
Managing Assurance Cases in Model Based Software Systems

MANAGING ASSURANCE CASES IN MODEL BASED SOFTWARE SYSTEMS

BY
SAHAR KOKALY, M.A.Sc., B.Eng.

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Sahar Kokaly, April 2019
All Rights Reserved

Doctor of Philosophy (2019) McMaster University
(Computing & Software) Hamilton, Ontario, Canada

TITLE: Managing Assurance Cases in Model Based Software Systems

AUTHOR: Sahar Kokaly
M.A.Sc., B.Eng. (Software Engineering)
McMaster University, ON, Canada

SUPERVISOR: Dr. Tom Maibaum and Dr. Marsha Chechik

NUMBER OF PAGES: xvii, 226

ii

To my daughters, Jenna and Lana

“You have brains in your head.
You have feet in your shoes.

You can steer yourself any direction you choose.”
— Dr. Seuss, Oh, The Places You’ll Go!

Abstract

Software has emerged as a significant part of many domains, including financial service platforms,
social networks, medical devices and vehicle control. In critical domains, standards organizations
have responded to this by creating regulations to address issues such as safety, security and privacy.
In this context, compliance of software with standards has emerged as a key issue. For companies,
compliance is a complex and costly goal to achieve and is often accomplished by producing so-
called assurance cases, which demonstrate that the system indeed satisfies the property imposed
by a standard (e.g., safety, security, privacy) by linking evidence to support claims made about
the system. However, as systems undergo evolution for a variety of reasons, including fixing bugs,
adding functionality or improving system quality, maintaining assurance cases multiplies the effort.

Increasingly, models and model-driven engineering are being used as a means to facilitate com-
munication and collaboration between the stakeholders in the compliance value chain and, further,
to introduce automation into regulatory compliance tasks. A complexity problem also exists with
the proliferation of software models in model-based software development, and the field of Model
Management has emerged to address this challenge. Model Management focuses on a high-level view
in which entire models and their relationships (i.e., mappings between models) can be manipulated
using specialized operators to achieve useful outcomes. In this thesis, we exploit this connection
between model driven engineering and regulatory compliance, and explore how to use Model Man-
agement techniques to address software compliance management issues, focusing on assurance case
change impact assessment, evolution and reuse. We support the presented approach with tooling and
a case study. Although the main contributions of this thesis are not domain specific, for validation,
we ground our approaches in the automotive domain and the ISO 26262 standard for functional
safety of road vehicles.

iv

Acknowledgements

Every PhD needs a supervisor, and I have been fortunate to have two. First is Dr. Tom Maibaum,
who was supportive of the idea that I start a PhD part-time while working as a Research Engineer
on the NECSIS project with him. Over the years, Tom and I shared many car rides and travelled
on many occasions together. I learned so much from Tom about software engineering, logic and
system safety. Tom knows something about everything. He always has the best stories to share,
the best food and wine recommendations, and always manages to make me laugh at his puns and
jokes. Thank you, Tom, for your supervision, for your support and for your friendship. I am very
fortunate to have worked with you and learned from you during the past few years.

Then is Dr. Marsha Chechik, whose co-supervision in this PhD has been invaluable. Marsha
welcomed me to her group through our collaboration on NECSIS, and quickly involved me in many
of her group’s activities. Words cannot express my gratitude to her. She helped me shape my thesis
work, taught me how to conduct good research, always answered my questions about various things
related to academic life, encouraged me to take on many professional activities, introduced me to
many people in the field, and never missed responding to a single email or Skype message from me.
Marsha has taught me so much about being a successful academic, and has been a great role model
for me both professionally and on a personal level. Thank you, Marsha, for everything. You will be
a lifetime friend, and I will always come to you for advice on work, life and parenting.

I am very grateful to have worked with so many amazing people throughout my PhD. My early
work was with Zinovy Diskin, who introduced me to Category Theory and taught me a lot about it.
I worked very closely with Rick Salay, who taught me so much about academic writing and helped
me shape my work. Rick and I had many useful working sessions and conversations, and I am very
thankful for his support and friendship. Alessio Di Sandro and Nick Fung were such a pleasure to
work with, as well. Alessio led the tool development in MMINT and Nick in MMINT-A. Thanks
to you both for all the work you put into implementation, testing and running experiments needed
for this thesis.

I would also like to thank other people I have collaborated with on content presented in this thesis;
Mark Lawford, Valentin Cassano, Mehrdad Sabetzadeh, Michalis Famelis and Mike Maksimov. It
was a pleasure working with you all.

A PhD journey is not the smoothest of rides and some people can make it so much easier. Richard

v

Paige has been a wonderful friend and mentor to me and I would like to thank him for that. I have
learnt a lot from you, Richard, and I look forward to working with you more in the future. Alan
Wassyng, who first taught me in my undergrad, remained a close mentor in my PhD, and I am very
grateful to him for his many questions and answers!

I consider myself lucky to have worked in the McMaster Centre for Software Certification (Mc-
SCert). Thank you to all my colleagues there for the many useful discussions and for your friendship.
In particular, I would like to thank Vera Pantelic for being really supportive and for her listening ears.
You are a great friend, Vera. Also, thank you to Lynda, Magda and Laurie for all the administrative
help over the years!

It was such a pleasure to have worked with the modeling group at the University of Toronto. I
would like to thank everyone in the group for the useful conversations, feedback on my work, and for
your friendship. In particular, thanks to Alicia Grubb who encouraged me to keep pushing towards
the final stages of the PhD. We did it!

In September 2016, I started a part-time position with General Motors. I have been very for-
tunate to work with the R&D group in Warren led by Joseph D’Ambrosio. I have learnt so much
about model-based engineering and automotive safety working with GM. Thank you Joe, Ramesh,
Galen, Sigrid and Lucian for all the useful discussions. Also thanks to Amanda Kalhous for being
a supportive manager and a great role model of a successful working woman and mother in the
automotive domain.

I would like to thank Mark Lawford and Jacques Carette for accepting to serve on my supervisory
committee, for attending all my committee meetings and for the useful comments and feedback that
helped improve this thesis. Specifically, I thank Mark for his time and advice on multiple occasions.
I would also like to thank my external examiner, Dr. Lionel Briand, for his review of my thesis,
attending my defense in person, and raising many interesting points of discussion.

My PhD was funded through the NECSIS project with support from NSERC and General Motors.
I was also awarded travel scholarships through CRA-W and SigSoft CAPS, which enabled me to
travel to conferences and events. Thank you for the funding!

Last, but not least, comes my family. My parents, Maha and Bishara are the first to thank. They
have both sacrificed so much so that my siblings and I can have better lives. Thank you mama and
baba for bringing us to Canada, thank you for encouraging me to start the PhD, and for supporting
me through it. You listened to me complain about it numerous times, and kept pushing me and
reminding me to keep my eye on the prize. Your love, acceptance, encouragement and vision have
gotten me through it. I did this mostly for you, especially you baba! I hope I have made you proud.

My siblings, Samer and Rana, have both been my support system. Thank you for listening, for
laughing, for helping with the girls, and for just being there. I love you both!

I am so fortunate to come from a big family who loves to talk and be in each others business!
My grandparents, aunts, uncles and my cousins, you are all amazing people, and I am so fortunate
to have you in my life (nosiness and all!).

I cannot even begin to express my gratitude towards my wonderful husband and life partner,

vi

Majd. You have been through it all with me, the ups and the downs, the good, the bad and the
ugly. Thank you habibi for everything; for listening, for encouraging me not to quit, for the advice,
help and support, for the tea and snacks while writing late at night, for taking full responsibility of
our home and family while I travelled to attend conferences, for fixing all my laptop problems, the
list goes on and on. I am extremely grateful to you, and I hope this has paid off.

My first daughter Jenna, you lived through my PhD, so it has been like a sibling to you, taking
my attention from you at times. You asked me once when you were 5 “Mama, when will you stop
being a student?”, well I think now you have an answer! I love you so much, and I see so much
potential in you. Thanks for enduring my stress and work, and thanks for being such a mature and
helpful big sister. My baby, Lana, you were the reason I managed to complete this. From the day
I found out that I was pregnant with you, I started writing my thesis so I could finish before you
were born (of course that didn’t happen as planned, but close!). You are my thesis baby, and I am
so happy you entered my life during this final year. I love you so much! This thesis is dedicated to
you both, and I can’t wait to see all the places you’ll go!

vii

Contents

Abstract iv

Acknowledgements v

I Motivation & Related Work 1

1 Introduction 2
1.1 Motivation . 2
1.2 The SafeCar Example . 3
1.3 Related Work . 5

1.3.1 Model Management . 5
1.3.2 Compliance Management Frameworks . 6
1.3.3 Languages, Algorithms and Operators for Compliance 6
1.3.4 Modeling Standards, Assurance Cases and Compliance 7

1.4 Gaps Identified In This Thesis . 8
1.5 Our Proposal: Model Management for Compliance 10
1.6 Research Questions . 14
1.7 Thesis Contributions . 15
1.8 Thesis Organization . 18

II Megamodel Management 20

2 Background: Model Management 21
2.1 Running Example: Power Sliding Door System . 21
2.2 Modeling and Model Management . 23

2.2.1 Modeling . 23
2.2.2 MDA, MOF, EMF and Ecore . 25
2.2.3 Model Management . 26
2.2.4 Definitions . 27

viii

2.3 Model Slicing . 32
2.4 Model Evolution . 33
2.5 Chapter Summary . 33

3 Background: MMINT 36
3.1 Using MMINT for Model Management . 38
3.2 MMINT Architecture . 41
3.3 Chapter Summary . 42

4 Megamodel Management with Collection-Based Operators 44
4.1 Traditional Megamodeling Operators . 46
4.2 Megamodel Collection Operators . 46

4.2.1 Operator map . 46
4.2.2 Operator reduce . 49
4.2.3 Operator filter . 50

4.3 Application Scenarios . 52
4.3.1 Experiment Driver . 52
4.3.2 Mass Refactoring . 53
4.3.3 Megamodel Transformation . 54
4.3.4 Scenario from the Motivating Example . 55

4.4 Analysis . 56
4.5 Tool Support . 57

4.5.1 Using MMINT . 57
4.5.2 Implementation of Collection Operators . 57
4.5.3 Experiments . 58

4.6 Related Work . 59
4.7 Chapter Summary . 60

5 Heterogeneous Megamodel Slicing 61
5.1 Motivating Example . 62
5.2 Megamodel Slicing . 62

5.2.1 Slicing algorithm . 63
5.2.2 Analysis . 64
5.2.3 Discussion . 66

5.3 Megamodel Slicing with Collection-Based Operators 67
5.4 PSD Example . 69

5.4.1 Megamodels of class and sequence diagrams 69
5.4.2 Slicing of PSD megamodel . 70
5.4.3 Post-processing . 73

5.5 Related Work . 74

ix

5.6 Chapter Summary . 76

III Assurance Case Management 77

6 Background: Assurance 78
6.1 Software Development in the Automotive Domain 78
6.2 The ISO 26262 Standard . 79

6.2.1 ASIL Allocation and Propagation . 80
6.2.2 ASIL Decomposition . 81
6.2.3 Goal Refinement in ISO 26262 . 82

6.3 Assurance Cases . 83
6.3.1 Modeling Assurance Cases . 84
6.3.2 The Goal Structuring Notation (GSN) . 85
6.3.3 Claims, Arguments and Evidence (CAE) . 86
6.3.4 Structured Assurance Case Metamodel (SACM) 87

6.4 A Survey of Assurance Case Tools . 87
6.4.1 Methodology . 88
6.4.2 Results . 89
6.4.3 Evaluation of the Tools and Discussion . 92
6.4.4 Threats to Validity . 93
6.4.5 Summary . 93

6.5 Chapter Summary . 93

7 An Approach for Assurance Case Reuse due to System Evolution 98
7.1 Introduction . 98
7.2 A generic assurance framework for model evolution 100

7.2.1 Objective of Reuse . 100
7.2.2 The Framework . 101
7.2.3 Additional Model Management Operators . 103

7.3 Algorithm Analysis . 105
7.3.1 Soundness . 105
7.3.2 Relative Efficiency . 106
7.3.3 Emergent Properties . 106

7.4 Demonstration: PSD example . 107
7.4.1 Instantiating the Framework . 107
7.4.2 Application to PSD System . 107
7.4.3 Evolution of PSD System . 108

7.5 Related Work . 110
7.6 Chapter Summary . 110

x

8 Instantiating the Approach for Safety, Automotive and GSN 115
8.1 Introduction . 115
8.2 GSN Safety Case Impact Assessment . 116

8.2.1 GSN and Annotation Models . 116
8.2.2 GSN-IA: GSN Impact Assessment Algorithm 117
8.2.3 Illustration: PSD Example . 119

8.3 A More Precise Impact Assessment . 119
8.3.1 T1: Increasing the Granularity of Traceability between the System and the

Safety Case . 122
8.3.2 T2: Identifying Sensitivity of Safety Case to System Changes 122
8.3.3 T3: Understanding Semantics of Strategies 123
8.3.4 T4: Decoupling Revision from Rechecking . 124
8.3.5 T5: Strengthened Solutions do not Impact Associated Goals 124
8.3.6 T6: Exploiting Knowledge about ASIL Work-Product Dependencies and ASIL

Propagation and Decomposition Rules . 125
8.3.7 PSD Example Cost Comparison with T1 . 126

8.4 Related Work . 126
8.5 Chapter Summary . 127

IV Tool Support & Validation 128

9 Tool Support: MMINT-A 129
9.1 Introduction . 129
9.2 MMINT-A Requirements . 130
9.3 Extensions for MMINT-A . 130

9.3.1 Assurance Case Metamodel . 131
9.3.2 Assurance Case Editor . 132
9.3.3 Assurance Case Slicers . 134
9.3.4 Change Impact Assessment Algorithm . 135

9.4 Power Sliding Door Example . 137
9.5 Related Work . 138
9.6 Chapter Summary . 138

10 Case Study: Lane Management System 141
10.1 Introduction . 141
10.2 The Lane Management System (LMS) . 142
10.3 LMS Safety Case . 143
10.4 LMS Change Impact Assessment Scenarios . 145

10.4.1 Change Scenario 1: Direct System Change . 145

xi

10.4.2 Change Scenario 2: Indirect System Change 146
10.4.3 Change Scenario 3: Design Space Exploration 147

10.5 Chapter Summary . 148

V Conclusions & Future Work 164

11 Conclusion 165
11.1 Summary of Contributions . 165
11.2 Future Work . 167

11.2.1 Limitations and Improvements . 167
11.2.2 Future Research Directions . 171

Bibliography 173

Appendices 185

A Power Sliding Door Models 186
A.1 PSD Class Diagram . 186
A.2 PSD Sequence Diagram . 187

B Lane Management System Models 188
B.1 LMS Class Diagram . 188
B.2 LMS Sequence Diagrams . 188

B.2.1 LMS DrivingStraight Sequence Diagram . 188
B.2.2 LMS FailureState Sequence Diagram . 189
B.2.3 LMS LeftCurve Sequence Diagram . 189
B.2.4 LMS SystemOn Sequence Diagram . 189

B.3 LMS State Diagrams . 189
B.4 Traceability between LMS models . 189

C MMINT-A User Manual 198

xii

List of Tables

3.1 MMINT features and where they are illustrated in the scenario. 38
4.1 Experimental results running map[CDMatch] . 59
5.1 Dependency relations for CD and SD slicers. 69
6.1 Tool functionality categories and the corresponding degrees of support. 90
6.2 General tool information. 91
6.3 Evaluation of capabilities of individual tools. 97
8.1 SliceGSNV

dependency rules. 118
8.2 GSN-IA +Ti techniques and improvements. 121
9.1 The assurance case slicer dependency rules. 135
11.1 Summary of compliance management problems from Chapter 1. 167

xiii

List of Figures

1.1 A motivating example: SafeCar. 3
1.2 A general model of compliance. 11
1.3 An example of compliance of multiple artifacts to multiple standards. 12
1.4 Assurance case evolution scenario. 16
2.1 Power sliding door system with redundancy [ISO(2011)]. 22
2.2 Power sliding door system class diagram. 22
2.3 Power sliding door system sequence diagram. 23
2.4 The Four-layer Metamodel Hierarchy. Source: [Brambilla et al.(2012)]. 24
2.5 Models, metamodels, and platforms. Source: [Mellor et al.(2004)]. 25
2.6 Models, mapping functions, and mapping rules. Source: [Mellor et al.(2004)]. 25
2.7 Ecore components and their relations. 34
2.8 (Simplified) metamodel for megamodels. 35
2.9 Power sliding door system megamodel. 35
2.10 Metamodel of an mgraph. 35
2.11 An example of a repository including megamodels and a megarel showing the concrete

syntax. 35
2.12 Signature of a transformation CDMerge for merging class diagrams. 35
3.1 Type megamodel in MMINT used for the examples in this chapter. 39
3.2 Screenshot of the final state of MID Scenario and selected other MID’s used or created

in the scenario. 39
3.3 Architecture of MMINT . 42
4.1 An illustration of the union operator applied to (1) an mgraph of megamodels (meg-

amodel contents shown underneath), and (2) a set of megarels that share the same
endpoints. 47

4.2 Signature of the CDMatch transformation. 48
4.3 1) An illustration of applying map to the CDMatch transformation using two input

megamodels (megamodel content shown underneath); 2) using the same input meg-
amodel for both arguments. 49

4.4 Algorithm defining behaviour of the map operator. 49

xiv

4.5 Algorithm defining behaviour of the reduce operator. 51
4.6 An illustration of one iteration of reduce. First the merge is applied non-

deterministically (step 1). Then the relationships to the neighbours of the merged
models are computed using appropriate composition operators. Finally, all input
elements are deleted. 51

4.7 Algorithm defining behaviour of the filter operator. 52
4.8 Experiment driver scenario illustration. 53
4.9 Mass refactoring scenario illustration. 53
4.10 Illustration of transformation signatures for megamodel transformation scenario. (1)

Class Diagram (CD) to Entity Relationship (ER) transformation, (2) CD relation to
ER relation transformation. 54

4.11 Megamodel transformation scenario illustration. 54
4.12 Motivating example illustration. 55
4.13 Worst case complexity of the operators. 56
4.14 Type megamodel in MMINT used for the examples in this chapter. 57
4.15 Screenshot of megamodel for scenario B in Section 4.3 being built in the MMINT

megamodel editor. 58
5.1 Algorithm for forward megamodel slice. 65
5.2 Signature of polymorphic operators required in the megamodel slicing scenario: (a)

Slice; (b) Trace; and (c) SubMerge. 68
5.3 (a) An example megamodel and (b) its sub-megamodel. 68
5.4 Illustration of the megamodel slice scenario. 69
5.5 Slicing criterion Sc[PSD]. 71
5.6 Result of level 1 slicing in 1st iteration. 71
5.7 Result of the 1st iteration. 72
5.8 Result of 2nd iteration. 73
5.9 Output of algorithm after post-processing. 74
6.1 MLOC by product. 79
6.2 Complexity in lines of code. 79
6.3 Development time. 79
6.4 Automotive Software Related Recalls 2011-2016. 80
6.5 The 10 parts of ISO 26262. 81
6.6 ASIL decomposition schemes from ISO 26262. 82
6.7 Methods for software unit testing - ISO 26262 Part 6. 83
6.8 Goal refinement in ISO 26262. 83
6.9 Software development with assurance cases. “P” represents the quality being assured. 84
6.10 Generic assurance case metamodel AC. 85
6.11 Core GSN elements from [GSN(2011)]. 86
6.12 Example safety case in GSN from [GSN(2011)]. 94

xv

6.13 CAE element definitions and examples. 95
6.14 An example of a CAE structure. 96
6.15 Overall AC tool support for: a) creation, b) maintenance, c) assessment, d) collabo-

ration, e) reporting and f) integration. 96
7.1 Assurance case evolution scenario. 99
7.2 Algorithm for assessing assurance case impact due to system evolution used in the

RMM evolution framework. 104
7.3 Conceptual overview of model management based assurance case evolution frame-

work RMM. Numbers in gray circles correspond to the line numbers of the impact
assessment algorithm in Figure 7.2. 104

7.4 Goal tree for system with redundancy. 111
7.5 PSD system without redundancy [ISO(2011)]. 112
7.6 Goal tree after running the evolution algorithm. 113
7.7 Final goal tree for power sliding door system without redundancy. 114
8.1 Fragment of GSN Metamodel extended with validity states. 117
8.2 PSD System Megamodel and Annotation Metamodel. 117
8.3 Algorithm for assessing impact of system changes on a GSN safety case. 118
8.4 Visualization of GSN-IA algorithm. 119
8.5 An annotated GSN safety case for PSD system after running GSN-IA. 120
8.6 Cost equation for effort incurred after an impact assessment. 121
9.1 The AC metamodel in MMINT-A. Concrete and abstract classes are distinguished

with black and grey borders, respectively. 132
9.2 Screenshot of the AC editor in MMINT-A. The main graphical view is on the left,

the statistics table upper right, and the impact trace table lower right. 133
9.3 The assurance case CIA workflow in MMINT . 136
9.4 MMINT-A impact assessment algorithm. 137
9.5 Models for the PSD system in MMINT-A . 137
9.6 The PSD AC after change impact assessment in MMINT-A. 139
10.1 LMS system megamodel in MMINT . 150
10.2 LMS Hazard Analysis . 151
10.3 ASIL determination table from [ISO(2011)] . 151
10.4 LMS Safety Case in MMINT-A . 152
10.5 LMS Safety Case in Astah GSN . 153
10.6 LMS Safety Case to LMS CD Traceability Matrix . 154
10.7 LMS Annotated Safety Case after Change Scenario 1 155
10.8 Statistics report for Scenario 1 . 156
10.9 Backward traceability report for Scenario 1 . 156
10.10Cost analysis for Scenario 1 . 156
10.11LMS Annotated Safety Case after Change Scenario 2 157

xvi

10.12Statistics report for Scenario 2 . 158
10.13Backward traceability report for Scenario 2 . 158
10.14Cost analysis for Scenario 2 . 158
10.15LMS Annotated Safety Case after Change Scenario 3 - LCS TurnOff() 159
10.16LMS Annotated Safety Case after Change Scenario 3 - LKS TurnOff() 160
10.17Statistics report for Scenario 3 - LCS TurnOff() . 161
10.18Statistics report for Scenario 3 - LKS TurnOff() . 161
10.19Traceability report for Scenario 3 - LCS TurnOff() 162
10.20Traceability report for Scenario 3 - LKS TurnOff() 163
10.21Cost analysis for Scenario 3 - LCS TurnOff() . 163
10.22Cost analysis for Scenario 3 - LKS TurnOff() . 163
A.1 Power Sliding Door (PSD) Class Diagram . 186
A.2 Power Sliding Door (PSD) Sequence Diagram . 187
B.3 Lane Management System (LMS) Class Diagram . 190
B.4 Lane Management System (LMS) Sequence Diagram - DrivingStraight 191
B.5 Lane Management System (LMS) Sequence Diagram - FailureState 191
B.6 Lane Management System (LMS) Sequence Diagram - LeftCurve 192
B.7 Lane Management System (LMS) Sequence Diagram - SystemOn 192
B.8 LMS State Diagram . 193
B.9 LKS State Diagram . 193
B.10 LCS State Diagram . 194
B.11 LDWS State Diagram . 194
B.12 Traceability between LMS CD and LMS State Diagram 195
B.13 Traceability between LMS CD and LKS State Diagram 195
B.14 Traceability between LMS CD and LDWS State Diagram 196
B.15 Traceability between LMS CD and LCS State Diagram 196
B.16 Traceability between LMS CD and LMS SystemOn Sequence Diagram 196
B.17 Traceability between LMS CD and LMS LeftCurve Sequence Diagram 197
B.18 Traceability between LMS CD and LMS FailureState Sequence Diagram 197
B.19 Traceability between LMS CD and LMS DrivingStraight Sequence Diagram 197

xvii

Part I

Motivation & Related Work

1

Chapter 1

Introduction

1.1 Motivation

From vehicle control to social networks to business transaction platforms, software has come to
mediate much of life’s activities. In order to protect the best interests of citizens, responsible orga-
nizations (e.g., International Organization for Standardization (ISO)) have responded to this trend
by creating standards to address issues such as safety, security and privacy. In this environment,
compliance of software to standards and regulations has emerged as a key issue. For organiza-
tions, compliance is a complex and costly goal to achieve. They may have to comply with multiple
standards due to multiple jurisdictions or to address different aspects of the software which may
overlap or conflict. The evolution of standards must be tracked and changes assessed. Evidence
for claims of compliance must be collected and managed. Finally, maintaining families of related
software products further multiplies the effort. Increasingly, models and model-driven engineering
are being used as means to facilitate communication and collaboration between the stakeholders in
the compliance value chain and further to introduce automation into regulatory compliance tasks.
A complexity problem also exists with the proliferation of software models in model-based software
development, and the field of Model Management (MM) has emerged to address this challenge. MM
focuses on a high-level view in which entire models and their relationships (i.e., mappings between
models) can be manipulated using specialized operators to achieve useful outcomes. We exploit this
connection between model driven engineering and regulatory compliance, and explore how to use
MM techniques to address software compliance management issues.

