
Field Testing of Software Applications
Luca Gazzola

Universita’ degli Studi di Milano-Bicocca Milano, Italy
luca.gazzola@disco.unimib.it
Supervisor: Leonardo Mariani

Abstract—When interacting with their software systems, users
may have to deal with problems like crashes, failures, and
program instability. Faulty software running in the field is not
only the consequence of ineffective in-house verification and
validation techniques, but it is also due to the complexity and
diversity of the interactions between an application and its
environment. Many of these interactions can be hardly predicted
at testing time, and even when they could be predicted, often
there are so many cases to be tested that they cannot be all
feasibly addressed before the software is released.

This Ph.D. thesis investigates the idea of addressing the faults
that cannot be effectively addressed in house directly in the field,
exploiting the field itself as testbed for running the test cases.
An enormous number of diverse environments would then be
available for testing, giving the possibility to run many test cases
in many different situations, timely revealing the many failures
that would be hard to detect otherwise.

Index Terms—field testing, field failures, isolation

I. TESTING SOFTWARE IN THE FIELD

Achieving high quality is mandatory in modern software
applications, but, despite intensive in-house testing sessions,
organizations still struggle with releasing dependable software.
Faulty applications running in the field are the source of
several problems, including higher maintenance costs, reduced
customers satisfaction, and ultimately loss of reputation and
profits.

Studying the reason why several faults are not detected
with in-house testing is of crucial importance to mitigate their
occurrence in the field. Although the faults present in the field
could be the result of a poor in-house testing process, there
are many faults that are objectively hard to detect in house,
even using state of the art methodologies and techniques.

This intuition has been confirmed by an analysis that we
performed on multiple real software failures experienced in the
field by the end-users. Our analysis shown that a significant
proportion of the faults that cause field failures have specific
characteristics that make them extremely hard to be detected
in house. In particular, out of all the failures that we analysed,
approximately only 30% of them could be attributed to bad
testing practices, while the remaining 70% should be attributed
to an interaction between the software under test and the
field that is objectively difficult or even impossible to test in
house. The impossibility to thoroughly test software systems
in house has been already recognized in mature companies.
For instance, Netflix engineers inject faults in the field to
analyse the impact of faults that cannot be studied in house in
a simulated environment [2].

The vision of this Ph.D. thesis is that the end-user envi-
ronment could be exploited as testbed for running the many
test cases that cannot be executed in house, because of both
the limited resources available for testing and the challenge
of recreating in house the same environment that is available
in the field. There are several important benefits related to the
capability of exploiting the field as part of the testing process.
If the application to be tested is popular enough to be installed
in many devices and computers (e.g., hundreds or thousands),
these many instances would offer unique opportunities in terms
of range of situations and configurations that could be tested in
parallel. Moreover, regardless the number of installations of a
same application that are available, testing an application in the
field gives the unique opportunity of testing the software when
used in its real environment, with real data. Finally, test cases
could be executed perpetually, not only to test an application
that has been just installed, but also to test the software while
the environment, the users, and the data evolve.

Successfully deploying the capability of executing test cases
while the software is running in the field, namely the capability
of doing field testing, even enables the possibility to identify
potential failures before they are experienced by the end-users.

II. KEY CHALLENGES IN FIELD TESTING

Field testing is inherently different from traditional in-house
testing and poses a new set of challenges, the ones about the
test strategy, that is, when and how to test the software in the
field, and the ones about the non-intrusiveness of the testing
process, that is, how to run the test cases without affecting the
user data and user processes, with negligible impact on the
user experience.

A. Test strategy

We identified four key elements that should be part of a
well-defined test strategy.

Test obligation. The test obligation defines which behaviors
should be tested in the field. Since field testing is executed
after in-house testing, field testing should focus on comple-
mentary aspects, that is, on those cases that have not been
tested in house. Moreover, field testing should target those
functionalities that cannot be effectively and efficiently tested
in house, such as, functionalities that depend on field entities
or functionalities whose execution space can combinatorially
explode. An example of the former functionality is a routine
that uses an external DBMS, which requires interacting with
a specific driver and a specific database configuration. An

ar
X

iv
:1

70
5.

07
35

9v
1 

 [
cs

.S
E

] 
 2

0 
M

ay
 2

01
7



example of the latter functionality is an application for writing
documents, which may display some text incorrectly only
when using specific characters of a specific size and of a
specific font type.

Test opportunity. The test opportunity defines when the
software application running in the field should be tested.
When testing is performed in house, the testing procedures are
usually started in accordance with the development activities
(e.g., a change in the source code). The activation of testing
procedures for software running in the field should be based on
different aspects. In particular we identified two key elements.
The first one is the software state, which could be recognized
as relevant for testing. For example, the test cases for a
spreadsheet application might be executed when the user opens
a spreadsheet with thousands of formulas and millions of
data values, assuming that a real spreadsheet of this size
is a relevant subject for the testing procedure. The second
element is the available resources, which should be sufficient
to run the test cases without impacting the user experience. For
instance, if the system is already performing a cpu intensive
computation, it might be a bad idea to activate an automatic
testing procedure.

