured
merge report less conflicts than unstructured merge. However, reduction on the number of
reported conflicts alone is not enough to justify industrial adoption of a new merge tool
due to the risk of missing conflicts (false negatives), or introducing false positives. Besides,
it was unknown how semistructured merge compares with structured merge. Thus, to
decide whether we should replace our merge tools, we needed to compare these merge
strategies and understand their differences, strengths and weaknesses.

By reproducing more than 34,000 merges from 50 Java projects, we first investigated
the relation between unstructured and semistructured merge with respect to the resulting
occurrence of false positives and false negatives. In particular, our assumption was that false
positives represent unnecessary integration effort, which decrease productivity, because
developers have to resolve conflicts that actually do not represent interference between
development tasks. Besides that, false negatives represent build or behavioral errors,
negatively impacting software quality and correctness of the merging process. For most
projects and merge scenarios, we observed that semistructured merge not only reduces
the number of reported conflicts, but it also has fewer additional false positives when
compared to unstructured merge. Furthermore, we find evidence that semistructured
merge additional false positives are easier to analyze and resolve than those reported by
unstructured merge. However, we found no evidence that semistructured merge has fewer
additional false negatives than unstructured merge. We also argue that semistructured
merge false negatives are harder to detect and resolve.

Driven by these findings, we proposed an improved semistructured merge tool that
further combines unstructured and semistructured merge to reduce the false positives
and false negatives of semistructured merge. We find evidence that the improved tool,
when compared to unstructured merge in our sample, reduces the number of reported
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conflicts by half, has no additional false positives, has at least 8% fewer false negatives, is
not prohibitively slower, and presents no extra usability barriers in relation to state of
the practice of merge tools. In practice, we expect the reduction in the number of false
negatives to be much higher, given the conservative nature of our metrics. Although the
improved tool has fewer false negatives, they might be harder to detect and resolve than
unstructured merge false negatives. As we have no conflict detection and resolution timing
data, we cannot, in a precise way, differently weight different kinds of false negatives and
better assess the benefits of our tool. This would be needed to compare the tools in a
more rigorous way. Similarly, we cannot precisely weight false positives and false negatives.
This, however, is less critical in our case because, in the analyzed sample, the improved
tool has no additional false positives in relation to unstructured merge.

Semistructured merge has shown significant advantages over unstructured merge. How-
ever, before deciding to replace state of practice unstructured tools by semistructured
merge, we need to investigate whether strucutred merge is a better option than semistruc-
tured merge. So, we compared semistructured and structured merge by reproducing more
than 43,000 merge scenarios from 508 Java projects. Our results show that users should not
expect much difference when using a semistructured or a structured merge tool, especially
when semistructured merge is able to resolve conflicts due to changes in consecutive lines
of code. We also discuss that, when deciding which tool to use, a user should consider
that semistructured merge reports more false positives, but structured merge misses more
conflicts (false negatives). However, combining the two strategies seems promising as it is
able to lessen disadvantages of both strategies.

Finally, our findings point to semistructured merge as a better replacement of unstruc-
tured tools for conservative developers, having significant gains with a closer behavior to
unstructured tools than structured merge. Besides that, practitioners might be reluctant
to adopt structured merge because of the observed performance overhead and its ten-
dency to false negatives. So, when choosing between semistructured and structured merge,
semistructured merge would be a better match for developers that are not overly concerned
with semistructured extra false positives. Finally, tweaking semistructured merge, or even
a combination with structured merge, might be the way for a sweet spot in the relation
between structure and accuracy in non-semantic merge tools.

5.1 CONTRIBUTIONS

We summarize our contributions as follows:

• Show how frequently merge conflicts occur during the merging process by using
unstructured, semistructured and structured merge tools;

• Derive a list of relative false positives and false negatives between unstructured and
semistructured merge;
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• Evaluate how frequently the relative false positives and false negatives occur during
the merging process as approximations for integration effort and correctness;

• Propose and evaluate an improved semistructured merge tool that address kinds of
the observed false positives and false negatives;

• Fill a gap in the literature by comparing semistructured and structured merge with
respect to different dimensions;

• Evaluate how frequently builds break and tests fail after merging code with semistruc-
tured and structured merge as proxy for false positives and false negatives of these
different merge strategies;

• We provide a replication package in our online appendix, allowing the replication of
the conducted empirical studies.