Although the ideas put forward in this thesis can be generalized beyond safety and the automotive
domain, for illustration purposes, we ground our discussion on safety certification and refer to the
ISO 26262 standard [ISO(2011)], which addresses functional safety of road vehicles.

Organization. The rest of this chapter is structured as follows: In Section 1.2, we give a compliance
example and introduce the problems we want to address. In Section 1.3, we discuss related work and

2

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 1.1: A motivating example: SafeCar.

identify gaps that related work does not cover in Section 1.4. In Section 1.5, we demonstrate how
the problems stated in the example from Section 1.2 can be addressed using model management. In
Section 1.6, we present the research questions that this thesis aims to answer, and in Section 1.7,
we present an overview of the thesis contributions. Finally, Section 1.8 explains how the rest of the
thesis is organized.

1.2 The SafeCar Example

This section presents an example which we use to motivate the use of model management in the
area of regulatory compliance. We present some specific scenarios and generalize them as problems
P1-P6.

Consider an automotive company SafeCar that produces vehicles. Now suppose that SafeCar
either needs to, or would like to, do the following: (1) check the compliance of its braking system
safety management lifecycle with the ISO 26262 standard [ISO(2011)] and (2) ensure that its braking
system can be certified as being safe. Typically, standards like ISO 26262 are large and take the
form of textual documents, and users of the standards often face difficulty answering the questions
above [Millett et al.(2007)]. ISO 26262 spans 10 parts, including more than 750 clauses, and total-
ing approximately 450 pages. The size alone makes it difficult to comprehend, thus hindering its
application and evaluation. Providing structure to the compliance problem and reducing the com-
plexity and effort of working with standards would provide cost-benefits to these users. Moreover,
when dealing with multiple standards and multiple products, SafeCar needs a mechanism to ensure
explicit traceability between the various standards and between its products and the standards (P1:
What is a general model of compliance that can be used to define explicit relationships

3

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

between the various artifacts of the compliance activity?).
Figure 1.11 illustrates at a high level the relationships between the various artifacts involved in

the compliance activity in our motivating example. As seen in the figure, the IEC 61508 standard
regulates general functional safety of electrical/electronic safety related systems, and ISO 26262 is an
adaptation of IEC 61508. We show what a conceptual model of the Hazard Analysis within a devel-
opment lifecycle looks like for each of these standards. Refer to the part labelled (1) in the figure for
IEC 61508 and the part labelled (2) for ISO 26262. SafeCar will engineer its software development
lifecycle (see the part labelled (3) in the figure) to be constrained by the ISO 26262 definition of a
software development lifecycle. SafeCar may be interested in demonstrating that its general devel-
opment process indeed complies with ISO 26262. Moreover, if SafeCar wants to achieve certification
that its braking system is safe, its braking system development process will have to identify a set of
safety requirements that need to be met. The safety requirements are defined in such a way as to
prevent hazards (potential sources of harm caused by malfunctioning behaviour [ISO(2011)]). Safety
cases are built to demonstrate that the product meets the safety requirements identified. A safety
case may take the form of a GSN Safety Argument [Kelly and Weaver(2004)] as seen by the part
labelled (4) in the figure.

But compliance is not necessarily a one-time type of activity; if SafeCar knows that a product
complies with ISO 26262, and ISO 26262 undergoes a revision, SafeCar would like to have a means
of checking compliance to the new version of ISO 26262 without starting from scratch. Ideally,
they would like to reuse as much of the compliance artifacts (arguments, claims and evidence)
used to demonstrate compliance to the older version of the standard as possible. Similarly, if the
product they have already certified itself evolves to a newer version, they would like to reuse as
much of the compliance artifacts from the previous version as possible (P2: How can claims and
evidence be reused due to standard or product evolution?). In some cases, a company like
SafeCar may choose to demonstrate partial compliance to a standard; this could be due to business
decisions to minimize the cost of compliance, or perhaps to address only a part of the standard that
is of interest (e.g., Hazard Analysis and Risk Assessment). Similarly, the company may choose to
address compliance of a part of its system to a standard (e.g., only parts that interact with the
braking system.) (P3: How do we extract relevant parts of a standard or a system for
checking compliance?).

Furthermore, SafeCar may be interested in checking that a product (e.g., its infotainment system
that runs on its vehicles) complies with multiple standards (e.g., a privacy standard and a security
standard) and would like to achieve this in a one-step compliance check (P4: How can we reduce
the effort of complying to multiple standards?).

As products at SafeCar may belong to a product line, SafeCar may be interested in ensuring
that the entire product line complies with a standard (P5: How do we define a way to lift
compliance from single products to product lines?).

1IEC65108 Hazard concept model from [Panesar-Walawege et al.(2013)], ISO 26262 Hazards and Risk Assessment
model from [Cassano et al.(2016)] and GSN Safety Argument from slides based on [Hawkins et al.(2015)].

4

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

On the other hand, regulatory bodies may be interested in comparing their standards (e.g.,
ISO 26262 for automotive) with standards in a different domain (e.g., RTCA DO-178B for avion-
ics) to understand the commonalities and the differences (P6: Can we identify relationships
between standards?).

This section has presented an example to motivate the use of model management in the area of
regulatory compliance. Next, we will review related work in this area in order to identify some gaps
that this thesis will address.

1.3 Related Work

In this section, we first briefly review work related to model management which we will refer to in
Section 1.5, and then work related to the use of model management for compliance related problems.

1.3.1 Model Management

In the field of model-driven software development [Beydeda et al.(2005)], a complexity prob-
lem exists due to the proliferation of software models. As such, the area of Model Manage-
ment [Bernstein(2003)] has emerged to address this challenge. Model management focuses on a
high-level view in which entire models and their relationships (i.e., mappings between models) can
be manipulated using operators (i.e., specialized model transformations) to achieve useful outcomes.
To help visualize and manipulate collections of models and their relationships, model management
uses a special type of model called a megamodel [Diskin et al.(2013)] in which the elements repre-
sent models and the links between the elements represent relationships between the models. For
example, Figure 1.1 is a megamodel. Model management operators that have been studied include
the following:
• The slice [Nejati et al.(2012)] operator accepts a model and a slicing criterion and extracts

the subset of the model satisfying the criterion. Model slicing is a way to manage model complexity
by focusing on a relevant subset of a model.
• The match [Bernstein(2003)] operator accepts two models and produces a relationship contain-

ing mappings between equivalent (or similar) elements in the models. This is usually interpreted as
identifying the overlap between the models.
• The diff [Bernstein(2003)] operator accepts two models and produces a model that represents

the differences between the models. Model differencing aids the comparison of model content, e.g.,
across different versions.
• The merge [Brunet et al.(2006)] operator accepts two models and a relationship expressing the

overlap between them and produces a model that combines the content of the models according to
the overlap. Model merge must address the issue of conflicts that could occur when the content is
combined.
• The lift [Salay et al.(2014)] operator accepts a model transformation and produces a product

5

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

line transformation that behaves the same way as the original model transformation for each product
in the product line. Transformation lifting saves effort by allowing model transformation to be reused
for product lines of models.
• The filter [Salay et al.(2015)] operator accepts a megamodel and a model (relationship) prop-

erty and produces a megamodel with all models (relationships) not satisfying the property removed.
Filtering a megamodel is useful for managing the complexity of large collections of related models.
• The map [Salay et al.(2015)] operator accepts a megamodel and a model transformation to

produce the megamodel that results from applying the transformation to all applicable models and
relationships in the input megamodel. Mapping a transformation over a megamodel is used to reduce
the effort of applying a transformation to the elements of a large collection of related models.

Each of these operators can be viewed as an abstract transformation that defines a class of
concrete transformations, i.e, the implementations that refine the operator for particular model
types. For example, a model merge of class diagrams is implemented differently than a model merge
of state machines. Another widely used class of transformations used in model management are
bidirectional transformations [Diskin et al.(2010)]. Bidirectional transformations are used to keep
two related models synchronized when one of the models changes (e.g., via model co-evolution,
correction, etc.) by generating the update for the other model.

We are not aware of any existing research specifically on applying model management techniques
to assurance case management; however, there is substantial research that is related to using model-
based approaches to aid in the compliance problem. We consider this research to be complementary
to our objectives and review it here.

1.3.2 Compliance Management Frameworks

Several compliance management frameworks have been proposed in the literature.
[Hamou-Lhadj and Hamou-Lhadj(2007)] sketches a proposal for comprehensive compliance
management in software organizations. The authors discuss the need for tool support for working
on large, possibly overlapping or conflicting compliance documents. Researchers have proposed
generic metamodels that can be used to structure any safety standard as well as the related safety
case information in a project [de la Vara and Panesar-Walawege(2013), Habli and Kelly(2008)]. An
advantage of such an approach would be the possibility of providing generic tooling to address the
compliance to any safety standard.

1.3.3 Languages, Algorithms and Operators for Compliance

Specific algorithms for different aspects of compliance management have been proposed. For exam-
ple, [Nejati et al.(2012)] developed a model slicing algorithm for extracting parts of a design that are
relevant to a given safety requirement; the survey [Ghanavati et al.(2011)] identifies research strands

6

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

proposing methods for the extraction of requirements models from regulation documents; and, the
authors of [Ghanavati et al.(2014)] propose an algorithm for comparing multiple regulations.

Argumentation modeling languages have been studied extensively as the basis for expressing
compliance claims. These include the Goal Structured Notation(GSN) [Kelly and Weaver(2004)],
Claim, Arguments and Evidence (CAE) [Emmet and Cleland(2002)] and OMG’s Structured Assur-
ance Case Metamodel (SACM) 2. Of these, SACM represents the latest in the evolution of these
notations and is also proposed as a standard. We aim to use modeling languages such as these to
express compliance relationships.

1.3.4 Modeling Standards, Assurance Cases and Compliance

Standards and regulations can be expressed as models. For example, [Luo et al.(2013)] show that
the ISO 26262 standard for functional safety of road vehicles can be represented by a combination of
a structure model, conceptual model, process model while [Panesar-Walawege et al.(2013)] proposes
a conceptual model of IEC 61508. We consider this work as a prerequisite for applying model
management techniques to the compliance problem.

A recent survey [Nair et al.(2015b)] regarding how industry addresses evidence management
for compliance to safety standards, reveals that much of evidence management is done manu-
ally with little reliance on advanced tool support. This is also reflected in the survey done
in [de la Vara et al.(2016a)]. However, key issues such as evidence traceability, structuring evi-
dence as models and assessing evidence completeness or correctness correspond directly to general
modeling issues: expressing model relationships (including traceability relationships), structuring
model content using metamodels and checking model completeness/correctness. We may conclude
that adapting automated or semi-automated techniques from model management to address these
issues can benefit the state of the practice.

As mentioned in Section 1.3.3, modeling notations for assurance cases have been proposed, most
notabley the Goal Structured Notation(GSN) [Kelly and Weaver(2004)]. These are presented in
more detail in a dedicated section in Chapter 6.

Model-based approaches for compliance have also been studied. For example, the authors
of [Habli et al.(2010)] propose model-based assurance for justifying automotive functional safety.
In their work, they address one component of the overall safety case, namely the assurance of the
functional safety concept. In particular, they examine how model-driven development and assess-
ment can provide a basis for the systematic generation of functional safety requirements.

The authors of [Gallina(2014)] propose a model-driven safety certification method for process
compliance. They focus on safety processes mandated by prescriptive standards and identify process-
related structures from which process-based arguments can be generated and more easily reused.

In [Conrad et al.(2012)], an artifact-centric compliance approach for ISO 26262 projects using
model-based design is proposed. The approach is intended to streamline ISO 26262 compliance

2OMG: http://www.omg.org/spec/SACM/1.1/

7

http://www.omg.org/spec/SACM/1.1/

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

documentation for software developed using model to code generation.
The authors of [Stürmer et al.(2012)] consider reviewing software models in compliance with

ISO 26262 and introduce best practices for model reviews with the aim of ensuring safety-related
objectives and adherence to the standard.

In [de la Vara et al.(2016b)], a model-based specification approach of safety compliance needs for
critical systems is proposed by introducing a holistic generic metamodel. The metamodel abstracts
concepts and criteria from different safety standards, and its application results in models for struc-
turing and managing compliance information. The authors claim that the proposed metamodel can
be used for most critical computer-based and software-intensive systems.

The line of work by Yaping Luo and Mark van den Brand has also considered the use of a model
based approach to compliance. For example, in [Luo et al.(2014)], they propose to use conceptual
models in the form of metamodels to support certification data reuse and facilitate safety compliance.
In [Luo et al.(2016)], a categorization of GSN-based safety cases and patterns is proposed with the
aim of using it to identify similar safety cases or patterns and facilitate safety case reuse. Their work
in [Luo et al.(2015a)] offers a modeling approach to support safety assurance in the automotive
domain by proposing a rule-based approach that enables extracting a conceptual model from safety
standards or project guidelines. Finally, in [Luo et al.(2017)] they study safety case assessment and
propose an approach and tool support for it based on evidential reasoning.

Some work has focused on the notion of an assurance case template. In [Chowdhury et al.(2017)],
the authors motivate the use of assurance case templates as a means of capturing the requirements
of a complex standard such as ISO 26262. They present eight principles that can be used to drive the
transformation of clauses in the standard into claims and evidence in the assurance case template.

1.4 Gaps Identified In This Thesis

We have identified two major gaps in the literature: the first related to the management of collec-
tions of models and relationships between them, and tool support for it, and the second related to
managing assurance cases in heterogenous model-based systems, particularly due to evolution. We
discuss these gaps in more detail in this section.

A major challenge for the practical application of model-driven engineering is the difficulty of
managing a large collection of heterogenous inter-related models. MDE inevitably involves con-
struction, integration, and maintenance of a large number of different models, representing different
versions over time, different variants across a product family, different options for implementation,
and so on. The goal of model management is to provide a systematic way to represent the relation-
ships between such a set of models, and a set of tools for manipulating inter-related models. Such
tools include comparing similar models, identifying dependencies, inconsistency checking, propagat-
ing change, tracing design decisions, and merging partial models. Many of these issues have been
studied and solutions to them have been proposed in the modeling community. However, what is
missing is a systematic approach for representing relationships between a large set of heterogenous

8

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

models, a means to visualize these relationships, and tool support for manipulating them. This
represents the first gap this thesis aims to address as a means for filling the second gap regarding
assurance case management in heterogenous model-based systems.

Safety engineers in various domains, including automotive, experience difficulties with safety case
maintenance. As stated in [Kelly and McDermid(2001b)], the main reason for this is that they do
not have a systematic approach by which to examine the impact of change on a safety argument.
The authors of [Borg et al.(2016)] performed a study which suggested that engineers spend 50-
100 hours on Change Impact Assessment (CIA) per year on average. The second most commonly
mentioned CIA challenge is related to information overload. The three most senior engineers in
the study reported that obtaining a system understanding is hard due to the complexity of the
systems. The sheer number of software artifacts involved makes traceability information highly
complex. Based on the results of [Borg et al.(2016)], determining how a change impacts the product
source code seems to be less of a challenge than determining impact on non-code artifacts, e.g.,
requirements, specifications, and test cases. In [de la Vara et al.(2016a)] and [Leveson(2011)], the
authors further discuss the problem of CIA being a challenge in safety-critical systems. Specifically,
Leveson [Leveson(2011)] mentions that inadequate CIA has been among the causes of accidents in
the past. Thus, the current state of practice can clearly benefit from improved CIA techniques,
especially to help perform safety assurance more cost-effectively.

Although related work has used model-based approaches to either construct or assess assurance
cases, it has not provided means for automating parts of the assurance case management process,
particulary due to change. This observation is further supported by the following two recent surveys.

First, the survey done in [de la Vara et al.(2016a)] aimed to provide new insights into how safety
evidence change impact analysis is addressed in practice. Based on the survey, it was identified that
changes during system development, system modification and re-certification, and component reuse
are examples of situations in which safety evidence change impact analysis can be necessary. The
survey showed that given the difficulty in cost effectively managing re-certification (either due to
system, domain or standard changes), research efforts targeted at this problem are necessary. The
authors reported the lack of change impact analysis tools for safety artifacts as a most frequent
challenge and concluded that the evolution of safety cases should be better managed and the level
of automation in safety evidence change impact analysis is low.

Second, the survey done in [Cheng et al.(2018)] attempts to understand how practitioners per-
ceive assurance cases in safety-critical software systems. Again, one of the challenges the survey
identified is the lack of tool support for working with safety assurance cases. The study also showed
that since changes in software, especially in requirements, can result in changes in safety assurance
cases, effectively managing change is a challenge that practitioners faced. The lack of tool support
also contributed to this challenge.

Based on the results of these two surveys, as well as our review of related work, we have identified
a need for work on assurance case management, specifically change impact analysis and tool support.
This thesis aims to address these gaps by providing a novel model-based approach to compliance

9

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

management, focusing on a technique for automating assurance case change impact analysis through
model based operators and workflows, as well as tool support for it.

1.5 Our Proposal: Model Management for Compliance

Since standards and regulations can be expressed as models (e.g., [Luo et al.(2013)]), and compliance
claims and links to evidence can also be captured in a model [Ghanavati et al.(2011)], the modeling
community is starting to work in the direction of providing support for compliance management.
Specifically, the Object Management Group has recently issued a modelling language standard called
the Structured Assurance Case Metamodel (SACM) [OMG(2015)].

There is evidence that the MM approach to compliance management may fill the gaps left by
other research on this topic. For example, a survey [Abdullah et al.(2010)] comparing international
research in compliance management with the compliance needs of the Australian industry found
that a key area where support is needed is in managing the impact of regulations. Specifically,
they identified four factors: (1) frequent changes to regulations; (2) legislation weaknesses; (3)
inconsistencies; and, (4) overlap in regulations. Furthermore, they identified a disproportionate lack
of research in these areas as compared to other issues in compliance management. Although they
hypothesized that this may be due to the fact that these factors may be in the legal (as opposed
to IT) realm, all but factor (2) correspond to general modelling problems that have been addressed
with model management techniques. For example, (1) corresponds to the change propagation due
to model evolution, (3) to addressing inconsistencies, which is a standard step within a model merge
operation, and (4) to identifying overlaps, which is the outcome of the model match operation.

In this section, we take advantage of the above, and demonstrate our ideas for using MM tech-
niques in the area of compliance. We refer to the problems identified in our motivating example in
Section 1.2 and propose general solutions to them.

P1: Creating a general model of compliance that defines explicit relationships be-
tween the compliance artifacts. We illustrate our general model of compliance in Figure 1.2.
The idea is that regulators (such as the ISO organization) define standards (such as ISO 26262),
and these standards are defined as a collection of interrelated models. Each model addresses a
different view (process, concepts, etc.) of the standard. In model management terminology, a
megamodel [Diskin et al.(2013)] represents a model of models and relationships between them. A
standard can then be seen as a megamodel in this sense, but for simplicity, we illustrate it as a
single model and refer to it as the Standard Model (SM). A company would ideally also have a
model of its development process, which again can be seen as a megamodel linking different views of
the company’s software development process. Again, for simplicity, we will illustrate it as a single
model and refer to it as the Software Development Process Model (SDPM). The SDPM should be
engineered to satisfy constraints in the SM; therefore, compliance with the SM can be shown via an
Assurance Case (AC) that is defined as a relationship between SM and SDPM.

The SDPM can undergo refinements within the company and can be tailored with respect to

10

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Standard	Model	(SM)	

So.ware	Development	
Process	Model	(SDPM)		

GSN	or	OMG	SACM	
Metamodel	

Assurance	Case	(AC)	
(Claims,	Arguments,	Evidence)	

complies with:AC

conforms to

Instance of

specified via

Regulators enforce some property “P” (e.g., Safety, Privacy, Security, etc.)

So.ware	Development	Process	Instance	(SPDI)	
	
	
	
	
	
	
	

Process	 Work	
Products	

“P”-Requirements	

Assurance
Cases:	AC	

ArJfacts	

evidence for produces

produces

satisfy

relies on

refines

Top Level
Compliance
(Process)

Bottom
Level
Compliance
(Product)

Figure 1.2: A general model of compliance.

the product it will be used in producing. However, as soon as the company creates an instance
of its SDPM for a certain product, this instance should conform to the metamodel defined by the
SDPM. For example, concepts and processes in the instance should conform to their respective
definitions in the SDPM. Depending on the property “P” that is to be met (Safety, Privacy, Security,
etc.), “P”-Requirements are produced as part of the instance process, along with the various work
products that are defined in the standard. When preparing to certify an artifact to meet the
property “P”, assurance cases (or “P”-Cases) are provided to support this. The Assurance Case (AC)
is constructed using evidence (given by the work products), and can be seen as an instance of a
GSN [Kelly and Weaver(2004)] or an OMG SACM [OMG(2015)] metamodel which defines how to
construct these instances.

Figure 1.2 depicts this model via two levels of compliance. The top-level (or process) compliance
is given by an assurance case, either stating that an item complies or providing rationale for non-
compliance. The bottom-level (or product) compliance is given by a “P”-case that demonstrates
that the product satisfies the property “P” as specified in the standard. In the UML terminology,
Figure 1.1, which describes a concrete example, can be seen as an Object Diagram that is an instance
of the Class Diagram given by our general model in Figure 1.2.

This general model of compliance need not be limited to a single standard and a single product.
For example, Figure 1.3 shows a model with several products – a car’s braking system and its
infotainment system – complying to multiple standards – safety, security and privacy.

Note that the model in Figure 1.2 is itself a megamodel: the models represent the standards,

11

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Instance	of	SafeCar	Development	Process	(Braking	System)	
	
	
	
	
	
	
	

Safety	Standard	

SafeCar	Development	Process	

complies with

SafeCar	
Process	

Safety	Requirements	
	

Safety	
Cases	

Braking	
System	

evidence for produces

produces

satisfies

relies on

Security	Standard	 Privacy	Standard	

Instance	of	SafeCar	Development	Process	(Infotainment	System)	
	
	
	
	
	
	
	

SafeCar	
Process	

Work	
Products	

Security/Privacy	
Requirements	

Security/
Privacy	
Cases	

Infotainment	
System	

evidence for produces

produces

satisfies

relies on

Work	
Products	

based on

Figure 1.3: An example of compliance of multiple artifacts to multiple standards.

processes and artifacts, and the relationships between them are made explicit. Some examples of
these relationships are: specialization (of a standard from a general domain to a more specific one),
compliance (of a process to a standard), refinement or evolution (of a standard) and instantiation
(as in the case of the instance of the SDPM). This observation opens up the opportunity of using
collection-based operators on megamodels of standards. One possible scenario is: given a collection
of standards, use the filter operator to obtain “relevant ones” based on some criteria. Perhaps we are
interested in the process-related standards, so we filter out all the ones with type “activity diagram”.
Also, given a set of standards with a shared ontology, we can use the map operator to translate some
concept in the ontology to another (e.g., “automobile” to “vehicle”).