Test generation strategy. The test generation strategy defines
how to obtain the test cases that should be executed in the
field. We foresee two different types of strategies: static and
dynamic. Static test generation strategies consist of imple-
menting in house the test suites specifically designed to cover
potentially interesting situations in the field. In this case the
test suite would be static, and the test cases that must be
executed would be selected dynamically based on the state
of the execution. Dynamic test generation strategies should
instead generate or update test cases directly in the field. This
can be done by developers, based on problems reported by end
users, or automatically, for example by mutating the available
test cases or even producing new tests from scratch.

Test oracle. The test oracle defines what the expected behav-
ior of the software under test is. This information is necessary
to detect failures. There are at least two main approaches to
obtain a test oracle that can detect failures, beyond program
crashes. An approach consists of defining a generic oracle for
the application, covering at least the functionalities that should
be tested in the field. An alternative approach is associating
oracles with test cases. The former approach is more generic
and can serve many purposes, including the detection of
failures revealed by automatically generated test cases, but it
is more expensive. The latter approach is cheaper to specify
because it covers just the specific cases encoded in the test
cases, but it is harder to generalize to executions different
from the ones represented in the test cases, and thus it might
be difficult to reuse for the automatically generated test cases.

B. Non-intrusiveness

We identified two key elements that should be considered
about non-intrusiveness.

Isolation. A software application running in the field inter-
acts with the elements that are available within its environ-
ment (e.g., the resources). Isolating field testing requires the
guarantee that the application under test does not produce any
disruptive effect while tested, that is, it cannot cause any loss
of data and cannot impact on the other processes running in
the field. This is a fundamental property to make the field
testing technology acceptable by end users.

Overhead. Running test cases in the field requires the
consumption of additional resources, definitely cpu cycles and
memory, but also I/O and access to the network. The field
testing procedure must guarantee that any additional resource
consumption is rarely and hardly noticeable by the users of
the application.

III. RESEARCH METHODOLOGY

The research methodology adopted in this Ph.D. thesis
consists of three main phases. The first phase, namely analysis
of field failures, concerns with the analysis of the failures
reported from the field by users of software systems. The
second phase, namely identification of test strategies, concerns
with the definition of a test strategy aimed to reveal the faults
that can be hardly revealed in house, based on the outcome
of the first phase. The third phase, namely definition of the
test infrastructure, concerns with the design and development
of a prototype infrastructure that supports the execution of the
test strategies defined in the second phase, guaranteeing the
non-intrusiveness of the testing process.

The first phase of the research has been completed, and
we are now facing the second and third phases that will be
developed in parallel. In the rest of this section, we discuss
each phase, and the results that have been obtained, when
available. We conclude by sketching the validation plan.

A. Analysis of Field Failures

To understand the characteristics of field failures, we fo-
cused on two main research questions:

1) What are the reasons why software faults are not de-
tected at testing time?

2) What are the field elements typically involved in a field
failure?

To answer these questions we manually inspected 119
bug reports1 from three different open source systems:
three Eclipse plugins [19], [17], [18], OpenOffice [1] and
Nuxeo [13]. We discovered that only 30% of the faults can be
attributed to weak testing, while 70% of the faults would be
hard to reveal in house for one of the following four reasons,
that we defined to answer the first research question:

Impossible to test (ItT): it is impossible to replicate in house
the environment that produces the fault.

Lack of information about the application (LoIA): the applica-
tion fails for an undocumented specific case, thus testers have

1We actually inspected more than 400 bug reports, but we have been able
to extract useful information about the fault for only 119 bug reports.



36

2
6

15

60

0

20

40

60

BT ItT LoIA LoIE CE

nu
m

be
r 

of
 fa

ul
ts

Fig. 1. RQ1: reasons why faults could not be revealed at testing time

too little information to design a test case that covers the fault
in-house.
Lack of information about the environment (LoIE): the appli-
cation fails for a specific configuration of the environment that
in principle should not have any effect on the application.
Combinatorial explosion (CE): the application fails for a
specific case out of a huge set of possible cases that cannot
be feasibly tested in house.

Figure 1 shows the relative distribution of these four causes
for the bug reports that we analyzed, plus the bad testing
(BT) cases. Faults related to combinatorial explosion is the
major cause of field faults. We observed only two faults that
were impossible to test in house. We expect this result to be
influenced by the set of systems considered in our analysis.
Probably the set of cases impossible to test in house would be
higher if considering multi-user distributed systems.