5.2 FUTURE WORK

As the presented studies are part of a broader context, a set of related aspects will be
left out of scope. Thus, the following topics are not directly addressed in this thesis, but
we suggest them as future work:

• Further improvements of our semistructured merge tool to better detect false nega-
tives, and resolve false positives. For instance, making it aware of refactoring related
changes. Also, as mentioned in Section 4.5, it is worthwhile to evaluate a merge tool
the combines semistructured and structured merge;

• Investigation and comparison with semantic merge: tools that incorporate semantics
for merge generation to check whether merged contributions does not introduce new
unwanted behaviors;

• Our results could benefit from replications analyzing other projects, including projects
in centralized version control system such as SVN or CVS, different CI tools, and
proprietary projects. Likewise, it would be interesting to have replications consid-
ering different programming languages, which would demand implementations of
semistructured and structured merge for such languages. Also, different languages
might lead to a different list of false positives and false negatives from those presented
in Chapter 3. Alternatively, one could make a study to analyze our results on a
per-project basis, understanding, for example, why some projects have more false
positives than others and so on;

• During this work we explored only certain kinds os false positives and false negatives.
However, it would also be important to investigate false positives and false negatives
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in general, those common to both merge strategies, and how to improve a merge tool
to detect and resolve them. It is important to identify interference and inconsistencies
generated by dependencies between development tasks, and how the merge strategies
deal with them. The focus is mainly on semantic interference and conflicts that are
rarely detected and require more integration effort;

• We use false positives as proxies for integration effort. We believe that a more precise
way to estimate the effort to resolve different types of conflicts would be to conduct
controlled experiments where developers have to resolve conflicts while time and
other metrics are being measured;

• In Chapter 4, we use existing tests as proxies for semantic conflicts (and false
negatives). We could generate tests to expose more semantic conflicts as well. One
possibility would be to attempt previous works (BöHME; OLIVEIRA; ROYCHOUDHURY,
2013; Shamshiri et al., 2013) strategies to generate test cases exercising developers’
contributions;

• The setup adopted in Chapter 4 came from observed limitations of the setup adopted
in Chapter 3. In particular, the differences between unstructured and semistructured
merge allowed us to derive a catalog of false positives and false negatives, and to
compare the strategies based on this catalog. However, this was not possible when
comparing semistructured and structured merge, guiding us to the adopted setup
based on builds and tests. One can, for sure, employ the second setup to compare
unstructured and semistructured merge;

• We had performance comparison between semistructured and structured merge in
mind. Indeed, in dry runs we observed that pure JDime (the adopted structured tool)
was slower than semistructured merge, as expected. However, when we combined
the tools in the single configurable tool we use in the experiment (see Section 4.3.2),
semistructured merge became slower than structured merge. Therefore, there is a
performance bug, and that is why we did not include a performance comparison.
So, in a future work, we should provide a detailed performance comparison between
these strategies.

• Throughout this work, we asked ourselves many complementary questions that would
be interesting to further investigate such as the following:

1. What is the nature of the task being independently developed that most
frequently lead to conflicts, and how it leads to false positives and false negatives?
Bug fixes, refactorings, adding new features, etc;
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2. Considering different software architecture models, are there options that help to
prevent conflicts, and consequently false positives and false negatives? Moreover,
where are conflicts more frequently located?

3. What are the different factors, technical, and organizational, that impact the
occurrences of conflicts?

5.3 RELATED WORK

This section presents related work in tools and strategies for conflict detection and
resolution, and previous studies providing evidence on conflicts and ther impact.

5.3.1 Strategies and Tools Assisting Conflict Detection and Resolution

A number of studies propose development tools and strategies to better support
collaborative development environments. These tools try to both decrease integration
effort and improve correctness during integration. For instance, Apel et al. (2011) propose
and evaluate FSTMerge, the semistructured merge tool used as a basis in this work. We
confirm the evidence presented by (APEL et al., 2011) and (CAVALCANTI; ACCIOLY; BORBA,
2015) that FSTMerge might reduce, but not for all projects and scenarios, the number
of reported conflicts. However, these studies do not investigate whether the obtained
reduction is achieved at the expense of extra false negatives, or new kinds of false positives
that are harder to resolve. In fact, the set of conflicts reported by FSTMerge is not a
subset of the conflicts reported by unstructured merge. Here we go further by analyzing
the relation of additional false positives and false negatives between unstructured and
semistructured merge in Chapter 3. We also propose an improved semistructured tool,
which is essential for justifying industrial adoption of more advanced merge tools.