P2: Reusing evidence and other assurance artifacts due to standard or product evolu-
tion. Evolution of a standard involves a transformation of the standard model from an old version to
a newer one. But since there might have been some products that were already shown to comply with
the standard, its evolution means that the compliance of these products needs to be re-evaluated.
More concretely, in Figure 1.1, suppose the ISO 26262 standard undergoes a revision (which it cur-
rently does), leading to the introduction of a new attribute, say “cost”, in the “Risk” class. This
means that the SafeCar Development Process has to evolve to ensure that it complies with the
newer version of the standard. This problem is commonly addressed in model management using
a bidirectional model transformation. The main idea is that a match operator is used to establish
links between the old and new versions of ISO 26262, and a diff operator is used to show what new
information has been added. Then, the SafeCar Development Process is transformed to a new ver-
sion that is compliant with the new version of ISO 26262. The challenge added here is in managing
the assurance case artifacts (claims, arguments and evidence) that are attached to the compliance
relationship. Not only do these need to be re-evaluated, but it would be very cost-effective if these
artifacts could be reused as much as possible. Evolution of a product (e.g., the braking system
in Figure 1.1) that is known to comply with a standard also means that compliance needs to be

12

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

re-evaluated. Again, this can be expressed via a bidirectional model transformation definition which
also needs to be adapted to take into account the assurance case artifacts and reuse them as much
as possible to minimize the cost of compliance.

P3: Extracting relevant parts of a standard or a system for checking compliance. Based
on some criteria of interest (slicing criteria), extracting only relevant parts of a standard (e.g., those
related to hazards and risks in ISO 26262) can be achieved with the use of the slice operator. This
could also apply to the product undergoing compliance; the slicing criteria could be chosen to select
parts of the model related to the braking system for example. Both scenarios (standard and product
slicing) could arise due to business decisions to demonstrate partial compliance with a standard in
order to narrow the focus to the compliance tasks that are feasible to perform given the stage of
development that the system is at.

P4: Effort reduction of compliance to multiple standards. As demonstrated in Figure 1.3,
we may wish to check the compliance of a system (e.g., infotainment) to multiple standards (e.g.,
security and privacy). Some concepts presented in these standards may overlap (e.g., the notion of
a “threat”). An MM operator match can be used to help identify these overlaps. Once their overlap
is defined (note that this can be empty), standards can be merged with the merge operator creating
a merged standard with traceability mappings back to the original standards. These mappings are
important to have, especially when the original standards evolve, which can be reflected in the
merged standard (via model co-evolution). Compliance of the infotaintment system in Figure 1.3
to the security and privacy standards can therefore be reduced to a single compliance checking
problem of the system to the merged standard. As in model management, a challenge here is
actually creating the overlaps between the standards which involves a high degree of human input.
Another challenge is understanding how to provide assurance case artifacts when demonstrating
compliance to the merged standard (e.g., how do these artifacts relate to the artifacts we would get
when demonstrating compliance to each of the individual standards.).

P5: Lifting compliance from a single product to a product line. Products are often modified
and reused in new applications, forcing companies to develop and maintain product lines. Product
line safety is a natural important requirement of this activity [Palin et al.(2011)]. Lifting the problem
of compliance of a single piece of software to a single standard to that of an entire software product
line can be achieved using the model management lift operator. Once again, the challenge here
is understanding how the assurance artifacts are expressed in the lifted version of the compliance
relationship.

P6: Identifying relationships between standards. In order to create a common certification
framework which spans different vertical markets, e.g., in the transport sector (railway, avionics
and automotive industries), and facilitates the reuse of assurance assets within, across, and between
domains, creating mappings between these standards is an important step. The match operator
can be used to identify these overlaps, in the simplest case using a “name-match” criterion which
links elements with matching names. Creating these overlaps is also an essential step in performing

13

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

other useful operations such as merge and for maintaining consistency between standards (model
synchronization). Another relationship that one may be interested in identifying is representing the
differences between two standards (these could be two versions of the same standard). This could be
seen as differences in concepts (e.g., what appears in one and not in the other), and can be achieved
using the model management diff operator.

Companies like SafeCar could benefit from the automation of parts of the compliance activities.
For example, we have identified the following in Part 2 of the ISO 26262 standard:
“The Safety Case has to be reviewed for completeness:

C.2 Review of the completeness of the safety case (see Section 6.5.3 in ISO 26262)

C.2.1 Confirmation that the work products referenced in the safety case are available and sufficiently complete,

so that the item’s achievement of functional safety can be adequately evaluated.

C.2.2 Confirmation that the work products referenced in the safety case: are traceable from one to another,

have no contradictions within or between work products, and either have no open issues that can lead to the

violation of a safety goal, or have only open issues that are controlled and have a plan for closure.”

Once the standards and compliance artifacts are structured in a model management framework,
various techniques can be used to analyze and verify these models. In the ISO 26262 example,
activities like checking the completeness of a safety case, checking the availability (existence) and
the completeness of work products, checking traceability between work products, checking for con-
tradictions (conflicts) can certainly be at least semi-automated given appropriate models that are
supported by expert judgement.

Another general advantage of using a model management framework for managing standards
and compliance artifacts is the use of generic model transformations. Model transformations could
be useful for scenarios such as providing different views (models) of the same standard. This could
aid in improving communication and comprehensibility of the standard. Another useful application
for model transformations could be when companies decide to adopt regulations and best practices
from a different country/jurisdiction, and therefore standards can be translated to fit the company’s
needs.

1.6 Research Questions

This thesis will address some of the problems presented in Section 1.5. We will focus primarily on
P1 and P2 in order to show the applicability and effectiveness of model management for regulatory
compliance problems. Specifically, the thesis will provide a method for assessing the impact of system
design changes on its assurance case, identifying which parts can be reused and which ones need
to be revised or rechecked. This will be done via the introduction of adapted model management
operations and workflows for assurance cases, Also, given the model management interactive tool
MMINT [Di Sandro et al.(2015)], we implement some of the adapted model management operations
and workflows for assurance case management. We also validate our approach and tool on a case
study from the automotive domain.

14

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Hypothesis. The state of practice in assurance case management can be made more rigorous and
efficient using model management techniques.

The goal of this work is to demonstrate the effectiveness of applying model management tech-
niques in the area of regulatory compliance. We address this by answering the following set of
research questions:

RQ0: Managing Heterogenous Megamodels. How do we formally define heterogenous collec-
tions of models and relationships between them? Can we define operators to manage such collections
and workflows to implement certain scenarios of interest over them? Can we provide tool support
for all of this?
RQ1: Assurance Case Modeling. How do we best develop an assurance case metamodel that
captures the basic assurance artifacts and relationships and dependencies between them? What are
the assumptions and constraints on this metamodel?
RQ2: Modeling the Compliance Ecosystem. How do we best model the compliance ecosystem
including system design, standards, system development processes and assurance cases? What types
of relationships (e.g., mappings, refinements, etc.) exist between these entities?
RQ3: Assurance Case Operators. What type of traditional model management operators (e.g.,
match, merge, slice, etc.) can be used in the context of assurance cases? How can these operators be
adapted to work with assurance cases, taking into account the elements of an assurance case (claims,
arguments, evidence), dependencies between them, and inference rules used to relate them?
RQ4: Model Management Workflows for Compliance Scenarios. What are some compli-
ance management scenarios where model management workflows can be implemented to address
them? What are these model management workflows and can they be made generic? If they are
semi-automated and require human intervention (expert opinion) to complete, how can we best
involve experts in completing them?
RQ5: Application in the Automotive Domain. What are the kinds of processes, standards
and constraints we have to work with in order to apply our solutions in the automotive domain?
How do we adapt our assurance case metamodel, operators and workflows to work in this context?
RQ6: Tool Building. How do we best provide tool support for our approaches? How can the
compliance management workflows we present be implemented on top of an exisitng model manage-
ment tool? What type of adapatation is needed? What are the missing components that will allow
us to work with and manage compliance ecosystems which are heterogenous in nature?
RQ7: Validation. Given the tool support, how do we validate the effectiveness of the approaches
presented as model management workflows in RQ4? How do we evaluate them with respect to
improving efficiency?

1.7 Thesis Contributions

This section details the contributions of the thesis.

15

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

𝐴

𝑆 𝑆′

𝐴′

change

𝑅 𝑅′

?

Figure 1.4: Assurance case evolution scenario.

• Megamodelling: Foundations, Operators, Workflows and Tool Support. A Meg-
amodel is an entity that captures collections of models and relationships between them. As
this forms the underlying formal model of the various components in a compliance ecosystem
(requirements, system design, standards, development processes, assurance cases, etc.), we did
preliminary work to give it a formal treatment, defined collection-based operators (namely,
Filter, Map and Reduce) to enrich megamodel management, presented an approach for slicing
of heterogenous megamodels to aid in model evolution, and discussed our tool support (via
MMINT) for it in Chapters 3, 4 and 5, as part of addressing RQ0.

• Model Management for Regulatory Compliance. There is evidence that the model
management approach to compliance management may fill the gaps left by other research
on this topic [Abdullah et al.(2010)]. In Section 1.5, we took advantage of this and showed
our ideas for using model management in the context of compliance. We addressed RQ2
by presenting a general model of compliance which encapsulates the various artifacts and
relationships between them. This model can be further improved to include additional artifacts
and relations. Section 1.5 also addressedRQ4 by identifying compliance management scenarios
that can be mapped to model management solutions.

• Assurance Case Change Impact Assessment due to System Evolution. In Chapter 7,
we focus on one of the scenarios we presented in Section 1.5 – assurance case reuse due to
system evolution – and develop it in detail. Figure 1.4 illustrates the scenario at a high level.
Assume that S describes the specification for the software in a vehicle. In addition, a type
of assurance case A, called a safety case, has been developed complying with the ISO 26262
vehicle functional safety standard [ISO(2011)]. Safety case A contains perhaps thousands of
safety claims about different components of the vehicle, as well as arguments and evidence to
support these claims. Now if S is evolved to S′ – for example, as a result of a new requirement
or a bug fix – a corresponding safety case A′ for S′ must be developed. Due to the complexity
and effort required to develop a safety case, there is strong incentive to reuse as much of
A as possible in the creation of A′. We address this problem using a model management
strategy by developing an assurance case impact assessment algorithm. The algorithm does
the following: given a model of the system and an assurance case linked to it, and a known
change to the system design, the algorithm uses a series of model management operations (e.g.,
slice, merge, trace) to assess the impact of these changes on the assurance case. It also uses the

16

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

dependencies between the elements of the assurance case to propogate this impact across the
assurance case itself. The algorithm eventually outputs an annotated version of the assurance
case, which highlights the elements that can be reused (unaffected by changes), should be
rechecked (indirectly affected by the changes), or need to be revised (directly affected by the
changes). In doing so, we further address RQ4 by providing a model management workflow
that performs impact assessment on an assurance case due to system evolution – one possible
compliance management scenario.

• Assurance Case Management. In order to fully realize our approach in Chapter 7, we
define a complete assurance case metamodel that captures the entities and dependencies in a
way that allows us to reason soundly about them in Chapter 8. This addresses RQ1. We also
specified slicing operators for this metamodel, which enable us to manage assurance cases in
a model management fashion under various compliance scenarios addressing RQ3.

• Application in the Automotive Domain. To help understand the validity of our ap-
proaches, we ground them in the automotive domain, and work with the ISO 26262 standard
for functional safety of road vehicles. To do so, certain aspects of the standard (e.g., the no-
tions of ASIL integrity levels and Work Products) have been captured in our assurance case
metamodel in Chapter 8. This allows us to trace the assurance case to both the standard
and the system design, which enables a more effective assurance case impact assessment under
different change scenarios. In doing so, we address RQ5 and parts of RQ7, especially those
related to assessing the applicability of our approach.

• Tool Support and Evaluation. For the purpose of addressing RQ6, we have extended
the MMINT [Di Sandro et al.(2015)] framework to include assurance cases in Chapter 9. We
add the capability to work with heterogenous megamodels (which represent the compliance
ecosystem), and operators that can be applied to them. We implement a workflow language
that allows us to combine model management operators to achieve certain scenarios of interest.
Next, we incorportate assurance cases in the tool by adding the assurance case metamodel as
a type and implementing its type-specific model management operators (e.g., slice). We also
implement the model management workflow we presented for assurance case impact assessment
using our workflow language. In Chapter 10, we report on a case study from the automotive
domain which serves as a validation of our approach and addresses the remainder of RQ7.
Finally, effectiveness of our approach can be linked to cost savings, both when assessing com-
pliance (by adding automation) and when re-assessing compliance under incrementality and
evolution (by enabling reuse of assurance artifacts). We evaluate that as part of the case study
in Chapter 10.

17

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

1.8 Thesis Organization

The thesis is organized into five main parts, the first one being this introduction. The rest of the
thesis is organized as follows:

Part II. This part focuses on megamodel management foundations, without going into the
application to assurance case management. It is organized as follows:

• In Chapter 2, we introduce a running example, as well as relevant background literature, con-
cepts and notations related to modeling, megamodels, and model and megamodel management.

• In Chapter 3, we introduce MMINT– a tool for interactive model management, which is used
as a tool for evaluation of our megamodeling approaches.

• In Chapter 4, we present work related to megamodel management, specifically, collection
operators for megamodels.

• In Chapter 5, we detail our approach for heterogenous megamodel slicing constructed as a
model-based workflow.

Part III. This part focuses on assurance case management. It is organized as follows:

• In Chapter 6, we introduce relevant background literature, concepts and notations related to
standards and assurance case modeling notations and tools.

• In Chapter 7, we present our approach for assurance case reuse due to system evolution,
which is a generic approach (i.e., not assurance case notation dependant, and not automotive
specific). The approach is demonstrated on the power sliding door example for validation.

• In Chapter 8, we present our specialized approach for GSN and ISO 26262. We also present a
set of improvement techniques that ensure a more precise impact assessment result.

Part IV. This part presents tool support and a case study, and is organized as follows:

• In Chapter 9, we present MMINT-A, a tool we have developed as an extension to MMINT
which allows us to assess the impact of system design changes on assurance cases.

• In Chapter 10, we use MMINT-A on a bigger example from the automotive domain, namely,
the Lane Management System (LMS) case study.

Part V concludes the thesis, where Chapter 11 summarizes the work presented and outlines
directions for future research.

Various parts of this thesis have been previously peer-reviewed and published. Below, I outline
these parts and my contributions to each of them:

• Chapter 1 includes content published in [Kokaly et al.(2016b)] and [Kokaly(2017)], both of
which I was the main author of, and the ideas presented there were my own.

18

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

• Chapter 2, Chapter 3, Chapter 4 and Chapter 5 include content published
in [Diskin et al.(2013), Salay et al.(2015), Salay et al.(2016), Di Sandro et al.(2015)], all of
which were publications I contributed to as a co-author, however, they are presented here
as they form foundations for much of the work in the thesis. In particular, in Chapter 3, I did
not do any tool implementation myself, but was involved in specifying the requirements and
supervising the implementation, testing and running the experiments needed for this thesis. In
Chapter 4, my contributions were in defining the behaviour of the operators, applying them on
all the scenarios presented, specifying their implementation and guiding with the experiments.

• Chapter 6 contains content published in [Maksimov et al.(2018)], which was a survey conducted
by a masters student, where I contributed to the work by providing guidance and feedback
on the assurance case tools in the literature and how to assess them and present the survey
results in a useful manner.

• The content of Chapter 7 has been published in [Kokaly et al.(2016a)], which is one of the
main contributions of this thesis.

• The content of Chapter 8 has been published in [Kokaly et al.(2017)], which is another main
contribution of this thesis.

• The content of Chapter 9 has been published in [Fung et al.(2018)], where a masters student
who did the majority of the tool development wrote the tool paper. I contributed to this work
as a co-author, guiding the structure and content, including creation of the example presented
in the paper. The specifications for the tool came from my own work and ideas, and the
development was done by the student. I participated in the testing and evaluation of the tool.

• The LMS specification and models in Chapter 10 came from the literature [Blazy et al.(2014)],
the safety case was constructed by me, and the change scenarios were specified by me as well.
A masters student helped run the experiment using the MMINT-A tool, and the results and
conclusions were written by me.

19

Part II

Megamodel Management

20

Chapter 2

Background: Model Management

In this chapter, we present a number of core concepts required for describing our contributions
in the rest of this thesis. First, Section 2.1 presents the example of a Power Sliding Door (PSD)
system, which will be used throughout the rest of the thesis. Then, Secton 2.2 presents background
material on models, megamodels and model management. Section 2.3 talks about model slicing,
and Section 2.4 presents some general material on model evolution, both of which are techniques we
will use in the assurance case change impact assessment approach in later chapters.

This chapter includes content published in [Diskin et al.(2013), Salay et al.(2015),
Salay et al.(2016)], all of which were papers I contributed to as a second author, however,
they are presented here as they form foundations for much of the work in the thesis.

2.1 Running Example: Power Sliding Door System

We use the Power Sliding Door (PSD) system, presented in Part 10 of the ISO 26262 stan-
dard [ISO(2011)], as a running example thoughout this thesis. PSD is an automotive subsystem
that controls the behaviour of a power sliding door in a car. The system has an Actuator that is
triggered on demand by a Driver Switch. As per the standard, the power sliding door system is
considered an item, with an architecture shown in Figure 2.1. The Driver Switch input is read by
a dedicated Electronic Control Unit (ECU), referred to as AC ECU, which powers the Actuator
through a dedicated power line. The vehicle equipped with the item is also fitted with an ECU
which is able to provide the vehicle speed. This ECU is referred to as VS ECU. The system in-
cludes a safety element, namely, a Redundant Switch. Including this element ensures a higher level
of integrity for the overall system.

As shown in Figure 2.1, the VS ECU provides the AC ECU with the vehicle speed. The AC
ECU monitors the driver’s requests, tests if the vehicle speed is less than or equal to 15 km/h, and
if so, commands the Actuator. The Redundant Switch is located on the power line between the AC
ECU and the Actuator. It switches on if the speed is less than or equal to 15 km/h, and off whenever

21

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 2.1: Power sliding door system with redundancy [ISO(2011)].

Driver	Switch	 VS	ECU	

AC	ECU	 Actuator	 Door	

requestDoorOpen()
requestDoorClose()

open:Boolean requestSpeed()
sensed_speed: Real

Redundant	Switch	
requestSpeed()
closed: Boolean
sensed_speed: Real

getSpeed(sensed_speed)
sensed_speed: Real

openDoor()
closeDoor()
powered: Boolean
activated: Boolean

powers controls

communicatesWith communicatesWith

communicatesWith

controls

Figure 2.2: Power sliding door system class diagram.

the speed is greater than 15 km/h. It does this regardless of the state of the power line (its power
supply is independent). The Actuator operates only when it is powered.

We present the system design as a combination of a class diagram (see Figure 2.2) that describes
the various components, their attributes, methods and relationships between them, and a sequence
diagram (see Figure 2.3) which describes the behaviour of the system. There are three threads
running in parallel in the sequence diagram: the top thread describes the behaviour of the Redundant
Switch; the middle thread describes the behaviour when the driver requests to open the door, and the
bottom thread describes the behaviour when the driver requests to close the door. The traceability
between the two models is given implicitly by the sequence diagram referencing objects which are
instances of the classes in the class diagram.

22

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

:VS	ECU	 :AC	ECU	 a:Actuator	 :Driver	Switch	 s:Redundant	Switch	

requestDoorOpen()
requestSpeed()

sensed_speed

[if sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor()

requestDoorClose()

[if sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor()

s.requestSpeed()

[if sensed_speed<=15] s.closed else s.open

requestSpeed()

sensed_speed

par

Figure 2.3: Power sliding door system sequence diagram.

2.2 Modeling and Model Management

This section contains some background on modeling as well as required definitions to be used in
future chapters.

2.2.1 Modeling

Model-Driven Engineering (MDE) is an approach to software development in which software models
play a primary role. MDE allows developers to work and reason about software requirements, design,
and correctness at higher levels of abstraction, and to automatically generate implementations,
deployments, and other artifacts. This section explains the basic terms and concepts that MDE is
built upon, and that will be used throughout this thesis.

Model. The term model is derived from the Latin word modulus, which means measure, rule,
pattern, example to be followed [Ludewig(2004)]. A model is therefore an abstract representation
of a system’s structure, function, or behaviour. A useful model serves as means of communication
between team members, and as it is cheaper to build than the actual system, it aids in system
analysis and testing. Two key attributes to effective modelling are abstraction and classification.
Abstraction means ignoring information not relevant in a particular context, and classification means
grouping important information based on common properties. MDE models are usually defined in
UML, but could be defined in any other general purpose or domain specific modelling language. In
software engineering, models appear in all areas and applications such as design models, process
models, analysis models, documentation models. etc.

23

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Metamodel. A metamodel is a more abstract model that defines the structure, semantics and
constraints for a set of models. This set includes models that share common syntax and semantics.
One can also think of a metamodel as the model of a modelling language, as it provides a way of
describing the entire class of models that can be represented by that language. Thus, each model
is considered an “instance of" some metamodel, and recursively, each metamodel is an instance of a
model that describes it, called a meta-metamodel. In theory, one can recursively define infinite levels
of metamodeling, but in practice, it has been shown that meta-metamodels can be defined based on
themselves, and, therefore, are usually at the highest level of abstraction.

Figure 2.4: The Four-layer Metamodel Hierarchy. Source: [Brambilla et al.(2012)].

In the same way a computer program is said to “conform to" the grammar of the programming
language it is written in, we say that a model “conforms to" its metamodel, etc. Figure 2.4 from
[Brambilla et al.(2012)] shows an example of how a model (M1) of a real world object (M0) relates
via “instance of" relations to its metamodel (M2) and meta-metamodel (M3). Note that at the
highest level of abstraction is the “Class" object, which is an instance of itself. Metamodels are
generally useful for defining new modeling languages and new properties or features to be associated
with existing information (i.e., metadata). They are also important when integrating models and in
other model management operations.

Platform. A platform is defined as the specification of an execution environment for a set of
models. A platform usually has a realization (i.e., implementation) of the specification it represents.
As an example, consider the UML metamodel which describes how UML models are structured, the
elements they contain, and the properties those elements have. This metamodel can then describe
properties of a particular platform, which could have multiple metamodels describing it. Figure 2.5

24

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 2.5: Models, metamodels, and platforms. Source: [Mellor et al.(2004)].

from [Mellor et al.(2004)] depicts this relationship. A well-defined application architecture, including
its runtime system, can also be a platform for applications. This is often considered to be one of the
key concepts for Model Driven Software Development as stated in [Stahl et al.(2006)].

Model Mapping. A mapping between models takes as input one or more “source" models and
produces one “target" model as output. There are rules, called mapping rules, which constrain the
mapping through a mapping function. The rules on model mappings are defined at the metamodel
level and apply to all sets of source models that conform to the given metamodel. Figure 2.6 from
[Mellor et al.(2004)] shows using an UML class diagram, how the various MDE objects defined so
far are related.

Figure 2.6: Models, mapping functions, and mapping rules. Source: [Mellor et al.(2004)].

Model Transformation. Once we have the source and target model definitions, and once a
model mapping is also defined along with mapping rules, a model transformation can be gener-
ated using these rules. Model transformations can then themselves be viewed as models and man-
aged as such, having their own metamodels. A model transformation language (the metamodel
of the transformation) would then conform to the same meta-metamodel as the model it trans-
forms [Brambilla et al.(2012)].

2.2.2 MDA, MOF, EMF and Ecore

The Model Driven Architecture (MDA) [Object Management Group(2014)] is a software develop-
ment methodology introduced by the Object Management Group (OMG) in 2001. Relying on
a series of OMG standards, such as the Meta Object Facility (MOF) [OMG(2015)], the Unified
Modeling Language (UML) [Object Management Group(2015a)], the XML Metadata Interchange
(XMI) [Object Management Group(2015b)], and others, the MDA is OMG’s realization of Model
Driven Engineering (MDE).

In MDA, models, metamodels and model transformations are first class development artifacts.

25

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Software applications are created by applying transformations on models expressed at a high level
of abstraction to derive models at lower levels of abstraction.

The MOF (MetaObject Facility) specification [OMG(2015)] states that a metamodel consists of
element types, and that each element type has zero or more reference and attribute types. Then,
given a model M of a metamodel T , an atom of M denotes any element, reference or attribute in
M and atomsM denotes the set of all atoms in M . For example, in a UML class diagram, Class

is an element, OwnedBy is a reference and IsAbstract is an attribute. For a more comprehensive
description of the MOF specification, please refer to [OMG(2016)].