To answer the second research question we checked how
often a specific field element, potentially in a specific state, is
necessary to observe a failure. We observed that 79% of field
failures depend on field elements. The most frequent ones are
resources (e.g., files), which appear in 54% of the cases, and
operating systems, which appear in 21% of the cases.

These two results jointly show that (1) there are many faults
that can be hardly revealed in house for reasons different than
a weak testing process, and (2) the testing procedure must
exploit elements present in the environment to successfully
reveal these faults.

B. Identification of the Test Strategy

In this phase, we exploit the knowledge gained with the
initial study to distill a set of test strategies for specific
classes of field failures. Each test strategy consists of executing
a predefined test activity when a given test opportunity is
observed. According to our observations, many of the failures
can be clustered into similar failure scenarios, which consist
of observing specific operations when certain field elements
are in a given state. Failure scenarios let us specify the failure
opportunities that should be considered when performing field
testing.

So far we identified several opportunities, an example is the
modified resources location. Many applications must access to
resources available in the field when executed, such as files

and databases. Sometime these resources are moved to a new
location by an independent software or by the user. If the
application running in the field is not robust against resource
relocation, changing the location of resources might threat the
correctness of the application.

The test strategy for the modified resource location op-
portunity consists of generating test suites that cover several
usage scenarios for all the resources used by an application.
At runtime we periodically check if resources are moved, and,
in case a relocation is detected, the test suite exercising the
uses of that resource is automatically executed to check if the
application can tolerate the new configuration.

We are currently working on more structured definition of
test opportunities and corresponding test strategies, with the
aim of covering a representative set of failures.

C. Definition of the Test Infrastructure

In order to be able to deploy field testing, we need a suitable
infrastructure providing facilities for maintaining the test suites
available in the field, and collect the results produced by the
execution of the test cases.

Since test strategies require the ability to detect when
some test cases should be executed, the infrastructure must
include lightweight monitoring capabilities for detecting the
test opportunity, and should also be able to select or generate
the relevant test cases.

A relevant part of the infrastructure should be devoted to
guaranteeing the non-intrusiveness of the field testing process.
To achieve isolation, we intend to exploit virtualization tech-
nologies and containers, such as Docker [4], to efficiently wrap
a software application in a complete environment.

A technical solution alternative to virtualization might be
based on platforms for N-version executions, which consist of
platforms that can run multiple instances of a program in par-
allel, keeping them synchronised through the use of monitors.
Assuming to have enough resources to run multiple instances
of a software application, this solution enables efficient field
testing activities. An architecture supporting this form of N-
version execution has been proposed by Hosek and Cadar [8].

D. Validation

In order to evaluate this research, we will apply the defined
field testing infrastructure to software applications from dif-
ferent domains: this will tell us if and how the application
domain influences the success of field testing. Our measures
of effectiveness will be based on the number of faults that
can be discovered with the deployed infrastructure, and on
the number of tests that are generated and executed in the
field. In addition, to assess the non-intrusiveness, we will
measure the performance overhead (and more in general the
resource consumption caused by the infrastructure), and we
will evaluate the impact of the overhead on the user experience
by designing studies with human subjects.

IV. RELATED WORK

The approaches related to this Ph.D. work can be organized
into three groups: studies about the characteristics of software



failures, approaches to run test cases in the field, and testing
and analysis techniques that exploit field data. In the following,
we briefly discuss these classes of approaches.

Existing studies of real software faults draw conclusions
on characteristics such as the distribution of faults types [6],
[5], the locality of faults [6], the distribution of faults across
source files [15], the root cause, that is, the development phase
in which a fault has been introduced, and human error that
caused the fault [10], the relation between fault types, failure
detection, and failure severity [7], and the evolution of faults
during bug fixing [20]. However, none of these studies has
focused on the causes of field failures and the reasons why
failures have not been discovered at testing time, as well as the
common characteristics of field failures, which is the starting
point of our research.

The problem of running test cases in the field has been
preliminarily studied by other researchers. The approach to
field testing that is closest to the work developed in this thesis
is in-vivo testing [12]. In-vivo testing consists of deploying
unit test cases that are executed with a user-defined probability
while the application is running to detect failures. However,
in-vivo testing does not take into account the specific elements
(e.g., resources in the environment) that should be exploited
in a field testing strategy to detect the faults that are hard to
reveal in house, and does not address the problem of the non-
intrusiveness of the testing process, which is assumed to be
guaranteed by construction by the tests. Another attempt to
move the testing process in the field is the work by Memon
et al. [11]. However, they focus on moving acceptance testing
to the field, which is a different task compared to designing
a technique for revealing the faults that are hard to reveal in
house.