Our improved semistructured merge tool implements a basic syntactic-based renaming
handler to detect renaming and to avoid false positives conflicts. In particular, it uses
unstructured merge result whenever unstructured and semistructured merge differ. Nev-
ertheless, a more advanced semantic-based refactoring detection module could further
improve precision. (MALPOHL; HUNT; TICHY, 2003) attempt to automatically detect re-
named identifiers across multiple files. When an identifier in one version is changed, then
its references in other versions are actively updated. (DIG et al., 2008) present MolhadoRef
to merge software in the presence of object-oriented refactoring at the API level. It records
change operations (refactoring and edits) used to produce one version and replays them
when merging versions, and is concerned with operations which have well-defined opera-
tions: inserting and deletion of packages, classes, method declarations and field declarations.
MolhadoRef is built on top Molhado, a structure versioning framework that facilitates
the construction of structure-oriented difference tools for various types of software arti-
facts (NGUYEN, 2006). Gumtree uses a two-phase strategy for AST matching (FALLERI et
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al., 2014). In the first phase, it searches top-down for nodes whose names match and whose
subtrees are isomorphic. In the second phase, it revisits unmatched nodes and searches
for pairs which have a significant number of matching descendants. This way, renamed
program elements and shifted code can be detected.

Structured and semantic merge strategies have also been proposed. Westfechtel (1991)
and Buffenbarger (1995) have pioneered in proposing merge algorithms which incorporate
context-free and context-sensitive structures. Their structured-oriented approaches are
language-independent, as language features are represented in an abstract level. Later, a
variety of approaches on structured diff and merge have been proposed. These include tools
specific to Java (APIWATTANAPONG; ORSO; HARROLD, 2007) and C++ (GRASS, 1992).

Apel, Lessenich e Lengauer (2012) proposed JDime, the structured tool used in Chapter
4, capable of tuning the merging process on-line by switching between unstructured and
structured merge, depending on the presence of conflicts. (LESSENICH et al., 2017) attempt
to improve JDime by employing a syntax specific look-ahead to detect renamings and
shifted code. They demonstrate that their solution can significantly improve matching
precision in 28% while maintaining performance.

(ZHU; HE; YU, 2019) proposed AUTOMERGE, a structured merge tool, built on top
of JDime, that matches nodes based on an adjustable so-called quality function. Their
goal is to find a set of matching nodes that maximizes the quality function, preventing the
matching of logically unrelated nodes, and, as consequence, false positives conflicts. They
found that AUTOMERGE was able to reduce the number of reported conflicts by 63%
when compared to original JDime, being only 17% slower. Besides, they found that about
99% of the results yielded by AUTOMERGE exactly correspond to original developers’
result, compared to 93% from JDime. They, however, do not investigate whether the
new matching leads to fewer false negatives, or introduces other kinds of false positives
not reported by original JDime. Besides, considering the similarity to original developers’
result as a ground truth might not be a safe decision, as they are based on state of practice
unstructured tools, so developers’ might have missed false negatives. Besides, most of
merges are free of conflicts. Many of them change disjoint sets of files, having no chance of
leading to conflicts, regardless of the adopted tool. Still adopting that criteria of similarity
to original developers’ result, we believe that semistructured merge tools would be superior
in that sense as it presents a close behavior to unstructured merge.

We complement these prior studies by comparing semistructured and structured merge,
not only in terms of reported conflicts, but also in terms of false positives and false negatives.
We conclude that semistructured merge would be a better match for developers that are
not overly concerned with false positives, especially when a semistructured merge tool
resolve conflicts caused by changes to consecutive lines. We also suggest that a combination
of these two strategies seems promising as it is able to reduce weakness of both strategies.

Semantic strategies have been for long not practical. (HORWITZ; PRINS; REPS, 1989)
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were the first to propose an algorithm for merging program versions without semantic
conflicts for a very simple assignment-based programming language. This original work
was later extended to handle procedure calls (BINKLEY; HORWITZ; REPS, 1995) and to
identify semantics-preserving transformations (YANG; HORWITZ; REPS, 1990). Seman-
ticDiff (Jackson; Ladd, 1994) takes two versions of a C program and identifies differences
between them by comparing the dependence relations between each procedure input and
output to approximate observable behavior. (BERZINS, 1994) proposed a general approach
by providing a language-independent definition of semantic merging with the use of a
generalization of the use of traditional denotation semantics.