The Eclipse Modeling Framework (EMF) [Eclipse(2018a)] is a framework and code generation
facility in Eclipse for building tools and other applications based on a structured data model. EMF
provides tools and runtime support to produce a set of Java classes for the model, a set of adapter
classes that enable viewing and command-based editing of the model, and a basic editor. EMF is
used for the implementation of MMINT described in Chapter 3, which we then extend into the tool
MMINT-A in Chapter 9.

Ecore is the core (meta-)model at the heart of EMF. It allows expressing other models by lever-
aging its constructs. Ecore is also its own metamodel (i.e., Ecore is defined in terms of itself). Ecore
is considered to be the defacto reference implementation of OMG’s EMOF (Essential Meta-Object
Facility). The Ecore metamodel is shown in Figure 2.71.

Note from Figure 2.7 that the Ecore metamodel contains the following constructs:

• EClass: represents a class, with zero or more attributes and zero or more references. We refer
to its instances as classes.

• EAttribute: represents an attribute which has a name and a type. We refer to its instances as
attributes.

• EReference: represents one end of an association between two classes. It has flags to indicate
if it represents a containment and a reference class to which it points. We refer to its instances
as references.

• EDataType: represents the type of an attribute, e.g., int, float or java.util.Date. We refer to
its instances as types.

2.2.3 Model Management

A complexity problem in MDE arises due to the proliferation of software models. As such, the area
of Model Management [Bernstein(2003)] has emerged to address this challenge. Model management
focuses on a high-level view in which entire models and their relationships (i.e., mappings between
models) can be manipulated using operators (i.e., specialized model transformations) to achieve
useful outcomes.

1Source: http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-
summary.html

26

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

As mentioned in Chapter 1, model management operators that have been studied include the
following:
• The slice [Nejati et al.(2012)] operator accepts a model and a slicing criterion and extracts

the subset of the model satisfying the criterion. Model slicing is a way to manage model complexity
by focusing on a relevant subset of a model.
• The match [Bernstein(2003)] operator accepts two models and produces a relationship contain-

ing mappings between equivalent (or similar) elements in the models. This is usually interpreted as
identifying the overlap between the models.
• The diff [Bernstein(2003)] operator accepts two models and produces a model that represents

the differences between the models. Model differencing aids the comparison of model content, e.g.,
across different versions.
• The merge [Brunet et al.(2006)] operator accepts two models and a relationship expressing the

overlap between them and produces a model that combines the content of the models according to
the overlap. Model merge must address the issue of conflicts that could occur when the content is
combined.
• The lift [Salay et al.(2014)] operator accepts a model transformation and produces a product

line transformation that behaves the same way as the original model transformation for each product
in the product line. Transformation lifting saves effort by allowing model transformation to be reused
for product lines of models.
• The filter [Salay et al.(2015)] operator accepts a megamodel and a model (relationship) prop-

erty and produces a megamodel with all models (relationships) not satisfying the property removed.
Filtering a megamodel is useful for managing the complexity of large collections of related models.
• The map [Salay et al.(2015)] operator accepts a megamodel and a model transformation to

produce the megamodel that results from applying the transformation to all applicable models and
relationships in the input megamodel. Mapping a transformation over a megamodel is used to reduce
the effort of applying a transformation to the elements of a large collection of related models.

Each of these operators can be viewed as an abstract transformation that defines a class of
concrete transformations (i.e., the implementations that refine the operator for particular model
types). For example, a model merge of class diagrams is implemented differently than a model
merge of state machines. Another widely used class of transformations used in model management
are bidirectional transformations [Diskin et al.(2010)]. Bidirectional transformations are used to
keep two related models synchronized when one of the models changes (e.g., via model co-evolution,
correction, etc.) by generating the update for the other model.

2.2.4 Definitions

Below are definitions of modeling concepts used in this thesis.

Definition 1 (Model) A model is a set of typed elements and links conforming to a metamodel.
We use the term atom to denote either an element or a link.

27

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Definition 2 (Model relationship) A model relationship connecting models M and M ′ consists
of a set of typed links conforming to a metamodel. Each link connects atoms of M to atoms of M ′.

Definition 3 (Traceability relationship) A traceability relationship is a model relationship in
which the links express a dependency relationship between the atoms it connects. The dependency
relationship can be unidirectional or bidirectional depending on the type of traceability link.

Note that the definition of traceability relationship used in this thesis is broader than what is
typically used by requirements engineering [Gotel and Finkelstein(1995)] and narrower than what is
sometimes used for general modeling [Aizenbud-Reshef et al.(2006)]. We focus solely on traceability
relationships and use them to determine cross-model dependencies. In fact, we assume that the only
relationships in the megamodels are the traceability relationships. In Section 5.2.3, we discuss how
this assumption can be relaxed.

Definition 4 (Model fragment) A model fragment S of a model M , denoted S[M], is any subset
of atoms of M .

To help visualize and work with collections of models and their relationships, model management
uses a special type of model called amegamodel [Diskin et al.(2013)] whose elements represent models
and links between elements represent relationships between the models. Operators for megamodel
management, namely, filter, map, and reduce, are presented in more detail in Chapter 4.

Figure 2.8 shows the simplified metamodel used for megamodels in this thesis. A Megamodel

consists of a graph of named and typed Model elements with Relationship links connecting them.
These refer to models and model relationships (defined above), respectively, and the types indicate
their metamodels. The well-formedness constraint requires that the models on either end of every
relationship are distinct. We have made the simplifying assumptions that (1) all relationships are
binary; and (2) megamodels cannot be nested or reference other megamodels. In Section 5.2.3, we
discuss how these assumptions can be relaxed.

Figure 2.9 shows a megamodel for our PSD example. Here, PowerSlidingDoor : CD and
PowerSlidingDoor : SD refer to the Class Diagram and Sequence Diagram, respectively, while the
line connecting them refers to the relationship of type CD− SD for connecting these two types of
models. Note that relationship names are optional.

A modeling environment typically consists of various modeling artifacts stored in a repository.
A megamodel then is a model whose elements refer to artifacts in the repository. Next, we formalize
the concept of megamodel and give other necessary definitions.

Basic Types. We define the concept of “mega-graphs” – mgraphs. A megamodel is an mgraph
whose nodes refer to artifacts in the repository.

Definition 5 (mgraph) An mgraph is a structure that is an instance of the metamodel in Fig-
ure 2.10. Given an mgraph G, we write GC to denote the set of nodes in node class C. When C

28

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

is omitted, the node class is Node. We use abbreviations Mod and Rel for node classes Model and
Relationship, respectively. For n ∈ G, we write n.R to denote the set of nodes on the other end of
reference2 R from node n.

Note that our mgraph metamodel conforms to the Ecore metamodel shown in Figure 2.7, where
boxes are instances of EClasses, arrows are instances of EReferences, and “type” and “name” are
instances of EAttributes.

In this thesis, we limit our focus to megamodels that can refer to artifacts corresponding to the
concrete node classes in Figure 2.10. A relationship is a mapping between two or more models on
its ends. A transformation application is the record of having performed a given transformation on
a set of input models and relationships to produce a set of output models and relationships. We
make no further assumptions about the way models, relationships or transformation applications
are represented or what they contain. The “mega” versions of these artifacts: megamodels, megarels
and megaApps are defined below. We assume the existence of a repository.

Definition 6 (Repository) A repository R is a store for artifacts that is itself structured as an
mgraph of artifacts (i.e., rather than an mgraph of symbols). Thus, a relationship has references to
the models on its ends, etc.

Models, relationships and transformation applications are typed by model types, relationship
types and transformations, respectively. We assume that type compatibility (e.g., via sub-typing) is
given by a relation TypeComp.

Definition 7 (Type compatibility) Given a type compatibility relation TypeComp,
TypeComp(T, T ′) indicates that an artifact of type T can be used wherever the type T ′ is re-
quired. The relation TypeComp must be reflexive.

Mappings between mgraphs are called mgraph homomorphisms.

Definition 8 (mgraph homomorphism) Given mgraphs G,G′ and type compatibility relation
TypeComp, an mgraph homomorphism f : G → G′ is a function fNode : GNode → G′Node that sat-
isfies the following conditions for preserving all node classes C, references R and types:

1. ∀n ∈ G· n ∈ GC ⇒ fNode(n) ∈ G′C

2. ∀n, n′ ∈ G· n′ ∈ n.R⇒ fNode(n
′) ∈ fNode(n).R

3. ∀n ∈ GTypedNode · TypeComp(n.type, fNode(n).type)

A typed mgraph homomorphism is one where TypeComp is equality. An mgraph isomorphism is one
where fNode is a bijection.

2Please refer to description of Ecore references in Section 2.2.2.

29

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Condition (1) ensures that f preserves node classes and condition (2) ensures that f preserves
the endpoints of references. These are standard conditions for a homomorphism to be a structure-
preserving mapping. Condition (3) additionally ensures that for typed nodes, f preserves type
compatibility of nodes. Note that node names need not be preserved by f .

Mega Types. Intuitively, all the mega types represent collections of artifacts.

Definition 9 (Megamodels) Let a model repository R of artifacts be given. A megamodel is a
pair 〈G, d〉, where G is an mgraph and d : G → R is a typed mgraph homomorphism, called the
dereferencing mapping, that maps the nodes of G to the artifacts they represent in R.

When it is clear from the context, we will use a megamodel interchangeably with its mgraph.

Definition 10 (Megarel) A megarel is a megamodel restricted to containing only Relationship

and Megarel nodes (refer to Figure 2.8), but end references of these nodes are contained within the
ends of the megarel.

Thus, a megarel is the “mega” version of a relationship, and can be viewed as a“relationship-like”
collection that itself has megamodels on its ends.

Definition 11 (MegaApp) A megaApp is a megamodel restricted to containing only
Transformation Application and Transformation MegaApp nodes (refer to Figure 2.8), but the
in and out references of these elements are contained within the input and output connections of
the megaApp. That is, both megarel and megaApp artifacts are connected to other artifacts in R .

Thus, a megaApp is the “mega” version of a transformation application, and can be viewed as
a “transformation-application-like” collection that represents a record of having performed a given
transformation on a set of input megamodels and megarels to produce a set of output megamodels
and megarels.

Figure 2.11 gives an example of a repository including three megamodels, a megarel (as well as
other artifacts shown as shaded boxes). To avoid visual clutter in this example, the dereferencing
mappings are not shown but are implied by the names; however, in general, names across the mapping
may be different. The examples of the megamodels and megarels show the concrete syntax we use for
illustrations in this chapter. Models are shown as boxes, relationships are shown as diamonds with
binary relationships shown optionally as a line. A transformation application is given as an oval,
with the input elements connected with arrows pointing into the oval and output elements connected
with arrows pointing out of the oval. All models, relationships and transformation applications have
a label of form name:type, where the name is optional. Megamodels, megarels and megaApps
are shown similarly as their non-“mega” counterparts but with thick borders. Furthermore, these
elements are not typed. For example, in megamodel X at the top of the figure, the box with label
C : CD refers to the class diagram with name C. The diamond R2 : CDrel refers to the corresponding
CDRrel artifact with name R2, the thick bordered box labeled X1 refers to the megamodel X1 shown

30

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

below it which itself refers to models B and E, etc. No megaApp is shown here, but this will be
illustrated in Chapter 4.

Properties and Transformations. Models can satisfy properties and participate in transforma-
tions. We define these below.

Definition 12 (Property) A property is a constraint on an artifact. Given an artifact A and a
property P , we write A |= P to denote that A satisfies P . Every property is defined for an artifact
of a specific type. If A has type T , P has type T ′ and the type compatibility relation TypeComp is
given, the following condition must hold: (A |= P)⇒ TypeComp(T, T ′).

Thus, we assume that artifacts not compatible with the type of the property do not satisfy the
property.

Definition 13 (Transformations) A transformation is a function that maps an mgraph of models
and relationships to another mgraph of models and relationships. Given a transformation F , the
signature of F is a pair 〈I,O〉 where I ∪O is an mgraph, I is an mgraph called the input signature
and O is a set of mgraph nodes called the output signature.

Note that we make no assumptions about what language is used for expressing properties or defining
transformations. Also note that O is a set of mgraph nodes and not an mgraph, as it contains not only
the mgraph output, but also the relationships back to the input mgraph (i.e., O is not a well-formed
mgraph). To better explain this, Figure 2.12 gives an example of the signature for a transformation
CDMerge that accepts two class diagrams and a relationship between them and produces the merged
class diagram with relationships back to the original two class diagrams. The input signature consists
of the models a, b and relationship r and the output signature has model ab with relationships
ra and rb. Written textually, the signature consists of I = {a : CD, b : CD, r(a, b) : CDrel}, and
O = {ab : CD, ra(a, ab) : CDrel, rb(b, ab) : CDrel}. Even though a relationship is an output of a
transformation, it can connect input elements. For example, both output relationships ra and rb

are connected to inputs.

Definition 14 (Transformation binding) Given transformation F with signature 〈I,O〉, a bind-
ing K of F is a megamodel 〈I, dI〉 where dI is an mgraph homomorphism (rather than a typed mgraph
homomorphism). We write F (K) to denote the corresponding megamodel 〈I ∪O, dI∪O〉 giving the
result of applying F to K. We say that F is commutative if for every pair of isomorphic bindings
K,K ′ (i.e., mgraph isomorphisms of I), F (K) is isomorphic to F (K ′).

Thus, a binding K of F assigns artifacts to the nodes of its input signature I and then F (K)

can be evaluated to assign newly created artifacts to the nodes of the output signature. CDMerge in
Figure 2.12 is an example of a commutative transformation – given any two class diagrams M1, M2
related by a relationship R, the merged output is the same regardless of whether we use the binding
{a := M1, b := M2, r := R} or {a := M2, b := M1, r := R}.

31

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Definition 15 (binding with megamodel) Given megamodel X = 〈GX , dX〉 and transformation
F with signature 〈I,O〉, a binding of F within X is the megamodel 〈I, dX ◦ b〉 where b is an injective
mgraph homomorphism b : I → X.

That is, a binding of F within X is formed by finding a set of nodes in X that match I.
Finally, a megamodel fragment is defined as containing only model fragments and no relationships

between them. We define it formally as follows:

Definition 16 (Megamodel fragment) A megamodel fragment S of a megamodel X, denoted
S[X], is any set of model fragments of the models in X. We say that S[X] is contained in S′[X],
denoted S[X] v S′[X], iff the following condition holds:

∀M ∈ X · ∪{S[M]|S[M] ∈ S[X]} ⊆ ∪{S′[M]|S′[M] ∈ S′[X]}

Thus, S[X] v S′[X] when, for each model M ∈ X, the combined model fragments of M in S[X] is
contained in the combined model fragments of M in S′[X].

2.3 Model Slicing

Program slicing, and, correspondingly, model slicing approaches, fall into four categories: static,
dynamic, conditional and amorphous [Clark(2011)]. In each case, we are given a model and a slicing
criterion indicating some “aspect of interest” in the model, and the slicing process produces a slice
of the model that addresses the criterion. Static slicing uses a model fragment as the criterion. A
forward slice expands the criterion to all dependent atoms while a backward slice expands to all
depending atoms. While static slicing uses a subset of the syntax as a criterion, dynamic slicing uses
a constraint from the semantic domain. For example, dynamic slicing can be used to identify the
classes used in a particular run of a program. Conditional slicing combines both static and dynamic
approaches by allowing a hybrid criterion. Finally, while the first three types of slicing produce a
slice that is a fragment of the model, amorphous slicing allows the slice to be a different model.
For example, the approach used in [Nejati et al.(2012)] adds stuttering transitions to state machine
slices in order to preserve behaviours.

In this thesis, we focus on static forward slicing since it is readily applicable to assessing the
impact of changes due to model evolution. We define this as follows.

Definition 17 (Static forward model slice) Given a model M and model fragment S[M], the
static forward slice of M with respect to the slicing criterion S[M] is the model fragment S′[M]

satisfying the following conditions:

1. (Correctness) S′[M] contains all atoms of M that are directly or indirectly dependent on atoms
of S[M].

2. (Minimality) Every atom of S′[M] is either directly or indirectly dependent on atoms of S[M].

32

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Note that since S[M] is dependent on itself, these conditions imply that S[M] ⊆ S′[M].

2.4 Model Evolution

In MDE, model evolution is studied in order to understand why models change and how that impacts
consistency of related models. Examples of kinds of model evolution changes are presented in a survey
on the evolution of UML models [Khalil and Dingel(2013)]. In this thesis, we are interested in three
of the presented types: evolution due to fixing errors, evolution due to changing functionality, and
evolution due to changing model quality.

The general approach we use is to determine what parts of the assurance case are impacted by
the change. Then the new assurancce case must redo these parts and potentially can reuse the
unimpacted parts. Depending on the type of change we are considering, the impact assessment
is different. In the case of fixing errors, this means that the current assurance case was either
incorrect or incomplete (or both) because it did not catch the error. This points to the need to
address two questions: (1) why the assurance case was not adequate, and (2) how to change the
assurance case to address this type of change. For the former, this requires an analysis of the process
followed to produce the original assurance case and a decision on its causes. We consider this to be
outside of the scope of our work. For the latter, this requires an assessment of the impact of the
change in the system and then the corresponding impact in the assurance case. The impact of the
incomplete/incorrect parts of the assurance case also need to be determined if these are different than
the impact of the error fix. In the case of changing functionality, this means that the requirements
must have also changed. Thus we must do an impact analysis of both the changed requirements
and of the system changes and how these correspondingly impact the assurance case. Finally, in the
case of changing model quality, this means that the existing system was adequate, so the assurance
case was not flawed and the requirements have not changed. In this case, we just assess the impact
of the change in the system and the corresponding impact on the assurance case.

2.5 Chapter Summary

In this chapter, we have presented a running example (PSD) which will be used to demonstrate our
ideas in subsequent chapters. We have also presented core concepts on modeling, megamodels, and
model management, with a focus on model slicing and model evolution. These concepts form the
basis for much of the material presented in the rest of this thesis.

33

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 2.7: Ecore components and their relations.

34

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Node
name
type

Model Relationship

Megamodel

2

end

*

Well formedness constraint:
∀𝑅 ∈ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 ⋅ 𝑅. 𝑒𝑛𝑑 1 ≠ 𝑅. 𝑒𝑛𝑑[2]

Figure 2.8: (Simplified) metamodel for megamodels.

PowerSlidingDoor:	CD	 PowerSlidingDoor:	SD	
CD-SD

Figure 2.9: Power sliding door system megamodel.

Model Relationship

Transformation
Application

Megamodelend

Typed Node

Node

Megarel

name

type

Transable
out

in

end

Transformation
MegaApp

Mega
Transable

out
in

2..* 2..*

1..*

1..*

1..*

1..*

Figure 2.10: Metamodel of an mgraph.

Figure 2.11: An example of a repository including megamodels and a megarel showing the concrete
syntax.

a:CD

b:CD

r:CDrel CDMerge	 ab:CD

rb:CDrel

ra:CDrel

Figure 2.12: Signature of a transformation CDMerge for merging class diagrams.

35

Chapter 3

Background: MMINT

Modern software development requires managing multiple, heterogeneous software artifacts, but the
proliferation of models creates an accidental complexity that must be managed. Model Manage-
ment [Bernstein(2003)] addresses this challenge. This is realized through the use of special models
called megamodels [Bézivin et al.(2004)] to represent model management scenarios at a high level
of abstraction and general purpose transformations (also called operators) [Brunet et al.(2006)] to
manipulate models and their relationships (i.e., mappings between models) in order to perform use-
ful tasks. For example, a model match operator finds correspondences between two models and
packages these as a mapping between the models. A merge operator can be used to combine the
content of the two models using the correspondence information in the mapping.

Several model management frameworks have been developed to support Model Driven Engineer-
ing (MDE) by facilitating the development of operators and the implementation of specific model
management tasks. For example, Epsilon [Kolovos et al.(2015)] provides multiple domain-specific
languages, each specialized for a different model management task such as merge, validation, trans-
formation, etc. The Atlas suite of tools [Bézivin et al.(2005b)] is centred around the ATL transfor-
mation language and its use in different model management tasks. These frameworks focus on the
programming required to prepare for model management rather than the user environment required
to carry out model management tasks. However, such an environment is a key factor for practical
model management.

An effective user environment requires a rich interactive user interface and automated user as-
sistance. We elaborate on these in the context of model management:

• Interactive User Interface - Megamodels provide the means for raising the level of abstraction
to manage complexity in model management, thus they are the natural user interface for
model management. Furthermore, the user should be able to interact with the type level
where model types (i.e., metamodels), relationship types and transformations are defined as
well at the instance level where particular model management scenarios are expressed and
carried out. Interactivity is an important characteristic of the user interface. Due to the

36

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

complexity of model management tasks, they often can only be partially automated. For
example, performing a match between models may need to be manually verified to ensure the
correspondences are sensible, and performing a merge of models may yield conflicts that need
to be manually resolved using human judgment.

• Automated User Assistance - Many model management activities are one-off tasks that suggest
the need for low effort rapid implementation, possibly with manual steps, rather than a polished
and fully automated process. Even activities that become fully automated often initially
require experimentation and exploration to get them right. User assistance to help adapt
transformations for reuse, support reasoning about models, etc. can reduce effort and help
manage complexity.

In this chapter, we describe the tool called MMINT (“Model Management INTeractive”) for
graphical, interactive model management. MMINT is an existing tool which we use for running
expirements to evaluate the operators in Chapter 4, and building an extension, MMINT-A, described
in Chapter 9 for assurance case impact assessment. Next, we summarize the features of MMINT
which address the requirements discussed above.

• Interactive User Interface

– instance level megamodel - MMINT provides a customizable environment in which mod-
ellers can graphically create model management scenarios using megamodels at the in-
stance level, interactively apply transformations and immediately see their result and,
when necessary, manually drill-down into the detailed content of particular models or
relationships.

– type level megamodel - a megamodel is used at the type-level to visualize and allow rapid
modifications of the type hierarchy of model types, relationship types and transformations
at run-time to immediately impact instance level megamodels.

• Automated User Assistance

– megamodel operators - the generic operators map, filter and reduce, available in many pro-
gramming languages to simplify complex collection-based manipulation tasks, are built-in
and adapted for use with megamodels as we will demonstrate in Chapter 4.

– type coercion - a type coercion mechanism is available that automatically performs
the necessary conversion transformations required to reuse transformations from related
types.

– retyping - a type down-casting mechanism is available that automatically detects cases
when a model satisfies the constraints of a more specialized type and thus can use its
transformations.

37

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Organization. The rest of this chapter is organized as follows: In Section 3.1 we introduce and
illustrate the features of MMINT by implementing a detailed model management scenario. In
Section 3.2, the architecture of MMINT is described. Finally, in Section 3.3, we conclude with a
summary of the chapter.

3.1 Using MMINT for Model Management

In this section, we use a model management scenario to illustrate the MMINT features addressing
the requirements for a model management user environment discussed in the chapter introduction.

Illustrative scenario. Consider the following model management scenario. A company uses a
megamodel to track its modeling artifacts (models and relationships between them). The company
has determined that having public attributes in class diagrams is undesirable and now (1) would
like to identify all class diagrams that contain this construct, (2) refactor them using a predefined
transformation to remove the construct, (3) merge the modified class diagrams with the originals
into a single class diagram, and finally, (4) produce a textual representation of the merged class
diagram.

We now show how MMINT can be used to accomplish this scenario. Table 3.1 summarizes the
MMINT features and the step of the scenario in which they are illustrated.

Executing the scenario. In MMINT a megamodel is referred to as a MID (Model Inter-
connection Diagram). MMINT uses a distinguished Type MID in which model types, relationship
types and transformations are registered. Figure 3.1 shows a screenshot of the Type MID used to
implement the scenario. Here, boxes represent model types and thick blue links between them are
binary relationship types. The sub-typing between types is shown with the hollow-headed arrows.
Transformations are ovals connected to their input and output types with named links (not shown
to avoid clutter). For example, our scenario needs class diagrams and so ClassDiagram is a model
type that is a sub-type of the general model type Model. The binary relationship type CDRel is a
used to create mappings between ClassDiagram models. CDMatch is a transformation that takes two
ClassDiagrams as input and produces a CDRel between them as output that contains links between

Requirement MMINT Step
Interactive User Instance megamodel All

Interface Type megamodel 1
Megamodel operators

map 2,3
Automated User filter 1

Assistance reduce 3
Type coercion 4
Retyping 1

Table 3.1: MMINT features and where they are illustrated in the scenario.