Finally, there are analysis techniques exploiting field data.
For instance, residual test coverage monitoring [16] collects
coverage data from the field to complement the results of
structural testing obtained in-house. Recently, Ohmann et
Al. [14] proposed a novel approach to limit the amount of
instrumentation necessary to collect coverage data, increasing
the applicability of residual test coverage in the field.

Statistical program debugging has been also deployed in
the field [9], [3]. In these approaches, software applications
are lightly instrumented so that they can send execution
profiles to a central database. Statistical debugging is then
performed on the profiles gathered from the field to identify
the likely locations of the faults that have been activated in the
field. Although debugging is a different task than testing, the
distributed infrastructure built to monitor and collect data from
applications running in the field can be useful also to maintain
test cases and gather results about the testing process.

V. CONCLUSIONS

Field testing can be a powerful solution for timely dis-
covering the faults that are seldom detected with traditional
in-house testing. Although this concept of testing is still
in its infancy, the technical elements necessary to achieve
it (e.g., testing techniques, virtualization environments, and

distributed infrastructures) are mature enough to support this
research. This Ph.D. thesis aims at exploring this novel concept
of testing, introducing the concepts of test strategies and
test opportunities, in addition to defining and developing an
appropriate infrastructure for field testing.

Acknowledgments This work has been partially supported by the
H2020 Learn project, which has been funded under the ERC Con-
solidator Grant 2014 program (ERC Grant Agreement n. 646867).

REFERENCES

[1] Apache Software Foundation. Apache open office.
https://www.openoffice.org/.

[2] A. Basiri, A. Blohowiak, L. Hochstein, and C. Rosenthal. A platform
for automating chaos experiments. In Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE), Industry Track,
2016.

[3] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani.
Holmes: Effective statistical debugging via efficient path profiling. In
Proceedings of the International Conference on Software Engineering
(ICSE), pages 34–44, 2009.

[4] Docker Inc. software containerization platform.
https://www.docker.com/.

[5] C. F. Fan, S. Yih, W. H. Tseng, and W. C. Chen. Empirical analysis of
software-induced failure events in the nuclear industry. Safety Science,
57:118 – 128, 2013.

[6] M. Hamill and K. Goseva-Popstojanova. Common trends in software
fault and failure data. IEEE Transactions on Software Engineering
(TSE), 35(4):484–496, 2009.

[7] M. Hamill and K. Goseva-Popstojanova. Exploring fault types, detection
activities, and failure severity in an evolving safety-critical software
system. Software Quality Journal, 23(2):229–265, 2014.

[8] P. Hosek and C. Cadar. Varan the unbelievable: An efficient n-version
execution framework. ACM Computer Architecture News (SIGARCH),
43(1):339–353, 2015.

[9] L. Jiang and Z. Su. Context-aware statistical debugging: from bug pre-
dictors to faulty control flow paths. In Proceedings of the international
conference on Automated software engineering (ASE), pages 184–193,
2007.

[10] M. Leszak, D. E. Perry, and D. Stoll. Classification and evaluation of
defects in a project retrospective. Journal of Systems and Software,
61(3):173 – 187, 2002.

[11] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and
B. Natarajan. Skoll: Distributed continuous quality assurance. In
Proceedings of the International Conference on Software Engineering
(ICSE), pages 459–468, 2004.

[12] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of software
applications using the in vivo testing approach. In Proceedings of the
International Conference on Software Testing Verification and Validation
(ICST), pages 111–120, 2009.

[13] Nuxeo. Nuxeo, web based cms. https://www.nuxeo.com/.
[14] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit.

Optimizing customized program coverage. In Proceedings of the
International Conference on Automated Software Engineering (ASE),
pages 27–38, 2016.

[15] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a
large industrial software system. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pages 55–64,
2002.

[16] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In
Proceedings of the International Conference on Software Engineering
(ICSE), pages 277–284, 1999.

[17] The Eclipse Foundation. Eclipse git plug-in. eclipse.org/egit/.
[18] The Eclipse Foundation. Eclipse java persistence plug-in.

http://www.eclipse.org/eclipselink/.
[19] The Eclipse Foundation. Eclipse subversive svn plug-in.

http://www.eclipse.org/subversive/.
[20] M. J. P. van der Meulen, P. G. Bishop, and R. Villa. An exploration

of software faults and failure behaviour in a large population of pro-
grams. In International Symposium on Software Reliability Engineering
(ISSRE), pages 101–112, 2004.


	I Testing Software in the Field
	II Key challenges in Field Testing
	II-A Test strategy
	II-B Non-intrusiveness

	III Research Methodology
	III-A Analysis of Field Failures
	III-B Identification of the Test Strategy
	III-C Definition of the Test Infrastructure
	III-D Validation

	IV Related work
	V Conclusions
	References