In recent effort towards semantic merge feasibility, (SOUSA; DILLIG; LAHIRI, 2018)
proposed SafeMerge, a semantic tool that checks whether a merged program does not
introduce new unwanted behavior. They achieve that by combining lightweight dependence
analysis for shared program fragments and precise relational reasoning for the modifications.
They found that the proposed approach can identify behavioral issues in problematic
merges that are generated by unstructured tools. This tool needs as input a merged program
besides the three versions present in a merge scenario, so it could be used in combination
with a semistructured or structured merge tool— or even our suggested tool that further
combines these two strategies (see Section 4.5)— to reduce their behavioral false negatives.
However, SafeMerge only analyzes the class file associated with the modified method
declarations, so it may suffer from both false positives and negatives too. In particular,
their analysis results are only sound under the assumption that the external callees from
other classes have not been modified.

To prevent conflicts, tools using different strategies have also been proposed. Cassandra
(KASI; SARMA, 2013), for example, is a tool that analyzes task constraints to recommend
an optimum order of tasks execution so that conflicts can be avoided. While the tasks
are being developed, Palantír (Sarma; Redmiles; van der Hoek, 2012) is an awareness tool
that informs developers of ongoing parallel changes, and Crystal (BRUN et al., 2011),
proactively integrates commits from developer repositories with the purpose of warning
them if their changes conflict. WeCode (aES; SILVA, 2012) continuously merges uncommitted
and committed changes to detect conflicts on behalf of developers before they check-in
their changes. TIPMerge (Costa et al., 2019) has an algorithm that recommends developers
who are best suited to perform merges considering different metrics such as developers’
experience in the project, their changes in the involved branches, and dependencies among
modified files.

5.3.2 Evidence on Conflicts and Their Impact

Empirical studies provide evidence about the frequency and impact of conflicts, and
their associated causes. They all conclude that conflicts are frequent. For example, (KASI;

SARMA, 2013) and (BRUN et al., 2011) reproduce merge scenarios from different GitHub
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projects with the purpose of measuring the frequency of merge scenarios that resulted in
conflicts. These studies show average conflicting scenarios rates for merge conflicts of 14%,
and 17% respectively. (ZIMMERMANN, 2007) conducted a similar analysis reproducing
integrations from CVS projects instead. (PERRY; SIY; VOTTA, 2001) made an observational
case study to analyze the effect of parallel changes on a large-scale industrial software
system. They reported that, although 90% of the files could be merged without problems,
the degree of parallel changes is high— merge conflicts involved between 2 to up to
16 parallel changes. Our work complements these studies bringing evidence of conflict
frequency with the use of different merge strategies.

Other studies did not quantitatively measure the cost of resolving conflicts, but they
reported, based on experimental observations, that resolving merge conflicts is not so
trivial. It might take considerable time, and is an error-prone activity. For example,
(SARMA; REDMILES; HOEK, 2012) reported that developers commonly rush to commit
their tasks before others, so they would not have to deal with conflicts while pushing their
changes to the shared repository. In addition, (BIRD; ZIMMERMANN, 2012) report that a
frequent cause for integration errors are merge conflicts that were not resolved correctly.
(McKee et al., 2017) conducted a series of interviews and surveys to understand developers
perceptions of merge conflicts. They reported that if developers perceive a conflict as too
complex or if they do not have much knowledge in the code area of the conflict, they
might feel the need to alter their resolution strategy, such as reverting conflicting changes,
and in some cases delaying the task of resolving conflicts. (ADAMS; MCINTOSH, 2016),
and (HENDERSON, 2017) even report that companies have migrated to single-branched
repositories to avoid difficult merges. By analyzing false positives and false negatives
of different merge strategies, we were able to experience and to provide information on
conflict resolution complexity.