38

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 3.1: Type megamodel in MMINT used for the examples in this chapter.

Figure 3.2: Screenshot of the final state of MID Scenario and selected other MID’s used or created
in the scenario.

classes that have the same name. Note that even the built-in megamodel operators Filter, Map and
Reduce appear as transformations in the Type MID.

At the instance level, MMINT is used to create MIDs using a MID editor that allows an engineer
to interactively create or import models, relationships and other MIDs, invoke transformations on
them and inspect or change the results. We will incrementally and interactively build a MID called
Scenario as we carry out the steps of the scenario. Figure 3.2 (top-right) shows a screenshot of the
final state of this MID after step (4). Initially, Scenario contains only the top left-most box referring
to MID Lib (top-left of Figure 3.2) that holds the class diagrams the company wants to process. We
have limited the the number of CD’s in MID Lib to four for this illustration; however, the scenario
scales well (see [Salay et al.(2015)]).

Step (1). In the first step we need to separate out the class diagrams in Lib that contain public
attributes. We can use the megamodel operator Filter 〈TYPE〉 that, when applied to a MID, removes
all models/relationships that do not conform to type TYPE (see [Salay et al.(2015)] for details);

39

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

however, we need a model type that represents class diagrams that contain public attributes.
The Type MID allows an engineer to create new types and use them immediately. Thus, we use
the Type MID editor to define a new sub-type CDPublicAttributes of ClassDiagram containing the
following OCL well-formedness constraint:

CDPublicAttributes:

Attribute.allInstances()->exists(

attribute | attribute.public)

Similarly, we create sub-type CDNoPublicAttributes with the negation of this constraint. Both are
shown in Figure 3.1 as sub-types of ClassDiagram. We then split Lib into new MIDs Pub (contain-
ing CD PowerWindow and ACC) and NoPub (containing CD Engine and Infotainment) by applying
Filter 〈CDPublicAttributes〉 and Filter 〈CDNoPublicAttributes〉, respectively, to Lib.

This step also illustrates the retyping feature of MMINT . Even though the class diagrams in Lib

are typed as ClassDiagram, MMINT can check them against a sub-type (e.g., CDPublicAttributes)
and automatically retype them if they conform. This feature can be invoked manually on any model
by the engineer or internally by other operators – in this case, Filter. When invoked manually on a
model (via right-clicking and a context menu), MMINT traverses the type hierarchy to check the
model’s conformance with all sub-types and returns the list of retyping options for selection by the
user.

Step (2). In this step, we use a standard class diagram refactoring transformation, called
AddGetters, that replaces each public attribute with a private attribute and a corresponding get-
ter method. MMINT allows transformations in any language to be added to the Type MID.
In this case, we have used Henshin [Arendt et al.(2010)] to implement AddGetters. We want to
apply AddGetters to every class diagram in MID Pub. We can achieve this by using the meg-
amodel operator Map 〈MAPPER〉 that applies a transformation given by parameter MAPPER to
each model/relationship in a MID (see [Salay et al.(2015)] for details). In this case, we apply
Map 〈AddGetters〉 to Pub to produce MID RefPub containing the refactored class diagrams. We
then use the built-in operator Union to produce MID NewLib that combines the MID RefPub with
the class diagrams containing no public attributes in MID NoPub. Thus, NewLib is the same as the
original MID Lib but with refactored class diagrams.

Step (3). Now we wish to merge the class diagrams in NewLib into a single class diagram. We have
available to us a class diagram merge transformation CDMerge that takes two class diagrams and
a CDRel relationship between them indicating how the class diagrams overlap [Brunet et al.(2006)].
That is, if the relationship has a link between two classes then CDMerge will combine these classes
into a single class in the output merged model. Unfortunately, our MID NewLib contains only
class diagrams and no relationships indicating their overlap. We can fix this by first using the
transformation CDMatch that creates a CDRel between two class diagrams and puts links between

40

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

classes with the same name. We could apply CDMatch manually to each pair of class diagrams in
NewLib but to save time, we apply Map 〈CDMatch〉 to NewLib and get all the relationships in one
step in the MIDRel MatchR. A MIDRel is a megamodel containing only relationships. Finally,
we union these relationships with the class diagrams to produce MID NewLibR (content shown in
Figure 3.2).

At any point in our scenario we can drill-down into models or relationships to examine results
or manually intervene in the process. For example, we may want to manually check or modify
individually relationships that Map 〈CDMatch〉 produced to confirm that the correct classes are
linked. To do this, we would double-click on a relationship (thick blue arrow in NewLibR) and view
or edit it using the MMINT relationship editor.

Now we can merge the models in NewLibR pairwise using CDMerge. To do this quickly we use the
megamodel operator Reduce 〈ACCUMULATOR〉 that accepts an arbitrary “merging” transformation
and keeps applying it until it can be applied no more (see [Salay et al.(2015)] for details). In this
case we apply Reduce 〈CDMerge〉 to MID NewLibR to produce the MID NewLibM containing a single
class diagram with the merged content of the class diagrams in NewLibR.

Step (4). In the final step of our scenario we wish to create a Java representation of the the
merged class diagram in MID NewLibM. Assume we already have a transformation CD2Java that
converts a class diagram to a Java model (i.e., based on a Java metamodel). In addition, we have
a transformation Java2Text that produces the textual code of a Java model. One way to get the
result we want is to apply these transformations in sequence on the merged class diagram in MID
NewLibM. However, this step can be simplified by using the MMINT feature of type coercion that
enables transformation reuse.

MMINT allows some transformations in the Type MID to be explicitly marked as conversion
transformations and this is the case with CD2Java (see Figure 3.1). Normally, when a model is
selected in a MID and right-clicked, MMINT computes the list of applicable transformations based
on the Type MID and presents a list to the engineer to choose from. The type coercion features
means that MMINT not only lists the transformations that directly apply to the model based on
its type, but also transformations that could indirectly apply if the model was first converted using
conversion transformations and it does the conversions automatically. In our scenario, this means
that when we right-click on the merged class diagram in MID NewLibM, the transformation Java2Text

will be available and if selected, MMINT runs the necessary CD2Java conversion behind the scenes
and then deletes the intermediate result.

3.2 MMINT Architecture

MMINT , which is available at: http://github.com/adisandro/MMINT, is an evolution of the
MMTF model management framework [Salay et al.(2007)] adding the Type MID, support for retyp-
ing, type coercion and megamodel operators. MMINT is implemented in Java and uses the Eclipse

41

http://github.com/adisandro/MMINT

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Type MID

MID Editor
Relationship

Editor

Type Support Runtime
(Model, Relationship, Transformation)

Eclipse
EMF GMF OCL

MMINT

Figure 3.3: Architecture of MMINT .

Modeling Framework (EMF) [Steinberg et al.(2008)] to express models and the Eclipse Graphical
Modeling Framework (GMF) to create custom editors for editing models and relationships. The
overall architecture of MMINT is illustrated in Figure 3.3.
Model and Relationship types. Metamodels for new types can be plugged in or created directly
through the Type MID. Implementations for supporting tools such as type-specific editors, validation
checkers and solvers can also be plugged in and are managed by the type support runtime layer. A
generic relationship editor is built into MMINT .

Transformations. New transformations can be implemented in Java or any transformation lan-
guage and plugged into the type support runtime layer as transformation definitions. The definition
includes metadata specifying the input and output types and other attributes such as if this is a
conversion transformation used by the coercive typing feature. Transformations can also be desig-
nated as higher order and take types or transformations as parameters. The megamodel operators
Filter, Map and Reduce are implemented in this way. Transformation metadata is stored in the Type
MID (see Figure 3.1) for use at run-time.

MID Editor. The MID Editor provides the user interface through which MIDs are created and
manipulated. Double-clicking on an element (model, relationship or MID) opens the correspond-
ing artifact using the appropriate editor. Right-clicking on an element brings up a context menu
that provides functionality appropriate to the corresponding artifact including retyping assistance,
transformations that can be applied (including indirect ones via coercion) and validation.

3.3 Chapter Summary

In this chapter, we presented the interactive model management tool, MMINT , which allows users
to perform automatically assisted model management tasks through the use of interactive type and
instance megamodels. We illustrated its usage on a detailed model management scenario. MMINT

42

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

is used to evaluate our megamodel management operators presented in Chapters 4 and 5, as well as
a basis for the assurance case impact assessment tool, MMINT-A, described in Chapter 9.

43

Chapter 4

Megamodel Management with
Collection-Based Operators

In this chapter, we define operators on top of megamodels, which will be used as a basis for the
assurance case impact assessment approach described later in the thesis.

This chaper contains material published in [Salay et al.(2015)], where I contributed to defin-
ing the behaviour of the operators, applying them on all the scenarios presented, specifying their
implementation and designing the experiments.

Introduction

Model management has been studied from many perspectives including algebraic properties of op-
erators [Brunet et al.(2006), Melnik et al.(2003)], categorical foundations [Diskin et al.(2013)], type
theory [Vignaga et al.(2013)], megamodeling languages [Salay et al.(2009), Favre et al.(2012)]
and practical implementations [Kling et al.(2012), Salay et al.(2007), Melnik et al.(2003),
Kolovos et al.(2015)]. In these investigations, the focus is on the general manipulation of
models rather than specifically on the manipulation of megamodels – since these are a kind of
model, general model operators apply to them equally well. Yet other operators are needed due
to the special role of megamodels in model management. Specifically, megamodels function as
collections (of models and relationships) and so their manipulation should be like that of other
collection types (e.g., lists, graphs, etc.) commonly found in modern programming languages.
In particular, three collection operators are widely used: map for applying a function to every
element of a collection, reduce for aggregating elements in a collection and filter for extracting a
subset of the collection using a property as a selector. These operators would have great utility if
available in the model management context. But while megamodels bear similarity to collections in
programming, they also have their unique challenges that limit our ability to apply these techniques

44

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

without some adaptation. We illustrate these below.

A Motivating Scenario. A company uses a megamodel to track its modeling artifacts (models and
relationships between them). The company identified a particular construct of some of its models
as undesirable (e.g., multiple inheritance in class diagrams), and now (1) would like to identify
all models that are of type class diagram and contain this construct, (2) refactor them using a
predefined transformation to remove the construct, and (3) merge the modified class diagrams in
order to compare the result to the merged version of the original bad class diagrams. A natural way
to execute these steps is to (1) use filter to extract the bad class diagrams and the relationships
between these, (2) use map to apply the refactoring transformation to these and also allow the
use of the corresponding refactoring transformation for the relationships and, (3) use reduce with a
merge transformation to combine all the refactored models pairwise, correctly taking into account the
relationships between them. The reduce with merge also can be used to combine the original models.
Thus, we need collection operators to manipulate the entire graphs of related models rather than
just lists of models. Furthermore, we need to allow invoking map and reduce with transformations
that can accept graphs of models and relationships as input and produce these as output.

Contributions. This chapter makes the following contributions:

1. We define the set of megamodel collection operators which treat relationships between models
as first class entities:
• map – for applying a transformation to the elements of a megamodel;
• reduce – for aggregating the elements of a megamodel using a transformation; and
• filter – for extracting a subset of elements of a megamodel that satisfy a property.

2. We analyze the complexity of the operators and discuss their scalability.

3. We demonstrate the approach by using them to express several non-trivial megamodel man-
agement scenarios.

4. We report on an implementation of the operators.

Organization. The rest of this chapter is organized as follows: After fixing the terminology in
Section 4.1, we define the three collection operators for megamodels in Section 4.2. Section 4.3
illustrates these on four practical scenarios. Section 4.4 analyzes the complexity of the operators.
Section 4.5 describes tool support. We compare our approach with related work in Section 4.6 and
conclude in Section 4.7 with a summary of the chapter.

45

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

4.1 Traditional Megamodeling Operators

A number of model management operators have been defined, with match, merge, diff, and slice
among them. For the illustrations in this chapter, we require only one of them – a simple type
of megamodel merge that we call union. We define it in more detail below. The union operator
combines the content of a set of megamodels into a single megamodel in which elements that refer
to the same artifact are merged into a single element.

There are two possibilities for the set of input megamodels: (1) either they are an mgraph of
megamodels and megarels, or (2) they are a set of megarels that share the same endpoints. Figure 4.1
illustrates both cases. In case (1), the result is a megamodel while in case (2) it is a megarel with
the same endpoints as the inputs.

The union process can cause conflicts coming from the following two sources. If megamodel
elements refer to the same artifact but the names of these elements differ, it is not clear which
name to use for the merged element. To resolve this, we assume that the names in the union is
a combination of the original names. Another conflict occurs when different artifacts are referred
to by different elements using the same name. In this case, we assume that the names are made
distinct in the union. Both of these conflict scenarios are illustrated at the bottom of case (1) in
Figure 4.1. Both A and D refer to the same model and in the union the name A_D is used. However,
the element C in X2 refers to a different model than C in X3 and the latter is assigned the name C_1
in the union.

4.2 Megamodel Collection Operators

In this section, we define the set of megamodel collection operators we present in this chapter: map

– Section 4.2.1, reduce – Section 4.2.2 and filter – Section 4.2.3. Their signatures are map[T] :
P(M) → P(M), reduce[T] : M → M, and filter[P] : M → M, respectively, where T is the
set of model transformations, M is the set of megamodels, P is the set of model properties and
P is the powerset operator. All three are higher-order operators that accept a transformation or a
model property as a parameter (indicated in square brackets). We describe each operator as follows:
first the standard usage, then the special adaptation needed to handle megamodels and finally, the
behaviour defined as an algorithm.

4.2.1 Operator map

Standard Usage. The usual behaviour of a map operation is to traverse a collection (e.g., list,
tree, etc.) and apply a function to the value at each node in the collection. The result is a collection
with the same size and structure as the original with the function output value at each node. For
example, given the list of integers L = [10, 13, 4, 5] and the function Double that takes an integer
and doubles it, applying map with Double to L yields the list [20, 26, 8, 10]. If the function has more
than one argument, the mapped version can take a collection (with the same size and structure) for

46

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

B:CD

A:CD

C:CD

X1 XR

R1:CDrel

R2:CDrel

X2
1)

2)

X3

D:CD

A:CD C:CD

R3:CDrel

:union

B:CD

A_D:CD

C:CD
R1:CDrel

R2:CDrel

C_1:CD
R3:CDrel

XU

:union

X1

XR
X2

:unionXR1 XRU

X1
X2

XR

XU

Figure 4.1: An illustration of the union operator applied to (1) an mgraph of megamodels (meg-
amodel contents shown underneath), and (2) a set of megarels that share the same endpoints.

each argument, and the function is applied at a given node in the collection using the value at that
node in each argument in the collection.

Adaptation for Megamodels. Since a transformation input signature is an mgraph, applying it
to each node of a megamodel is not possible. Instead, the map operator for megamodels applies the
transformation for every possible binding of the input signature in the input megamodel(s). The
collection of outputs from these applications forms the output megamodel.

When the transformation signature consists of a single input and output type and uses a single
input megamodel which happens to be a set (i.e., no relationships) of instances of the input type,
then our map produces the same result as a standard map operator applied to a set. However,
in the general case, map is more complex and differs from the behaviour of the standard map. In
particular,

(1) The output megamodel may not have the same structure as the input megamodel since the
structure is dependent on the output signature of the transformation.

(2) The size of the output may not be equal to the size of the input. For example, if a trans-
formation FF takes two models as input and produces one as its output, applying map to it on a
megamodel with n models will produce as many as n × (n − 1) output models since each pair of
input models may be matched in a binding. At the other extreme, if no input models form a binding
then the output will be the empty megamodel.

47

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

a:CD

b:CD
CDMatch r:CDrel

Figure 4.2: Signature of the CDMatch transformation.

(3) When there are multiple input megamodels, each binding of the input signature is split across
the input megamodels in a user-definable way.

(4) When the transformation is commutative, we (may) want to avoid replication in the output
due to isomorphic bindings. For example, if the transformation FF is commutative, we will get each
output model twice since there are two ways to apply FF to a pair of models.

In what follows, we present an operator map for handling megamodels while avoiding the above
problems.

Definition. map[F]({Xe|e ∈ I}) applies a model transformation F with a signature 〈I,O〉 to a set
of input megamodels {Xe|e ∈ I}. Note that the megamodels Xe need not be distinct; thus multiple
input arguments can be taken from the same megamodel. map produces an output megamodel for
each element of the output signature O. The behaviour is defined by the algorithm in Figure 4.4.

We explain the algorithm using the illustration in Figure 4.3(1) of applying map to the CDMatch
transformation given in Figure 4.2. The input signature consists of {a : CD, b : CD} and the output
signature is {r(a, b) : CDrel}. The diagram at the top of Figure 4.3 shows map(CDMatch) applied to
megamodels X1 and X2 to produce an output megarel XR. Thus, the input megamodels are Xa := X1

and Xb := X2 and the one output, Yr, corresponding to the output signature element r, produces
the value for XR .

In line 1, the output megamodels are initialized to the empty megamodel. In our example,
Yr = ∅. Lines 2-5 iterate over all possible bindings of I in the input megamodels. In line 2, a fresh
binding (i.e., previously unmatched) for the input signature of F is found in the input megamodels.
Thus, in this example, a binding for a is drawn from X1 and a binding for b – from X2. Assume
this is K := {Ka := A,Kb := C}. Lines 3-4 check whether isomorphic bindings should be ignored
because F is commutative. Binding isomorphisms do not occur in this example, so we illustrate
them separately below. In line 5, the output of applying the transformation to the combined input
binding is added to the output megamodels. Thus, in our example, CDMatch is applied to K and
the resulting CDrel relationship R2 is added to Yr. Line 6 returns the resulting output.

In our example, there are only two matches; thus, the resulting megarel contains two relationships.
However, consider the alternative application of map to CDMatch shown in Figure 4.3(2). Here
both input elements are taken from the input megamodel X. Assume that X contains all three
models {A : CD, B : CD, C : CD}. In that case, there are six possible ways to match the input signature.
However, since CDMatch is designated as commutative, a binding {Ka := m,Kb := n} produces the
same output as {Ka := n,Kb := m}; thus, only three matches are used to produce the output.

48

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

A:CD

B:CD

C:CD

X1
XR:map[CDMatch]

R2:CDrel

R3:CDrel

:CDMatch

:CDMatch

X2 b

a
1)

X XR:map[CDMatch]a,b
2)

X1

X2

XR

Figure 4.3: 1) An illustration of applying map to the CDMatch transformation using two input
megamodels (megamodel content shown underneath); 2) using the same input megamodel for both
arguments.

Algorithm: Apply map
Input: transformation F with signature 〈I,O〉,

megamodels {Xe|e ∈ I}
Output: set of megamodels {Ye|e ∈ O}
1: for (e ∈ O) { let Ye := ∅ }
2: for (fresh binding K in {Xe|e ∈ I}) {
3: if F is commutative then
4: if isomorphism of K already done then continue;
5: for (e ∈ O) { add element e of F (K) to Ye } }
6: return {Ye|e ∈ O}

Figure 4.4: Algorithm defining behaviour of the map operator.

4.2.2 Operator reduce

Standard Usage. There are different variants of the reduce (also called fold, aggregate, etc.)
operator used in programming languages but it typically accepts a binary function F and applies
it over values x1, x2, . . . , xn in a recursive collection (e.g., list, tree, etc.) by accumulating the
intermediate values, e.g., F (xn, F (. . . , F (x3, F (x2, x1)). For example, applying reduce with the “+”
operator to the list [1, 3, 1, 9] produces the sum 14.

Adaptation for Megamodels. In a similar way, we expect the reduce operator to accept a
transformation F and use this to combine the elements of the input megamodel. Our approach is
to view F as a rewrite rule, by repeatedly applying F in-place and deleting the input elements until
it can no longer be applied. First, we must consider several issues:

(1) What should be the criteria that F must satisfy for this process to terminate?
(2) Since a megamodel is not a recursively defined structure and has no well-defined ordering

on its elements, we cannot rely on a specific traversal path. Thus, F must be confluent – the final

49

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

result of reduce should be same regardless of the order in which we apply F to the megamodel.
(3) Since the input elements may have relationships to other neighbouring elements in the meg-

amodel, we must be careful to preserve this information when the relationships are deleted.
We will address issues (1) and (2) in the definition of reduce below with appropriate assump-

tions on F . We address issue (3) by using relationship composition operators to construct new
relationships to neighbouring elements as needed. As an illustration, assume we are using reduce

with the CDMerge transformation (See Figure 2.12) to merge a megamodel of class diagrams and
CDRel relationships. Figure 4.6 shows one iteration of the reduction. In step ¶, CDMerge is applied
to an arbitrarily chosen pair of models (in this case, B and C) to produce a new class diagram BC.
In step ·, composition operators are invoked to connect BC to the neighbours of B and C. Finally,
in step ¸, the original models B and C are deleted together with all of their relationships.

Definition. We now define a new operator reduce[F](X) aimed to apply a transformation F to
reduce the content of a megamodel X. We begin by making the following assumptions:

(I) We assume availability of predefined relationship composition operators for all relationship
combinations we encounter, together with a library function getCompOp that provides such an op-
erator given a pair of relationship types.

(II) In order to achieve confluence, F is required to be commutative and associative with itself
and with all relationship composition operators used in item (I).

(III) In order for the reduction process to terminate, we put the constraint on F that it must
be strictly reducing in output types: for every model type in the input signature, there must be
fewer models of that type in the output signature; and, for relationship type in the input signature,
there must be fewer relationships of that type in the output signature that are connected to output
models on both (or all, for n-ary) ends.

Figure 4.5 gives the algorithm for defining the behaviour of reduce. In line 1, Y is initialized to
the same value as the input. Lines 2-9 iterate for each binding of F in Y until no more can be found
and the algorithm terminates returning Y (line 10). In the loop, for a given binding K (line 2), F is
first applied to get K ′ line 3. Then lines 4-9 perform the steps as described in Figure 4.6 to connect
the neighbours of input models in K to the output models in K ′ using composition operators and
then deleting the input models in K. For each output model m′ with a relationship r to an input
model m (line 4), and for each neighbour model m′′ of input model m with relationship r′ (line
5), a new relationship r′′ is constructed directly from m′′ to m′ by composing r′ and r (line 7).
The operator to compose a relationship of type(r′) with one of type(r) must be “looked up” using
getCompOp (line 6).

4.2.3 Operator filter

Standard Usage. Many languages provide a filtering operation to extract a portion of a collection
that satisfies some condition. For example, filtering the list [2, 5, 6, 8, 9, 1] using the property isEven

produces the list [2, 6, 8].

50

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Algorithm: Apply reduce
Input: transformation F with signature 〈I,O〉,

megamodel X
Output: megamodel Y
1: let Y := X
2: for (binding K in Y) {
3: apply F (K) generating output K ′;
4: for (m ∈ KMod,m

′ ∈ K ′Mod, r(m,m′) ∈ K ′Rel) {
5: for (m′′ ∈ YMod, r

′(m′′,m) ∈ YRel) {
6: let comp := getCompOp(type(r′), type(r));
7: let r′′(m′,m′′) := comp(r′, r);
8: add r′′ to Y }}
9: delete elements in K from Y }
10: return Y

Figure 4.5: Algorithm defining behaviour of the reduce operator.

A:CD

B:CD

C:CD

D:CD

f1:CDrel

f2:CDrel

f3:CDrel

:CDMerge BC:CD

fB:CDrel

fC:CDrel

f1B:CDrel

f3C:CDrel

;

;

1

2

2

A:CD

D:CD

BC:CD

f1B:CDrel

f3C:CDrel

3

Figure 4.6: An illustration of one iteration of reduce. First the merge is applied non-
deterministically (step 1). Then the relationships to the neighbours of the merged models are
computed using appropriate composition operators. Finally, all input elements are deleted.

Adaptation for Megamodels. The filter operator is similar and applies to megamodels. A
property is given as the filtering condition, and the subset of elements that satisfy the property is
used to produce the output. We distinguish between model and relationship properties and treat
them independently. Thus, a model property filters only models and keeps all relationships between
the remaining models. A relationship property filters only relationships and does not affect the
models.

filter differs from map and reduce in that it does not create new models or relationships; it
just creates new references to existing models and relationships. Thus, all elements of the output
megamodel refer to artifacts that are already referred to by elements of the input megamodel. This
aspect of filter makes it an inexpensive operation compared with map or reduce.

If a property P , defined for a model or relationship type T , is used for filter, then it selects all
elements of type T (or its compatible types) that satisfy the constraints in P (See Definition 12). It
is also possible to give a type T as the property which is interpreted as the property true, satisfied
by any instance of T (or its compatible types).

51

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Algorithm: Apply filter
Input: property P , megamodel X
Output: megamodel Y
1: let Y := ∅;
2: for (m ∈ XMod) {
3: if P is a model property then
4: if m |= P then add m to Y ;
5: else add m to Y }
6: for (r ∈ XRel) {
7: if P is a relationship property then
8: if r |= P then add r to Y ;
9: else if r.end ∩ Y 6= ∅ then add r to Y }
10: return Y ;

Figure 4.7: Algorithm defining behaviour of the filter operator.

Definition. filter[P](X) filters megamodel X to produce the least sub-megamodel of X containing
all the elements of X that satisfy property P .

The behaviour of filter is given by the algorithm in Figure 4.7. Line 1 initializes the output to
the empty megamodel. Lines 2-5, iterate over the model elements in X. If P is a model property
then the model is only added to the output if passes the satisfaction check (line 4). If P is not a
model property, all models are added to the output (line 5). A similar algorithm is followed in lines
6-9 that iterate over relationship elements. The only difference is that if P is not a relationship
property (and so it must be model property), only those relationships are added to the output that
already have their endpoints in the output due to the filtering in lines 2-5.

4.3 Application Scenarios

In this section, we illustrate our collection-based megamodel management operators using several
scenarios.

4.3.1 Experiment Driver

The goal of this scenario is to apply a transformation on a megamodel and perform some kind
of experiment on the result of its application. Specifically, given a megamodel XCD containing a
set of class diagrams, we wish to apply transformation CD2Java that translates a class diagram to
its equivalent Java code and produces a CD2JavaRel traceability relationship from the CD to the
Java code. Then, we wish to apply evaluation transformation ECheck on each CD2JavaRel in the
megarel resulting from the transformation application. ECheck computes the number of classes in
each transformed class diagram that do not have Java counterparts. Finally, we would like to sum
these up via a Sum operation to learn the total number of incidents where this occurs. If this is

52

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

XCD
XR	

:map(CD2Java)	

X1

:map(ECheck)	 X2

:reduce(Sum)	

X3

1

2

3

Figure 4.8: Experiment driver scenario illustration.

XCD :filter(PubA,)	 X1

:filter(NoPubA,)	 X2

:map(AddGet)	 X3

:union	 X4
2

1 3

4

Figure 4.9: Mass refactoring scenario illustration.

greater than zero, then we will identify a problem in the transformation. Figure 4.8 shows the chain
of operators required to accomplish this via the following steps:

(1) Apply map[CD2Java](XCD) to produce X1 which contains the Java code and XR which is the
megarel containing all relations between XCD and X1.

(2) Apply map[ECheck](XR) to produce megamodel X2 which contains the evaluation ECheck for
each rel in XR.

(3) Apply reduce[Sum](X2) to produce the final result X3 containing a single value which is the
sum of the results of map[ECheck](XR). A value is greater than zero indicates that there was a
problem in the transformation application.

4.3.2 Mass Refactoring

We are given a megamodel XCD that contains unrelated class diagrams, a property PubAtt that
represents models with public attributes and its negation NoPubAtt. We wish to find models sat-
isfying PubAtt and refactor them so that public attributes become private attributes with public
getter methods using refactoring transformation PubGet. Figure 4.9 illustrates this scenario via the
following steps:

(1) Apply filter[PubAtt](XCD) to produce a megamodel X1 containing the sub-megamodel of XCD
with models where property PubAtt holds.

(2) Apply filter[NoPubAtt](XCD) to produce a megamodel X2 containing the sub-megamodel of
XCD with models where property PubAtt does not hold.

(3) Apply map[AddGet](X1) to transform the models with the undesirable property using a refac-
toring transformation AddGet which produces a megamodel X3.

(4) Return a megamodel X4 = union(X2, X3) (see Section 4.1) which represents the refactored
version of the original s.t. the property PubAtt no longer holds on any of its models.

53

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

a:CD CD2ER	 b:ER

a1:CD b1:ER

CDrel2ERrel	

a2:CD b2:ER

1)

2)

CD2ERrel

r1: CD2ERrel

r2: CD2ERrel

ra:CDrel rb:ERrel

Figure 4.10: Illustration of transformation signatures for megamodel transformation scenario. (1)
Class Diagram (CD) to Entity Relationship (ER) transformation, (2) CD relation to ER relation
transformation.

XCD

X1
XER

:map(CD2ER)	

:map(CDrel2ERrel)	 XR2	

:union	

ra r1
2

1

3

r2

rb

XR1	

Figure 4.11: Megamodel transformation scenario illustration.

4.3.3 Megamodel Transformation

We are given an input megamodel XCD consisting of class diagrams (CDs) related by class diagram
relations (CDrels), and we wish to transform it to a megamodel XER consisting of ER diagrams
(ERs) related by ER diagram relations (ERrels). We are also given the transformations CD2ER and
CDrel2ERrel (See signatures in Figure 4.10) which transform CDs to ERs and CDrels to ERrels,
respectively. We would like to use our operators to accomplish this.

The steps to perform this transformation are illustrated in Figure 4.11 and involve the following
steps:

(1) Apply map[CD2ER](XCD) which based on its signature applies only to the (CDs) in XCD and
produces the megamodel X1 consisting of the ER versions of all the CDs in XCD as well as the meg-
amodel relation XR1.

(2) Apply map[CDrel2ERrel](XCD) which based on its signature applies only to the CDrels in
XCD and produces the megamodel relation XR2 consisting of a set of ERrels with endpoints in X1.
Note that the other arguments come from the megamoodel relation XR1 which contains the applica-
tions of the CD2ER transformation.

(3) Apply union(X1, R) to produce the final megamodel XER which contains the corresponding
ERs and the ERrels between them.

54

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

XCD

:filter(Mi)	 X1

:map(RemoveMi)	

X2

X4

1

2

:reduce(CDMerge)	

XR1	

:map(RemoveMiRel)	 XR2	

X3

:union	

3

4 5

Figure 4.12: Motivating example illustration.

4.3.4 Scenario from the Motivating Example

Recall the motivating scenario: given a megamodel XCD which contains class diagrams and an unde-
sirable property Mi that represents class diagrams with multiple inheritance, we aim to identify all
models that are of type class diagram and contain this property, refactor them using a predefined
transformation to remove the property, and merge the modified class diagrams. Figure 4.12 shows
the chain of operators required to accomplish this scenario:

(1) Apply filter[Mi](XCD)to produce a megamodel X1 containing the sub-megamodel of XCD with
models where property Mi holds.

(2) Based on the megamodel transformation pattern described in Scenario C: apply
map[RemoveMi](X1) to produce X2 which is the refactored version of X1 that no longer contains
the undesirable property, and (3) apply map[RemoveMiRel](XR1) to produce the megamodel XR2
containing the relations between the refactored models.

(4) Apply union(X2, XR2) to produce X3 which is the megamodel containing the refactored mod-
els and relations between them.

(5) Apply reduce[CDMerge](X3) which applies the CDMerge operation described in Section 4.2
on class diagrams with relation CDRel between them and produces a megamodel X4 where all the
related class diagrams are now combined. The final result can now be compared with the result of
merging the pre-refactored models which can be achieved by using reduce[CDMerge](XCD).

Although the scenarios we have presented address specific types of megamodels, transformations
and properties, they can be generalized as design patterns for similar reoccurring problems. For ex-
ample, the mass refactoring scenario can be generalized for any problem that involves a megamodel
which may contain elements with a certain property which should be removed. Similarly, the meg-
amodel transformation scenario can be generalized for any problem that involves a transformation
of one type of megamodel to another, given the appropriate transformations between source and
target models and source and target relations. We have observed that in the case of the megamodel
transformation pattern, the relation transformation can be induced from the model transformation;
however, further analysis is outside the scope of our work.

55

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

map[F]({X}) O(nk × CF (m))
reduce[F](X) O(n2 × CF (m))
filter[P](X) O(nq × CP (m))

Figure 4.13: Worst case complexity of the operators.

4.4 Analysis

In this section, we analyze the worst case complexity of the three operators presented – see the
summary in Figure 4.13 – and discuss the implications of this for scalability.

Complexity of map. For the algorithm in Figure 4.4, the iteration in line 2 over possible bindings
of input signature I can execute up to nk times, where n is the number of models input megamodels
and k, the number of models in I. If F is commutative with q isomorphisms of I, the loop can
execute (nk)/q times. Thus, the complexity is O(nk × CF (m)) where CF (m) is the complexity of
executing F in terms of a size metric m of the input binding to I. We assume that there is at most
one relationship of each type between any given set of models in input megamodels.

Complexity of reduce. Line 2 of the algorithm in Figure 4.5 iterates over all possible bindings
of input signature I, but each time, the input models and relationships are deleted. Thus, each
input element participates in at most one binding. Furthermore, due to the assumption that F is
strictly reducing, each iteration reduces the number of models and relationships. Thus, the number
of iterations is bounded by n, the number of models in X – as with map we assume there is at most
one relationship of each type between a given set of models. The internal loops lines 4-8 iterate once
for every neighbour of a model M in I and relationship of M to a model in O. This can iterate up
to rn times where r is the number of relationships between O and I. Since r is a constant for a
given F , the complexity is O(n2 × CF (m)).

Complexity of filter. For a property, the algorithm in Figure 4.7 iterates n times while for a
relationship property over a q-ary relationship, it iterates wnq times, where n is the number of
models in X and w is the number of q-ary relationship types. Since we assume w is a constant, the
complexity is O(nq×CP (m)) where CP (m) is the complexity of checking P in terms of a size metric
m of the input relation.

Discussion. The analysis results in Figure 4.13 show that the operators scale reasonably for certain
classes of application scenarios. Specifically, the complexity is no worse than quadratic (modulo the
transformation/property complexity) in the size of the input megamodel when map is applied to a
transformation with two or fewer input models, in all cases for reduce and when filter is applied
to either a model property or to a binary relationship property. Some scenarios exceed these limits
(e.g., scenario C in Section 4.3); we plan to address scalability issues in future work.

56

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 4.14: Type megamodel in MMINT used for the examples in this chapter.

4.5 Tool Support

4.5.1 Using MMINT

The megamodel collection operators described in this section have been implemented in the MMINT
tool described in Chapter 3.

Recall that MMINT uses a distinguished type megamodel in which model types, relationship
types and transformations are registered. Figure 4.14 shows a screenshot of the type megamodel
used to implement examples in this section. Here, boxes represent model types and links between
them are binary relationship types (thick blue arrows). The sub-typing between types is shown with
the hollow-headed arrows. Transformations are ovals connected to their input and output types with
named links (names are not shown to avoid clutter). The transformation signature information can
be extracted directly from this model. Additional metadata such as whether a transformation is
commutative or is a relationship composition relation is also stored in this model.

The runtime operation of MMINT is centred around a megamodel editor that allows an engineer
to interactively create models and relationships, invoke transformations on them and inspect the
results. Implementations for supporting tools such as type-specific editors, validation checkers,
solvers and custom transformation implementations can be plugged in and are managed by the type
support runtime layer. A generic relationship editor is built into the MMINT tool.

4.5.2 Implementation of Collection Operators

In MMINT , a megamodel is referred to as a MID (Model Interconnection Diagram). All transforma-
tions, including higher-order ones, are registered in the type megamodel. Thus, the three collection
megamodel operators in this chapter can be seen at the top of Figure 4.14 with their inputs and
outputs connected to the MID type indicating that they take megamodels as input and produce them
as output. In addition, each accepts a parameter (within the angle brackets). union can also be

57

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 4.15: Screenshot of megamodel for scenario B in Section 4.3 being built in the MMINT
megamodel editor.

seen as an unparameterized transformation. The type compatibility relation (see TypeComp from
Definition 7) is given by the subtype relation in the type megamodel.

Properties are implemented in MMINT as a model or relationship subtype that contains addi-
tional well-formedness constraints but does not change the metamodel of its supertype. For example,
the CDPublicAttributes type is used for scenario B in Section 4.3 and contains the following OCL
code:

CDPublicAttributes:

Attribute.allInstances()->exists(

attribute | attribute.public)

The algorithms in Figure 4.4, 4.5 and 4.7 for the three operators (and union) are implemented
in Java and plugged into the type support runtime layer as transformation definitions. At runtime,
when an engineer selects one or more MID elements and right-clicks to see what transformations are
available to apply, they see these operators and can select one to apply. If it is parameterized, then
a second dialog appears showing the choices for the parameter. For example, Figure 4.15 shows a
screenshot of scenario B in Section 4.3 being built in the megamodel editor. Currently, the engineer
is on step 3 and is invoking the map operator.

4.5.3 Experiments

The MMINT implementation was used to express each of the four scenarios described in Section 4.3.
Although these are “toy” experiments, they exercise the different aspects of the implementation. As
a preliminary robustness test of the implementation, we ran an additional experiment in which
we populated a megamodel with a varying number of class diagrams. The class diagrams were
generated to contain 5 distinct random classes, picked from a pool of 50 available classes. Thus,

58

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

CDs # rels time (sec) MID size (MB)
exp1 10 100 0.15 0.2
exp2 100 10000 12.92 20.7
exp3 250 62500 85.74 128.9
exp4 500 250000 422.78 518.7

Table 4.1: Experimental results running map[CDMatch]

many of the class diagrams share classes with the same name. We then measured the running time
of map[CDMatch], given that map is the most complex of the operators, and the memory size of its
output. The results are shown in Table 4.1.

Since CDMatch has two input models, the complexity formula in Figure 4.13 predicts quadratic
time in the number of models of the input megamodel. The results in Table 4.1 are consistent with
this prediction and additionally show that the space also increases quadratically. Although 422s
(∼7min) does not seem excessive to process 500 models, we plan to improve scalability further.

4.6 Related Work

Many model management approaches have been proposed. For example, Rondo [Melnik et al.(2003)]
represents models as directed labeled graphs and supports traditional model management operations
(e.g., match and merge) that work directly on models but not on the megamodels containing them.
Maudeling1 offers advanced query services; however, these are on the modeling artifacts themselves
and not on megamodels. Epsilon [Kolovos et al.(2015)] provides a set of domain specific languages
for specific model management operations such as match and merge; however, no special support is
provided for megamodels.

The Atlas Model Management Architecture (AMMA) [Bézivin et al.(2005a)] has a component
AM3 for expressing megamodels and an OCL-based scripting language MoScript for general model
management scripts including limited support for megamodel manipulation. Specifically, Mo-
Script [Kling et al.(2012)] provides support for map by using the OCL ApplyTo and Collect op-
erations and support for filter using the OCL Select operation; however, these versions of map and
filter are more limited than what we presented because MoScript does not treat relationships be-
tween models as first class citizens and the support for map and filter is limited to sets of models
rather than graph-like collections in megamodels. In addition, MoScript does not provide support
for the reduce operation. Despite these weaknesses, we see MDE workflow languages such as Mo-
Script, UniTI [Vanhooff et al.(2007)], and TraCo [Heidenreich et al.(2011)] as complementary to our
approach and believe they can benefit from incorporating our megamodel manipulation operations
into the language. We leave the investigation of such integration for future work.

Model search engines such as MOOGLE [Lucrédio et al.(2008)] or IncQuery [Ujhelyi et al.(2015)]
1Maudeling:http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Maudeling

59

Maudeling: http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Maudeling

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

perform queries of model contents. Our filter operation does not limit which languages or engines
can be used for defining model and relationship properties. Thus, model search engines are comple-
mentary to our approach.

Graph-based languages and frameworks that provide collection-based operations on graphs have
been proposed. The map and fold (i.e., reduce) algorithms in [Erwig(1997)] generalize the classic
list-based versions of these to graphs but the assumptions made by these algorithms make them inap-
plicable to the megamodel case. Specifically, the map algorithm does not allow for a “graph” of input
arguments to the transformation as map does with transformation input signatures, and the fold
algorithm only aggregates values on nodes and edges rather than collapsing the graph structure itself
as reduce does. The MapReduce approaches of Google and others [Dean and Ghemawat(2008)] are
intended for the efficient processing of big data; yet these operate differently from the map and
reduce functions found in many programming languages [Lämmel(2008)].

4.7 Chapter Summary

In this chapter, we presented three new megamodel collection operators: map, reduce, and filter.
These operators are inspired by similar collection manipulation operators found in many program-
ming languages, but are adapted to address the special characteristics of megamodels and MDE
environments. Specifically, the operators treat model relationships as first class entities and address
the graph-like structure of megamodels and of the signatures for model transformations.

60

Chapter 5

Heterogeneous Megamodel Slicing

Slicing is a widely used technique for supporting comprehension and assessing change impact during
software evolution activities. While there has been substantial research into the slicing of particular
model types, model-based software development typically involves heterogeneous collections of re-
lated models and there is little work addressing slicing in this context. In this chapter, we propose
a generic slicing approach for megamodels. Our approach exploits existing model slicers for par-
ticular model types as well as the traceability relationships between models to address the broader
heterogeneous model slicing problem. We illustrate our approach on an example of evolution in
model-based automotive software development using the PSD system.

Content in this chapter was published in [Salay et al.(2016)], where I contributed to defining the
megamodel slicing algorithm and applying it on a worked out example, as well as surveying the
literature for related work.

Introduction

Slicing is a widely used technique for supporting software evolution activities [Li et al.(2013)]. Specif-
ically, static slicing [Weiser(1981)] can identify the subset of software that is semantically depen-
dent on a specific portion that has or is planned to be changed and hence is useful for assessing
change impact due to evolution. In the MDE context, model slicing has been studied for par-
ticular model types, e.g., State Machines [Korel et al.(2003), Lano and Rahimi(2010)], Class Dia-
grams [Kagdi et al.(2005), Lano and Rahimi(2010)], etc. However, large-scale software systems are
often described using heterogeneous collections of interrelated models, and change impact analysis
requires a broader slicing approach that can address this.

While some work has addressed slicing for heterogeneous model collections, these have been
limited to a specific set of model types (e.g., [Nejati et al.(2012)]) or remain at a theoretical level
(e.g., [Clark(2011)]).

61

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Contributions. In this chapter, we present a general and pragmatic static slicing algorithm for
heterogeneous model collections. Specifically, (1) it operates on “megamodels” – a general model-
ing technique to represent collections of interrelated models; (2) it can work with arbitrary model
types (e.g., conceptual, behavioural, goal models, test models, etc.) by utilizing their corresponding
type-specific model slicers; and (3) it uses the widely adopted notion of traceability relations to
assess change impact between models. We then analyze the proposed algorithm for termination,
correctness, running time and minimality.

Organization. The remainder of this chapter is structured as follows. In Section 5.1, we give a
motivating example. In Section 5.2, we describe the proposed slicing algorithm and its analysis.
Then, in Section 5.4, we give a detailed illustration of the algorithm on the PSD example. In
Section 5.5, we discuss related work and finally, in Section 5.6, we give a chapter summary.

5.1 Motivating Example

Consider that the power sliding door system introduced in Section 2.1 changes and the redundant
switch is removed. This could be due to the need to minimize cost and produce a cheaper vehicle.
In the new system, only the AC ECU checks the vehicle speed before commanding Actuator. In this
case, it would be desirable to provide a sliced megamodel of the system that reflects the parts of the
original megamodel affected by this change in order to help with system evolution activities. For
example, we show in Chapter 7, that with safety-critical software, such as for automotive systems,
a system megamodel slice is an essential part of re-assessing the safety assurance of the system. We
demonstrate our slicing approach on the PSD example in Section 5.4.

5.2 Megamodel Slicing

In this section, we present a slicing approach for heterogeneous megamodels. Intuitively, such a
slicer should allow the criterion to be expressed as a megamodel fragment and the forward slice
should expand this to the megamodel fragment containing all dependent elements. We generalize
Definition 17 to capture this intuition.

Definition 18 (Static forward megamodel slice) Given a megamodel X and megamodel frag-
ment S[X], the static forward slice of X with respect to slicing criterion S[X] is the megamodel
fragment S′[X] satisfying the following conditions for all M ∈ X:

1. (Correctness) There exists a model fragment S′[M] ∈ S′[X] that contains all atoms of M that
are directly or indirectly dependent on the atoms of any model fragment in S[X].

2. (Minimality) If there exists a model fragment S′[M] ∈ S′[X], then every atom of S′[M] is
either directly or indirectly dependent on the atoms of some model fragment in S[X].

62

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

There are two levels of expansion in this slicing process: (1) expansion within individual models
to dependent elements and, (2) expansion between models across relationships to dependent elements
in neighbouring models. This two-level process is repeated until it produces no further expansion.
For (1), we leverage existing type-specific slicers that take the semantics of the individual model
types into account. For (2), we use the links in traceability relationships to connect dependent
elements. Here, no special relationship-type specific slicers are needed since all relationship types
are assumed to be sets of links and every link is assumed to represent a dependency.

Note that this definition of slicing is a deep slicing since the process includes the content of
the models and relationships referenced by the elements of the megamodel. In contrast, a shallow
megamodel slicing would be one that only considered the elements of the megamodel and not what
they reference. Here, a subset of a megamodel (the criterion) is expanded to the subset that is
connected directly or indirectly via relationship links (the slice), i.e., the shallow slice is the largest
subset contained in the transitive closure of the initial subset taken along relationship links. There
may be some use cases in which shallow megamodel slicing is useful but in this chapter we focus on
the deep version.

5.2.1 Slicing algorithm

Figure 5.1 gives the algorithm for forward slice. The input is megamodelX with megamodel fragment
Sc[X] given as the slicing criterion. The output is megamodel fragment S[X] representing the forward
slice. The algorithm makes the following assumptions:

Assumption 1 For each model type T represented in X, we have a slicer SliceT for models of
type T that satisfies Definition 17.

Assumption 2 The set of traceability relationships in X express all and only the direct dependencies
between atoms of models in X.

In addition, we require several simple supporting operations.

Definition 19 (Union) Given a pair of megamodel fragments S1[X], S2[X], the megamodel
fragment union, denoted Union(S1[X], S2[X]), is defined with the following condition.

∀S[M] ∈ Union(S1[X], S2[X])·

S[M] = ∪{S′[M]|S′[M] ∈ S1[X] ∪ S2[X]}

Thus, the Union(S1[X], S2[X]) can be constructed by first taking the set union S1[X] ∪ S2[X]

and then unioning all model fragments of the same model within this.

Definition 20 (Trace) Given a traceability relationship R with ends M and M ′, and model fragment
S[M], the trace of S[M] along R, denoted Trace(R,S[M]) is the model fragment S′[M ′] consisting
of the subset of atoms in M ′ dependent on the atoms in M according to R.

63

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

We compute Trace(R,S[M]) by following the links of R from the atoms of M to the atoms of
M ′.

Definition 21 (OppEnd) Given a traceability relationship R with ends M and M ′, we define
OppEnd(R,M) = M ′ and OppEnd(R,M ′) = M .

In line 1 of the algorithm, the current slice is initialized to the criterion. The two levels of
expansion are in lines 4-9 and lines 10-17, respectively, inside the main loop of lines 2-19. For level
1, the temporary result S1[X] is initialized in line 3 to the empty set and then lines 5-9 iterate
through the model fragments in the current slice. In line 7, the model type-specific slice is computed
using the model fragment as the criterion and the result is accumulated in S1[X] (line 8).