There are also studies that analyze different technical and organizational aspects
that might have an impact on the occurrence of conflicts, and characteristic of conflicts.
(CATALDO; HERBSLEB, 2011) presented an empirical analysis of a large-scale project where
they examined the impact that software architecture characteristics, and organizational
factors have on the number of conflicts. They concluded that architecture related factors
such as the nature and the quantity of component dependencies, as well as organizational
factors such as the geographic dispersion of development teams, can lead to higher
integration issues rates. (Menezes et al., 2018) analyze merge scenarios from open source
Java projects to investigate the nature of merge conflicts in terms of what conflicts look like,
what kinds of conflicts occur, how developers fix them, how conflicts relate to each other,
and more. Based on their results, they argue that it is difficult to envision a single generic
merge strategy that can automatically resolve all possible conflicts, because the diversity
in conflicts is simply too large. Still, they believe it is possible to improve over the existing
tools to better resolve conflicts, for instance, in the form of plug-ins that can automatically
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handle specific kinds of conflict. (ACCIOLY; BORBA; CAVALCANTI, 2018) derive a catalog
of conflict patterns expressed in terms of the structure of code changes that lead to merge
conflicts. Their results show that most conflicts occur because developers independently
edit the same or consecutive lines of the same method. However, the probability of creating
a merge conflict is approximately the same when editing methods, class fields, and modifier
lists. They noticed that most part of conflicting merge scenarios, and merge conflicts,
involve more than two developers. Also, that copying and pasting pieces of code, or
even entire files, across different repositories is a common practice and cause of conflicts.
Similarly, (Yuzuki; Hata; Matsumoto, 2015) investigate how conflicts on method declarations
are resolved on open source Java projects. They found that most part of them is resolved
by adopting one of the versions, then discarding the other. All these findings about conflicts
characteristics might be adapted by a merge tool as strategies for resolving conflicts.

Regarding the concept of integration effort, Prudêncio et al. (2012) suggest that it can
be measured as the number of extra actions (additions, deletions or modifications) that a
developer has to perform during code integration to conciliate the changes made in the
contributions to be merged. Furthermore, Santos e Murta (2012) correlate the number
of conflicts to that metric, suggesting that conflict reduction imply effort reduction. We
opted for an additional qualitative analysis because this metric only estimates the fraction
of the time taken by a developer to edit code, not taking into account the time that the
developer took reasoning about how to resolve the conflict. This way, the editing time
amounts to only part of the total integration effort time. Kasi e Sarma (2013) measure
integration effort based on the number of days that the conflict persisted in a project
repository. However, they assume that, during this period, the developers exclusively
worked to resolve that conflict. As the precise fixing period might be hard to find, and
we believe that is often not the case that developers exclusively work to resolve conflicts
when they happen, we opted for a qualitative analysis.

Assessing how often integration results in build or test issues, which can be seen as a
consequence of the false negatives in the merging process, partially motivated a couple of
studies (BRUN et al., 2011; KASI; SARMA, 2013; ACCIOLY et al., 2018). Kasi e Sarma (2013),
for instance, report integrations that result in build issues occurring in ranges between
2-15%, while Brun et al. (2011) describe both build and test issues ranging around 33%.
Comparing merge strategies, however, is not the focus of these studies, they are actually
based on traditional unstructured merge. Our work complements these studies in two
manners. In Chapter 3, we bring evidence about the frequency of integration that had
certain types of false positives and false negatives. Besides that, we have explored specific
types of false negatives that cause build or test issues. In Chapter 4, we assess the frequency
of build and test issues with different merge strategies, also considering a substantially
larger sample, with more than 500 projects and 20 times more merge scenarios that the
aggregated sample of these mentioned two studies.
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Finally, a number of studies investigate the causes of errors in the build process (ZHANG;

HASSAN, 2006; SEO et al., 2014; Kerzazi; Khomh; Adams, 2014; BELLER; GOUSIOS; ZAIDMAN,
2017; RAUSCH et al., 2017), but none of them investigate whether these errors are caused
by conflicting contributions, and are therefore related to collaboration or coordination
breakdowns. Although we consider a much larger sample than these previous studies, we
did not find many build and test issues. Besides the fact that we use advanced merge tools,
we believe there are two main reasons for the contrasting evidence. First, they do not
consider parents commit build status. This way, the build might have been already broken
or with failing tests before the merge. Second, previous studies perform build and tests
locally, so some part of errored and failed builds might have been caused by external or
configuration problems. In our study, we mitigate both threats since we analyze Travis CI
log report to filter builds with errors caused by external problems, and we also check the
merge commit parents status. This way we increase the confidence that the merge commit
build problems are caused by conflicting contributions.
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