The level 2 expansion temporary result S2[X] initialized on line 10. The outer iteration (lines
11-17) is over the model fragments from the level 1 expansion, and the inner iteration (lines 12-
16) is over each relationship connected to the model fragment. Note that the set of relationships
connected to a model fragment S1[M] is the set of relationships connected to M via the end property
(see Figure 2.8). For each such relationship R, we first determine the model M ′ on the other end of
the relationship using supporting function OppEnd in line 13. Then in line 14, the model fragment
S2[M

′] is produced by tracing the links in R from S1[M] to M ′. Finally, in line 15, this result is
accumulated in S2[X].

After the two levels of expansion, the combined result is computed in line 18 and checked to
see if any actual expansion has occurred (line 19). If no expansion has occurred, a fixed point has
been reached and the main loop exits with the current slice returned as the final result in line 20;
otherwise, the main loop repeats.

5.2.2 Analysis

We consider the issues of termination, complexity and correctness for forward slice algorithm in
Figure 5.1.
Termination. We show that the slicing algorithm is guaranteed to terminate. After the level 1
expansion loop completes (lines 5-9), it is clear that S′[X] v S1[X] since S1[X] is constructed by ex-
panding each model fragment in the current slice S[X] using type-specific slicers (see Assumption 1)
and doing Union (see Definition 19). Furthermore, S′[X] = S[X] (line 3). Then, in line 18, when the
new slice is computed, S1[X] v S[X] since Union cannot produce a result smaller than its arguments.
Therefore, S′[X] v S[X]. Thus, on line 19, either no expansion has occurred (S[X] v S′[X]) and
the algorithm terminates or some expansion has occurred and the loop iterates again. Thus, in each
iteration, the current slice can only get larger and since this process is bounded by X, the algorithm
must terminate.

Time Complexity. The level 1 loop (lines 5-9) can iterate NM times and the level 2 loop (lines
11-17) can iterate N2

M times where NM is the number of models in X. The dominating operation
in the level 1 loop is the type-specific slicer. Since the time complexity varies according to the slicer

64

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Algorithm: Forward Megamodel Slice
Input: megamodel X, criterion megamodel fragment Sc[X]
Output: slice megamodel fragment S[X]
1: S[X] := Sc[X]
2: do {
3: S′[X] := S[X]
4: S1[X] := ∅
5: for (S[M] ∈ S[X]) {
6: T := M.type
7: S1[M] := SliceT (M,S[M])
8: S1[X] := Union(S1[X], {S1[M]})
9: }
10: S2[X] := ∅
11: for (S1[M] ∈ S1[X]) {
12: for (R ∈M.end) {
13: M ′ := OppEnd(R,M)
14: S2[M

′] := Trace(R,S1[M])
15: S2[X] := Union(S2[X], {S2[M

′]})
16: }
17: }
18: S[X] := Union(S1[X], S2[X])
19: } until (S[X] v S′[X])
20: return S[X]

Figure 5.1: Algorithm for forward megamodel slice.

used, we represent it using a type-independent upper bound SL(n) as a function of the number of
elements n in the input model. Tracing along a relationship and union (lines 14-15) is O(Na) in the
worst case, where Na is the total number of atoms across all models of X. Thus, in the worst case,
one iteration of the main loop is O(NM × SL(Na) +N2

M ×Na). Finally, in the worst case, the size
of the current slice can increase by one in each iteration of the main loop, for Na iterations. Thus,
the time complexity is given by:

O(Na ×NM × SL(Na) +N2
M ×N2

a)

Correctness. We argue that the slicing algorithm satisfies the correctness condition in Definition 18.
Assume that the algorithm is at line 3 and there exists a non-empty set of atoms not in the current
slice S[X] that are dependent on atoms of model fragments in S[X]. Note that if some atom a is
indirectly dependent on an atom a′, then there must be a sequence of directly dependent atoms
a, a1, ..., an, a

′ connecting them. Thus, there must also be a non-empty set of atoms not in S[X]

that are directly dependent on atoms of model fragments in S[X]. Let us choose one such atom a′

in some model M ′ in X that is directly dependent on an atom a in some model fragment S[M] in
S[X]. We consider the two cases: M ′ = M and M ′ 6= M .

65

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Case 1). If M ′ = M , then by Assumption 1, the slicer used in line 7 satisfies the correctness
condition in Definition 17 and thus, atom a′ will be added to a model fragment in S1[X] in an
iteration of the level 1 loop (lines 5-9).

Case 2). If M ′ 6= M , then by Assumption 2, there is a traceability relationship R in X with a
link that connects a to a′ and thus, line 14 will cause a′ to be added to a model fragment in S2[X]

in an iteration of the level 2 loop (lines 11-17).
In either case, the atom a′ will enter the next iteration of the slice in line 18. Furthermore, since

the addition of a′ expands the slice, the main loop will iterate again and will capture the next set
of directly dependent atoms, and so on. When the set of directly dependent atoms not in S[X] is
empty, no further level 1 or level 2 expansion is possible, and the algorithm terminates.

Minimality. We show that the slicing algorithm satisfies the minimality condition in Definition 18.
To do this, we must show that the slice produced by the algorithm contains no atom that is not
dependent on the criterion. Assume that there is an atom a′ in the final slice that is not dependent on
the criterion. In this case, a′ must have been added to the slice on line 7 or line 14 in some iteration
of the main loop. However, by Assumption 1 and Definition 17, SliceT can only produce minimal
model slices in line 7 and so a′ could not have been added there. Also, by Assumption 2, traceability
relationships only contain links between true dependencies and in line 14, Trace is applied from the
current slice to these dependent atoms. Thus, a′ could not have been added at line 14. Therefore,
we have a contradiction and so the megamodel slice must be minimal.

5.2.3 Discussion

Well-formedness and referential integrity. Definition 17 does not require that a slice be a well-
formed model. However, in practice, ensuring that a slice is well-formed may be desirable because
the slice can be used directly by tools such as editors, analyzers and transformations. Making
a model fragment into a well-formed model requires it to be expanded by a minimum number of
atoms in order to satisfy the well-formedness constraints. For example, if a CD fragment contains an
association without one of its endpoints, adding the missing endpoint class will make it well-formed.

The problem with doing this expansion is that atoms can be added that are not dependent on
the criterion since, if they were dependent, then they would already be in the slice. In particular,
if SliceT used in line 7 of the slicing algorithm always included an expansion to well-formedness
then in the subsequent steps of the algorithm the atoms added for well-formedness would be treated
as though they were atoms added for dependency. This would result in a non-minimal megamodel
slice. As a result, we view the expansion to well-formedness as an optional post-processing step that
could be applied after the megamodel slice is computed.

A similar argument can be made about the issue of referential integrity. Assume that one atom
references another, e.g., a lifeline in a sequence diagram references the class of the object that the
lifeline represents. The referenced class is not dependent on the referencing lifeline; thus, if the
forward slice includes the lifeline, it need not contain the class. However, it may be desirable to

66

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

expand the slice to include the class to provide relevant contextual information for the lifeline. As
with well-formedness, this referential integrity expansion can introduce atoms that are not dependent
on the criterion and thus such an expansion should only be done as a post-processing step on the
slice.

Generalizing the slicing algorithm. In Section 2.3, we made several simplifying assumptions
in order to focus on the core aspects of the slicing algorithm. We now briefly discuss how to relax
these assumptions.
• N-ary Relationships. We have assumed that all relationships in the megamodel are binary

but it is straightforward to extend the algorithm to handle N-ary relationships. Specifically, the
iteration through the relationships (lines 12-16) must be generalized to handle the case where a
traceability link holds between atoms in models on multiple ends, and the supporting operations
OppEnd and Trace must be adapted to address this.
• Nested megamodels. In the general case, a megamodel can contain other megamodels. Such

a megamodel could be viewed as a tree with models as leaves and nested megamodels as intermediate
nodes. A megamodel fragment is a tree with the same structure but with model fragments as leaves.
Thus, the algorithm follows a similar approach as currently but in addition it must preserve the
megamodel tree structure in the final slice.
• Arbitrary relationships. We have assumed that all relationships are traceability relation-

ships since these are the only ones that matter to the slicing algorithm. In general, however, there
may be other types of relationships in the megamodel, e.g., refinement, overlap, etc. The simplest
way to allow these relationship types is to ignore all non-traceability relationships in the loop in
lines 12-16.

5.3 Megamodel Slicing with Collection-Based Operators

So far, we have proposed a generic megamodel slicing approach and gave the algorithm using tra-
ditional pseudo code. Here, we show how to re-implement the algorithm using collection operators
from Chapter 4.

Figure 5.2(a) gives the general signature of a polymorphic model Slice operator, where sc is the
criterion expressed as a submodel of model m. The output slice sl is another submodel of m. In
this context, we use the unary relationship type Sub for expressing submodels of a model. A Sub

relationship connected to a model m contains a set of links, each of which connects to an element
of m; thus, it identifies a subset of elements in m. The definition of dependent on clearly varies
according to the model type; thus, Slice is a natural example of ad hoc polymorphism.

For megamodel slicing, we assume that a sub-megamodel is any set of submodels from a subset of
models in the megamodel. For example, Figure 5.3(a) shows a megamodel and Figure 5.3(b) – a sub-
megamodel consisting of submodels shown by the shaded ovals. The original megamodel is depicted
using dashed lines for clarity but the sub-megamodel consists only of the submodels. Similarly to

67

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

m1:Model

s1:Sub Trace s2:Sub

m2:Modelr:Rel

m:Model

sc:Sub Slice sl:Sub

a)

b)

m:Model

s1:Sub
SubMerge s12:Sub

s2:Sub

c)

Figure 5.2: Signature of polymorphic operators required in the megamodel slicing scenario: (a) Slice;
(b) Trace; and (c) SubMerge.

D:SM

A:CD

E:SM

B:CD

F:SM

C:CD

G:DD

D:SM

A:CD

E:SM

B:CD

F:SM

C:CD

G:DD

a)

b)

Figure 5.3: (a) An example megamodel and (b) its sub-megamodel.

submodels, we represent a sub-megamodel of a megamodel X as a unary megaRel connected to X

and consisting of a set of Sub relationships connected to the models within X.
To slice a megamodel, it is not sufficient to just map polymorphic Slice over all models in the

megamodel because we must take into account the fact that there may be inter-model dependencies
across the relationships that connect models. To address these, we assume that we have a polymor-
phic Trace transformation with signature as shown in Figure 5.2(b) that takes a submodel of model
m1 and propagates it to the dependent submodel of model m2 across the connecting relationship r.
Finally, because using Slice and Trace can produce multiple submodels for the same model (i.e., one
from Slice and zero or more from propagating using Trace for each neighbouring model), we also as-
sume that we have a polymorphic submodel merge operation to combine the submodels into a single
submodel – this is provided by the SubMerge transformation with the signature in Figure 5.2(c).

Figure 5.4 shows the core steps of the megamodel slicing operation. The slice sub-megamodel of
a megamodel X is obtained by repeating the following four steps starting with XSin as the criterion
sub-megamodel and then assigning XSin:=XSout until there is no further change (i.e. a fixed point

68

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

X
XSin :map[Slice]

XS1

:map[Trace]

r s1
:union

XS2

XSout

XS3

:reduce[SubMerge]

1

2

4

3

Figure 5.4: Illustration of the megamodel slice scenario.

Rule Element under assessment Dependant elements

CD1 Class

-Owned attributes and methods.
-Associations connected to class.
-Attributes/methods in other classes
using types introduced in this class.
-Subclasses.

SD1 Term (portion of an expression) -Associated expression.
SD2 Expression (guard/action) -Associated message.
SD3 Message -Associated arrow (from source to target lifeline).

SD4 Arrow
-Arrows directly after the arrow in the sequence.
-Message on the arrow.

SD5 Lifeline
-Arrows connected to the lifeline.
-Messages on arrows connected to the lifeline.

Table 5.1: Dependency relations for CD and SD slicers.

is reached):
(1) Apply map[Slice](XSin) using the submodels in sub-megamodel XSin as the criterion to

produce sub-megamodel XS1 containing the slice submodels.
(2) Apply map[Trace](XS1,X) to propagate the slice submodels in XS1 to corresponding sub-

models in neighbouring models to produce sub-megamodel XS2. Note that the r argument of Trace

is taken from X while the s1 argument is taken from XS1.
(3) Apply union(XS1,XS2) to combine the megamodels from steps (1) and (2) to produce XS3.
(4) Apply reduce[SubMerge](XS3) to merge the multiple submodels of each model of X into a

single submodel for each model. The result is a sub-megamodel XSout.

5.4 PSD Example

In this section, we demonstrate our slicing approach on the PSD example presented in Section 5.1.

5.4.1 Megamodels of class and sequence diagrams

For the purpose of the example presented here, we instantiate our general framework such that
its input is a system megamodel X given by a class diagram CD, a sequence diagram SD, and a

69

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

relationship CD− SD between them. Note that, although these are both UML diagrams, we are
treating them separately for the sake of this example. In general, not all models in a megamodel
have to be UML diagrams.

Assume we are given some known change on the megamodel, which represents the slicing crite-
rion Sc[X] used as input to our algorithm. As stated in Section 5.2, we also assume that we are
provided with correct class diagram and sequence diagram model slicers similar to those presented
in [Lano and Rahimi(2010)] and [Noda et al.(2009)], respectively.

For simplicity, we define our own CD and SD slicers for this example as follows:
• CD slicer works with the dependency rule shown as CD1 in Table 5.1: If a class is being

considered for impact assessment, then all of its attributes, methods, associations linked to it and
its subclasses are considered dependant on it and could potentially be impacted. They are therefore
to be added in the slice.
• SD slicer works with the dependency rules shown as SD1− SD5 in Table 5.1: If a term, i.e.,

any portion of an expression (e.g., a guard or an action) in a message, is being considered for impact
assessment, then its associated expression could be impacted. Similarly, if an expression (e.g., a
guard or an action) is being considered, its associated message should be included in the slice.
Other rules for impact assessment of messages, arrows and lifelines are shown in the table.

Note that both slicers satisfy Definition 17, i.e., they are correct and minimal. We also assume
that the set of traceability relationships in CD− SD expresses all and only the dependencies between
the CD and SD in our system megamodel.

5.4.2 Slicing of PSD megamodel

Recall the PSD megamodel presented in Figure 2.9 which we refer to as PSD. The models represented
by PSD are in Figs. 2.2 and 2.3.

There are three threads running in parallel in the sequence diagram: the top thread describes
the behaviour of the Redundant Switch; the middle thread describes the behaviour when the driver
requests to open the door, and the bottom thread describes the behaviour when the driver requests
to close the door. The relationship R : CD− SD is a unidirectional traceability relationship that goes
from SD to CD, since the objects and terms of SD are dependent on classes, attributes and methods
in CD. The traceability between the two models is given implicitly by the SD referencing parts of
the CD.

As described in Section 5.1, let us consider a scenario where the system changes, and the re-
dundancy is removed by deleting the Redundant Switch class from the CD. This change represents
our slicing criterion given by the megamodel fragment with detail shown in Figure 5.5. Note that
only the class itself is considered for the impact assessment and not its methods, attributes and
associations linked to it.

We now demonstrate the application of the forward megamodel slice algorithm presented in
Figure 5.1 on the megamodel PSD and the criterion megamodel fragment Sc[PSD].

70

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Driver	Switch	 VS	ECU	

AC	ECU	 Actuator	 Door	

requestDoorOpen()
requestDoorClose()

open:Boolean requestSpeed()
sensed_speed: Real

Redundant	Switch	
request Speed()
closed: Boolean
sensed_speed: Real

getSpeed(sensed_speed)
sensed_speed: Real

openDoor()
closeDoor()
powered: Boolean
activated: Boolean

powers controls

communicatesWith communicatesWith

communicatesWith

controls

vs_ecu:VS	ECU	 ac_ecu:AC	ECU	 a:Actuator	 ds:Driver	Switch	 s:Redundant	Switch	

ds.requestDoorOpen()
ac_ecu.requestSpeed()

ac_ecu.sensed_speed

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor()

ds.requestDoorClose()

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor()

s.requestSpeed()

[if s.sensed_speed<=15] s.closed else s.open

ac_ecu.requestSpeed()

ac_ecu.sensed_speed

par

R:CD-SD

PowerSlidingDoor: CD

PowerSlidingDoor: SD

Figure 5.5: Slicing criterion Sc[PSD].

Driver	Switch	 VS	ECU	

AC	ECU	 Actuator	 Door	

requestDoorOpen()
requestDoorClose()

open:Boolean requestSpeed()
sensed_speed: Real

Redundant	Switch	
request Speed()
closed: Boolean
sensed_speed: Real

getSpeed(sensed_speed)
sensed_speed: Real

openDoor()
closeDoor()
powered: Boolean
activated: Boolean

powers controls

communicatesWith communicatesWith

communicatesWith

controls

vs_ecu:VS	ECU	 ac_ecu:AC	ECU	 a:Actuator	 ds:Driver	Switch	 s:Redundant	Switch	

ds.requestDoorOpen()
ac_ecu.requestSpeed()

ac_ecu.sensed_speed

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor()

ds.requestDoorClose()

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor()

s.requestSpeed()

[if s.sensed_speed<=15] s.closed else s.open

ac_ecu.requestSpeed()

ac_ecu.sensed_speed

par

R:CD-SD

PowerSlidingDoor: CD

PowerSlidingDoor: SD

Figure 5.6: Result of level 1 slicing in 1st iteration.

Line 1 (Initialization): The current slice is initialized to the criterion Sc[PSD] shown as the
highlighted parts of Figure 5.5.

1st iteration of the outer loop (lines 2-19):

Lines 4-9 (Expansion Level 1): The temporary result S1[PSD] is initialized to the empty set.
Then in lines 5-9, we iterate through the model fragments in the current slice shown in Figure 5.5.
The CD is considered first and the CD slicer is used. Based on the dependency rule CD1 in
Table 5.1, since the Redundant Switch class is being impacted, all of its attributes and methods are
added to the slice and stored in S1[PSD] on line 8. Since there are no other model fragments to
consider on line 5, the loop exits with S1[PSD] as shown by the highlighted parts in Figure 5.6.
Lines 10-17 (Expansion Level 2): Up to this point, R : CD− SD has not been considered in
the slicing. In this expansion level, we do use it. First, the level 2 expansion temporary result
S2[PSD] is initialized on line 10 to the empty set. The outer iteration (lines 11-17) is over the
model fragments from the level 1 expansion. We first consider the CD. On the opposite end of

71

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Driver	Switch	 VS	ECU	

AC	ECU	 Actuator	 Door	

requestDoorOpen()
requestDoorClose()

open:Boolean requestSpeed()
sensed_speed: Real

Redundant	Switch	
request Speed()
closed: Boolean
sensed_speed: Real

getSpeed(sensed_speed)
sensed_speed: Real

openDoor()
closeDoor()
powered: Boolean
activated: Boolean

powers controls

communicatesWith communicatesWith

communicatesWith

controls

vs_ecu:VS	ECU	 ac_ecu:AC	ECU	 a:Actuator	 ds:Driver	Switch	 s:Redundant	Switch	

ds.requestDoorOpen()
ac_ecu.requestSpeed()

ac_ecu.sensed_speed

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor()

ds.requestDoorClose()

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor()

s.requestSpeed()

[if s.sensed_speed<=15] s.closed else s.open

ac_ecu.requestSpeed()

ac_ecu.sensed_speed

par

R:CD-SD

PowerSlidingDoor: CD

PowerSlidingDoor: SD

Figure 5.7: Result of the 1st iteration.

R : CD− SD is the PowerSlidingDoor : SD (which is M ′ in the algorithm on line 13). On line 14,
we trace through R : CD− SD and add to S2[M

′] all the atoms related to those highlighted in the
CD. This includes the Redundant Switch object and lifeline and all messages (or parts of them)
that are traced back to attributes/methods of the Redundant Switch class in the CD. The result
is added to S2[PSD] on line 15 and can be seen in the highlighted parts of the SD in Figure 5.7.
Since no other model fragments exist in S1[PSD] on line 11, the loop exits.

Line 18: The combined result S[PSD] is computed by computing the union of the results of the
level 1 and level 2 slices, and can be seen as the result of the 1st iteration of the algorithm in the
highlighted parts of Figure 5.7.
Line 19: In this line, we check to see if any actual expansion has occurred. Since the condition is
not met (i.e., the result of the 1st iteration did indeed expand on the initial criterion) we iterate
one more time.

2nd iteration of the outer loop (lines 2-19):
The slicing criterion S[PSD] in this iteration is the result of the previous iteration shown in Fig-
ure 5.7. S1[PSD] is reset again to the empty set.

Lines 4-9 (Expansion Level 1): First the CD is selected on line 5. Since none of the slicing
dependency rules given in Table 5.1 apply, nothing is added to S1[PSD] on line 8. Next, the SD is
selected on line 5. Now, SD1− SD3 rules for the SD slicer in Table 5.1 apply, and the SD slice is
expanded to include the arrows of the top two messages and the entire expressions (and therefore
messages and arrows) that the term s.closed appears in. This is seen in the highlighted parts of
the SD portion of Figure 5.8.

Lines 10-17 (Expansion Level 2): In this level, tracing across the R : CD− SD relationship from
the CD to the SD (recall this is a unidirectional traceability relationship), since no new elements

72

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Driver	Switch	 VS	ECU	

AC	ECU	 Actuator	 Door	

requestDoorOpen()
requestDoorClose()

open:Boolean requestSpeed()
sensed_speed: Real

Redundant	Switch	
request Speed()
closed: Boolean
sensed_speed: Real

getSpeed(sensed_speed)
sensed_speed: Real

openDoor()
closeDoor()
powered: Boolean
activated: Boolean

powers controls

communicatesWith communicatesWith

communicatesWith

controls

vs_ecu:VS	ECU	 ac_ecu:AC	ECU	 a:Actuator	 ds:Driver	Switch	 s:Redundant	Switch	

ds.requestDoorOpen()
ac_ecu.requestSpeed()

ac_ecu.sensed_speed

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor()

ds.requestDoorClose()

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor()

s.requestSpeed()

[if s.sensed_speed<=15] s.closed else s.open

ac_ecu.requestSpeed()

ac_ecu.sensed_speed

par

R:CD-SD

PowerSlidingDoor: CD

PowerSlidingDoor: SD

Figure 5.8: Result of 2nd iteration.

are introduced in the CD slice, nothing is traced to them in the SD. The result is an empty set.

Line 18: The results of the level 1 and the level 2 expansions are unioned and are reflected in the
highlighted parts of Figure 5.8.

Line 19: Since an expansion (w.r.t. the initial slice for this iteration) has occurred, the condition
does not hold, and we iterate one more time on the outer loop.

3rd iteration of the outer loop (lines 2-19):
In this iteration, neither the CD nor the SD are expanded in the first level expansion as none of
the dependency rules for their respective slicers holds. Similarly, no new elements are added, and
therefore going through the trace links does not identify any other elements to be added to the
expansion in level 2. The condition on line 19 now holds (no expansion has occurred), and the
main loop of the algorithm exits.

Line 20 (Return): The current slice, S[PSD], which is shown in the highlighted parts of Figure 5.8,
is returned as the final result of the algorithm.

5.4.3 Post-processing

As suggested in Section 5.2, we perform a post-processing step, we expand the result of slicing algo-
rithm shown in Figure 5.8 to ensure the model fragments are well-formed and contextual information
for referential integrity is included.

For the CD, the VS ECU and Actuator classes are included since both endpoints of associations
communicatesWith and controls are needed for well-formedness.

For the SD, the VS ECU, AC ECU and Actuator objects and their lifelines are included to satisfy
the well-formedness constraint of arrows requiring their lifelines. Also, the execution bar on the
leftmost lifeline is included, as both of its input and output arrows are included in the result of the
slicing.

73

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Driver	Switch	 VS	ECU	

AC	ECU	 Actuator	 Door	

requestDoorOpen()
requestDoorClose()

open:Boolean requestSpeed()
sensed_speed: Real

Redundant	Switch	
request Speed()
closed: Boolean
sensed_speed: Real

getSpeed(sensed_speed)
sensed_speed: Real

openDoor()
closeDoor()
powered: Boolean
activated: Boolean

powers controls

communicatesWith communicatesWith

communicatesWith

controls

vs_ecu:VS	ECU	 ac_ecu:AC	ECU	 a:Actuator	 ds:Driver	Switch	 s:Redundant	Switch	

ds.requestDoorOpen()
ac_ecu.requestSpeed()

ac_ecu.sensed_speed

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor()

ds.requestDoorClose()

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor()

s.requestSpeed()

[if s.sensed_speed<=15] s.closed else s.open

ac_ecu.requestSpeed()

ac_ecu.sensed_speed

par

R:CD-SD

PowerSlidingDoor: CD

PowerSlidingDoor: SD

Figure 5.9: Output of algorithm after post-processing.

Finally, all the methods and attributes of the Actuator class, as well as the sensed_speed attribute
of the AC ECU class and the AC ECU class itself are added to satisfy the referential integrity condition
between the SD and the CD (they are all referenced in the SD).

The detail of the final megamodel fragment produced after the slicing and post-processing is
shown in the highlighted parts of Figure 5.9. This can now be used to more efficiently complete the
model evolution process by focusing only on the model parts impacted by the original deletion of
Redundant Switch in the CD.

5.5 Related Work

We identify three main categories of related work: work on model evolution, work on megamodeling
operators, and finally, work on model slicing. We describe them below.

Model evolution. A survey on supporting the evolution of UML models in model-driven software
development is presented in [Khalil and Dingel(2013)]. The scenarios that cause a model to change
are discussed; these form the basis for megamodel evolution in our approach. In [Paige et al.(2016)],
the authors discuss some of the key problems of evolution in MDE, summarize the key state-of-the-
art, and present some new challenges in research in this area. The problem of model evolution with
respect to megamodels is stated as a “dependency heterogeneity” challenge. The authors express the
need for a sound, precise theory of heterogeneous dependencies between MDE artefacts, as well as
compliant and pragmatic tool support, both of which are complimentary to and/or are part of our
current work.

Megamodeling operators. A formal approach to megamodeling, called Mapping-Aware Meg-
amodeling, is presented in [Diskin et al.(2013)]. Our notion of a megamodel is consistent with it.
The approach also describes category theory-based operations on the mapping-aware megamodels,
but does not address megamodel slicing. In previous work [Salay et al.(2015)], we presented a set of

74

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

operators (Map, Filter, Reduce) that can be applied at the megamodel level. We are not aware of
any other work in the area of applying operators at the megamodel level, and specifically, we have
not seen any work addressing slicing of megamodels.

Model Slicing. We divide this area into work on specific model slicers, work on generic model
slicers and work on slicing multiple models.

Specific Model Slicers. Numerous approaches have appeared in the literature describing slicers
for specific model types. For example, [Kagdi et al.(2005)] defines context-free model slicing and
presents an algorithm for computing slices on UML class models. [Lano and Rahimi(2010)] also
considers UML models, namely, class diagrams, individual state machines, and communicating sets
of state machines. The approach achieves slicing of these models using model transformations.
An approach for slicing state-based models, in particular, EFSM (extended finite state machine)
models, is discussed in [Korel et al.(2003)]. Finally, [Lallchandani and Mall(2011)] proposes a slicing
technique for UML architectural models, and demonstrates the uses of slicing for different purposes
such as regression testing and understanding large architectures. Many other approaches (e.g.,
[Noda et al.(2009)], [Lano and Rahimi(2010)]) are presented in the literature and can all be used as
part of our framework as specific model type slicers for each of the model types in our heterogeneous
megamodels.

Generic Model Slicers. Generic model slicing has also been studied in the MDE community. For ex-
ample, the major contribution of [Blouin et al.(2011), Blouin et al.(2015)] is the Kompren language,
which provides a generic approach to define a model slicer for any domain-specific metamodel. The
approach permits developers to either use “strict slicers” that output models which conform to their
expected metamodel, or to define “soft slicers” that can output nonconforming models or even out-
puts that are not models. Although Kompren can be used for identifying specific type slicers in
our framework, it is not applicable for megamodel slicing, where a megamodel slicer has to care-
fully invoke the specific type slicers. The work in [Clark(2011)] defines slicing at a theoretical level,
whereas we focus on a more pragmatic approach. Also, the same work focuses on dynamic slicing, as
does the transformation slicing work in [Ujhelyi et al.(2011)], whereas our approach is considered a
static slicing approach. As far as we know, none of the approaches in this category directly address
megamodel slicing (whether the megamodels are heterogeneous or not).

Slicing Multiple Models. Although the work presented in [Clark(2011)] does not primarily focus on
megamodel slicing, it briefly discusses heterogeneous slicing as the union of individual slicers. A
slicing theory is presented at a high level and does not go into the details of implementing a meg-
amodel slicing algorithm. From the modeling and safety community, [Nejati et al.(2012)] proposes
a batch model slicer for slicing SysML models related to safety requirements. [Falessi et al.(2011)]
presents a prototype tool called SafeSlice which performs the slicing needed in [Nejati et al.(2012)].
This line of work performs slicing on specific model types, whereas our work is a generic slicing
approach. Also, the presented approach is amorphous slicing, where the result of the slice is not a
model fragment of the original system. For example, transitions are added to sliced state-machines

75

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

in order to preserve their behaviour. Our current approach only considers slices to be fragments of
the original model (non-amorphous); however, we do plan to look at amorphous slicing in future
work.

5.6 Chapter Summary

In this chapter, we presented a general algorithm for slicing of heterogeneous model collections
represented using megamodels and illustrated the algorithm on an automotive example. We analyzed
the algorithm and showed that it behaves as expected with respect to termination, correctness, time
complexity and minimality. We also demonstrated a version of the algorithm using the map and
reduce operators from Chapter 4. We discussed the issues concerning slice well-formedness and
referential integrity as well as how to generalize the algorithm to support arbitrary relationship
types, N-ary relationships and nested megamodels.

76

Part III

Assurance Case Management

77

Chapter 6

Background: Assurance

In this chapter, we present a number of core concepts required for describing our contributions in
the rest of this thesis. Section 6.1 motivates our focus on the automotive domain and Section 6.2
presents material on the ISO 26262 standard. Section 6.3 presents material on assurance cases
and notations. Finally, Section 6.4 details our survey results on assurance case tools over the past
20 years, motivating the need for sound and effective assurance case management tools, especially
for assurance case maintenance, which is one of the contributions of this thesis. The survey was
published in [Maksimov et al.(2018)], where my contributions focused on providing feedback on the
assurance case tools in the literature, guiding their assessment and presentation of the survey results.

6.1 Software Development in the Automotive Domain

This thesis is part of a larger collaborative research project with an automotive OEM. The main goal
is to improve the safety, security and dependability of advanced automotive software systems, by
developing methods and tools for creating and managing effective and practical assurance cases in
the automotive industry. The project also aims to provide methods that support system and safety
evolution correctly, quickly (via scalable automated tool support) and while facilitating product-level
and product-line reuse. One specific subgoal is to develop methods and tools for impact analysis of
assurance cases - which is one of the main contributions of this thesis.

To motivate the need for this work in the automotive domain, it is worth understanding a few
things about software development in this domain and what makes it different from other domains.

Figure 6.11 shows how many MLOC (Million Lines Of Code) an average product from each
domain contains. Car software (at the bottom of the chart) requires approximately 100 MLOC,
much more than an F-35 fighter jet for example (at the top of the chart).

Moreover, the automotive domain has a lot more to do compared to other domains (see complexity
in lines of code in Figure 6.2) in a lot less time (see development time in Figure 6.3).

1 Source: Information is Beautiful (https://informationisbeautiful.net/visualizations/million-lines-of-code/)

78

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 6.1: MLOC by product.

Figure 6.2: Complexity in lines of code. Figure 6.3: Development time.

Given this challenge of complexity and time crunch, an obvious solution is to use an incremental
development approach. The idea of such an approach is to reuse existing safety assurance arguments
for minor design changes. However, this has been shown not to work in practice, as it has led to an
increasing number of recalls in the industry as can be seen in Figure 6.42.

This has motivated the need for sound and efficient approaches for incremental certification,
which ensure the safety of products being developed in an incremental development fashion.

6.2 The ISO 26262 Standard

ISO 26262 is a standard that regulates functional safety of road vehicles. It deals with the electrical
and electronic components of automotive vehicles - including software. The standard recommends
conducting a Hazard Analysis to identify and categorize hazardous events in the system and its

2 Source: Software Is Eating the Auto Industry (https://www.strategyanalytics.com/strategy-
analytics/blogs/automotive/infotainment-telematics/infotainment-telematics/2017/08/25/software-is-eating-the-
auto-industry)

79

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 6.4: Automotive Software Related Recalls 2011-2016.

environment, and to specify safety goals and integrity levels related to the mitigation of the associated
hazards. The standard has 10 parts as seen in Figure 6.5, and covers planning, development,
maintenance, operation, and decommissioning of software and electronics in automotive vehicles. In
this work, we focus on one aspect, “Product Development at the Software Level” (Part 6), and refer
to Part 9 which explains Automotive Safety Integrity Levels (ASILs).

Since ISO 26262 is complex, existing commercial tools help companies comply with the standard.
Some of these tools include Application Lifecycle Management (ALM)3 and compliance tools such
as Intland’s codeBeamer4 and Medini Analyze5. These tools mainly offer a process and document
driven system and safety assurance approach, and help ensure process workflows are followed. Some
of these tools provide traceability and some automation, but significant manual work is required
using Excel spreadsheets and Word documents. Such tools have little support for incremental safety
analysis and do not offer an explicit model of the product safety case.

6.2.1 ASIL Allocation and Propagation

An ASIL refers to an abstract classification of inherent safety risk in an automotive system or
elements of such a system. ASIL classifications are used within ISO 26262 to express the level of
risk reduction required to mitigate a specific hazard, with ASIL D representing the highest and
ASIL A the lowest. If an element is assigned QM (Quality Management), it does not require safety
management. The ASIL assessed for a given hazard is then assigned to the safety goal set to address
that hazard and is then inherited by the safety requirements derived from that goal following ASIL
propagation rules. The higher the ASIL, the more rigorous the application of ISO 26262 has to be,
i.e., the more requirements need to be fulfilled.

3http://info.perforce.com
4https://codebeamer.com/
5https://www.ansys.com/products/systems/ansys-medini-analyze

80

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering
ISO

/FD
IS 26262-2:2011(E)

©
 IS

O
 2011 b A

ll rights reserved
vii

3. Concept phase

2. Management of functional safety

2-5 Overall safety management 2-6 Safety management during item development

7. Production and operation

6-5 Initiation of product
development at the software level
6-6 Specification of software safety
requirements
6-7 Software architectural design

6-8 Software unit design and
implementation

6-9 Software unit testing

6-10 Software integration and
testing
6-11 Verification of software safety
requirements

5-5 Initiation of product
development at the hardware level
5-6 Specification of hardware
safety requirements
5-7 Hardware design

5-8 Hardware architectural metrics

5-10 Hardware integration and
testing

C
or

e
pr

oc
es

se
s

2-7 Safety management after release for
production

3-6 Initiation of the safety lifecycle

1. Vocabulary

3-5 Item definition

3-7 Hazard analysis and risk
assessment

3-8 Functional safety
concept

7-5 Operation, service
(maintenance and repair), and
decommissioning

7-5 Production

8. Supporting processes

8-5 Interfaces within distributed developments
8-6 Specification and management of safety requirements

8-8 Change management
8-9 Verification

8-7 Configuration management

4. Product development: system level

4-5 Initiation of product
development at the system level

4-7 System design 4-8 Item integration and testing

4-9 Safety validation

4-10 Functional safety assessment

4-11 Release for production

6. Product development:
software level

5. Product development:
hardware level

5-9 Evaluation of violation of the
safety goal due to random HW
failures

4-6 Specification of the technical
safety requirements

9. ASIL-oriented and safety-oriented analyses
9-5 Requirements decomposition with respect to ASIL tailoring
9-6 Criteria for coexistence of elements

8-10 Documentation
8-11 Qualification of software tools

8-13 Qualification of hardware components
8-14 Proven in use argument

8-12 Qualification of software components

9-7 Analysis of dependent failures
9-8 Safety analyses

10. Guideline on ISO 26262 (informative)

Figure 1 C
 O

verview
 of ISO

 26262

Figure 6.5: The 10 parts of ISO 26262.

6.2.2 ASIL Decomposition

The method of ASIL tailoring during the design process is called “ASIL decomposition”. When
allocating ASILs, benefit can be obtained from architectural decisions, including the existence of
sufficiently independent architectural elements (as in the redundancy in the original PSD system).
This offers the opportunity to implement safety requirements redundantly by these independent ar-
chitectural elements, and to assign a potentially lower ASIL to these decomposed safety requirements
as seen in Figure 6.6 (refer to Figure 2 in Part 9 of the standard for ASIL decomposition schemes.).

Furthermore, ISO 26262 requires the production of over 100 work products, achieved via various
requirements and methods used in the different phases of software development. For example,
Section 9 of Part 6 of ISO 26262 discusses Software Unit Testing, and Section 9.5 outlines the
required work products for it. One of these work products is 9.5.1: Software Verification Plan which
results from requirements 9.4.2-9.4.6 in the same section. Consider one of these requirements, 9.4.3,
which describes which software testing methods can be used. These methods clearly link to ASILs.
Specifically, Figure 6.7, lists various methods for software unit testing and how they relate to the four
ASILs. The degree of recommendation to use the corresponding method depends on the ASIL and
is categorized as follows: “++” indicates that the method is highly recommended for the identified
ASIL (we interpret this as “required”), “+” – that the method is recommended for the identified

81

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 6.6: ASIL decomposition schemes from ISO 26262.

ASIL, and “o” – that the method has no recommendation for or against its usage for the identified
ASIL. For example, methods 1a, 1b, 1e in Figure 6.7 are required for unit testing for ASIL C. An
increased ASIL D, now requires methods 1c and 1d which were only recommended for ASIL C.

6.2.3 Goal Refinement in ISO 26262

An important element to be accounted for in ISO 26262 is the relationship existing between so-called
safety goals (SGs), functional safety requirements (FSRs), technical safety requirements (TSRs),
hardware safety requirements (HWSRs), and software safety requirements (SWSRs).

In brief, an SG is a top-level safety requirement that is in place to prevent or mitigate some
associated hazards so as to avoid unreasonable risk. FSRs, TSRs, HWSRs, and SWSRs are also
safety requirements, derived from SGs, but expressed at different levels of description of the system
design. FSRs may be thought of as a technology independent safety requirements derived from SGs,
TSRs are technology dependent safety requirements derived from implementation of FSRs, SWSRs
and HWSRs are specific safety requirements implemented as part of the software and hardware
design. This relationship between SGs, FSRs, TSRs, HWSRs, and SWSRs can be thought of as

82

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 6.7: Methods for software unit testing - ISO 26262 Part 6.

Hazardous Events (HE)

Safety Goals (SG)

Functional Safety
Requirements (FSR)

Technical Safety
Requirements (TSR)

Hardware Safety
Requirements

(HWSR)

Software Safety
Requirements

(SWSR)

defined by

refines

refines

decomposed

Figure 6.8: Goal refinement in ISO 26262.

refinement as follows: SGs are stated, FSRs refine SGs, TSRs refine FSRs, and so on (see Figure 6.8).
If viewed in this sense, the relationship between SGs, FSRs, TSRs, HWSRs, and SWSRs may be
represented as the tree [Dardenne et al.(1993)] shown in Figure 6.8. Such a tree makes an assurance
case that all safety requirements have been satisfied.

6.3 Assurance Cases

In regulated safety-critical domains, such as the aerospace and nuclear domains, certification bodies
often require systems to undergo a stringent safety assessment procedure to show their compliance
to one or more safety standards. Quality standards mandate the creation of quality-specific require-
ments and assurance cases. For example, ISO 26262 describes how safety requirements, levels of
specification and a safety case for these must be produced to certify the safety of a vehicle.

83

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

“P”-Requirements

Implementation

refines

refines

Validation
argument

Verification
argument…

Verification
argument

“P”- Assurance
Case

Figure 6.9: Software development with assurance cases. “P” represents the quality being assured.

Figure 6.9 shows a simplified view of software development when assurance is considered. Here,
“P” represents the quality of interest to be assured, e.g., safety, privacy, security, etc. For the given
quality, the system requirements are determined and traced to the implementation through a series
of specification levels that can include both requirements and design refinements. An assurance
case for such a process must contain a validation argument for the initial requirements as well as
verification arguments for each refinement step.

6.3.1 Modeling Assurance Cases

An assurance case is an artifact that shows how important claims about the system (e.g., require-
ment satisfaction) can be argued for, ultimately from evidence obtained about the system such
as test results, expert opinion, etc. Several approaches to modeling assurances cases have been
proposed, including GSN [Kelly and Weaver(2004)], CAE [Bloomfield and Bishop(2010)], KAOS-
based [Brunel and Cazin(2012)] and, more recently, SACM [de la Vara(2014)]. All of these ap-
proaches agree that an assurance case must contain three core concepts: claims, arguments and
evidence. In order to develop a generic model management framework for assurance case reuse, we
use the abstract metamodel shown in Figure 6.10 for an assurance case based on these core concepts
rather than choosing a particular concrete approach from the literature.

A Claim represents a statement about the system or some part of it. The state attribute represents
the truth state (e.g., true, affirmed, refuted, etc.) of this statement. An Evidence element represents
some set of data obtained about the system. These could include test results, analysis results, an
expert opinion, a formal correctness proof, etc. Here, the state attribute indicates the validity state
of the evidence - e.g., currently valid, is stale and must be regenerated, etc. The Argument elements
connect claims to each other and to evidence. An argument takes zero or more claims and evidence
as input and has one claim as a conclusion. Semantically, it represents how the conclusion follows
from the input claims and evidence.

There is natural derived dependency relation connecting atoms of an assurance case.

84

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Claim

state: TruthState

Evidence

state:ValidityState

Argument
*

conclusion1
*

premiss

*

evidence

*

Figure 6.10: Generic assurance case metamodel AC.

Definition 22 (Assurance case dependency relation) Given an assurance case A : AC de-
fined according to the metamodel in Figure 6.10, the dependency relation ACdep ⊆ atomsA×atomsA

for all atoms x, x′, x′′ ∈ A is defined as follows:

• (reflexive) ACdep(x, x);

• if x is a Claim that is the conclusion of Argument x′ then ACdep(x, x′) ;

• if x is an Argument that has a premise or Evidence x′ then ACdep(x, x′);

• (transitive) if ACdep(x, x′) and ACdep(x′, x′′) then ACdep(x, x′′).

Furthermore, we make the following semantic assumptions about assurance cases:

• If assurance case A : AC is considered to be complete and correct then the truth state of claim
c can only be affected by the truth state of some claim x or by the content of the evidence x

iff ACdep(c, x).

• If the truth state of input claims and the content of evidence for an argument do not change
then the truth state of the conclusion claim cannot change.

We now present some commonly used graphical assurance case notations: the Goal Structuring
Notation (GSN), Claims, Arguments and Evidence (CAE), and OMG’s recent Structured Assurance
Case Metamodel (SACM).

6.3.2 The Goal Structuring Notation (GSN)

The most commonly used representation for safety cases is the graphical Goal Structuring Notation
(GSN) [GSN(2011)], which is intended to support the assurance of critical properties of systems
(including safety). GSN is comprised of six core elements as summarized in Figure 6.11.

Arguments in GSN are typically organized into a tree of the core elements shown in Figure 6.11.
The root is the overall goal to be satisfied by the system, and it is gradually decomposed (possibly
with strategies) into sub-goals and finally into solutions, which are the leaves of the safety case.

85

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Connections between goals, strategies and solutions represent supported-by relations, which indicate
inferential or evidential relationships between elements. Goals and strategies may also, but not
necessarily, be associated with some contexts, assumptions and/or justifications by means of in-
context-of relations, which declare a contextual relationship between the connected elements.

For example, consider the safety case presented in Figure 6.12. The overall goal (G1) is that
the "Control System is acceptably safe to operate" given its role, context and definition, and it
is decomposed into two sub-goals; (G2) for eliminating and mitigating all identified hazards and
(G3) for ensuring the system software is developed to an appropriate safety integrity level (SIL).
Assuming that all hazards have been identified, G2 can in turn be decomposed into three sub-goals
by considering each hazard separately (S1), and each separate hazard is shown to be satisfied using
evidence from formal verification (Sn1) or fault tree analysis (Sn2). Similarly, under some specific
context and justification, G3 can be decomposed into two sub-goals, each of which is shown to be
satisfied by the associated evidence.

Figure 6.11: Core GSN elements from [GSN(2011)].

In addition to the elements described in Figure 6.11, there is a GSN extension, introduced to
help with the creation of argument patterns. It adds a set of elements to assist with abstraction
modelling. There is also a modular extension to GSN. The interested reader can find the details for
both of these features in [GSN(2011)].

6.3.3 Claims, Arguments and Evidence (CAE)

CAE (Claims, Arguments and Evidence) was developed in the U.K. by Adelard. It is a graphi-
cal notation, and in Figure 6.13, we provide a table with definitions for its elements, taken from
[Adelard(2018)].

CAE is similar to GSN in providing a tree structure with a fundamental claim at the top and
evidence at the leaves of the tree. It also suggests the inclusion of contextual information with
the claim. Adelard provides a software tool, ASCE (Assurance and Safety Case Environment) for

86

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

the creation of assurance cases using this notation. Figure 6.14 [Adelard(2018)] demonstrates the
graphical representation of CAE elements and how they can be linked together.

The CAE notation is compatible with the Structured Assurance Case Metamodel (SACM), which
we describe next.

6.3.4 Structured Assurance Case Metamodel (SACM)

The Structured Assurance Case Metamodel (SACM) [OMG(2015)] is standardized by the Object
Management Group (OMG). The goal of the metamodel is to promote a model-based approach in the
process of System Assurance, which is currently a manual approach which produces assurance cases
that are typically not machine-consumable. SACM is created to support structural argumentation
approaches such as GSN and CAE. SACM captures not only fundamental concepts in the process
of System Assurance such as Claims and the relationships between them, but also concepts such
as Artifacts and Terminologies. This allows supporting evidence and information involved in the
argument to be modelled in greater precision. In addition, SACM promotes modularity; assurance
cases are organized in packages, which in turn organize argumentations, evidence and terminologies
in corresponding packages. Finally, SACM also allows external information (such as external models
and/or documents) to be linked via the facilities provided.

SACM, however, has some limitations. For example, it does not provide an ISO26262-specific
assurance case template, and does not provide a way of performing incremental assurance using
model management or address product lines.

Overall, SACM is organized in five packages: the Base package provides the foundation of SACM,
the Argumentation package captures the concepts used in arguing system properties (such as safety
and/or security), the Terminology package captures the concepts used in expressing the arguments
regarding system properties, the Artifact package captures the concepts used in providing evidence
for the arguments made for system properties, and the AssuranceCase package captures the concepts
in System Assurance, which combines all the elements in other SACM packages to form a System
Assurance Case.

Both GSN and CAE can be mapped onto SACM argumentation aspects. The argumentation
model thus provides the ability to exchange structured argumentation information created with a
tool using either of these notations. The document available at [The GSN Working Group(2015)]
provides examples of GSN implemented using SACM.

6.4 A Survey of Assurance Case Tools

Assurance cases (ACs) can be very complex; e.g., an assurance case for an air traffic control system
may comprise over 500 pages and 400 referenced documents [Lewis(2009)]. Tools to support safety
engineers in creating, maintaining and analysing ACs have been developed. For example, Reso-
lute [Gacek et al.(2014)] can automatically generate ACs based on a system’s architectural models,

87

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

while AGSN [Luo et al.(2017)] supports the assessment of an AC’s validity. The development of
these tools has been enabled by the introduction of formal syntaxes for ACs, such as the Goal Struc-
turing Notation (GSN) [Kelly(1998)]. In this section, we aim to perform a systematic review of the
progress made in the development of tools for ACs. To the best of our knowledge, this is the first
such study. More specifically, the main contributions of this section are (1) a comprehensive list
of AC tools developed over the past 20 years; and (2) an analysis of these tools according to their
functionality.

The remainder of this section is organised as follows. First, we present a methodology for finding
and comparing AC tools. Then, we present and summarise the findings and potential threats to
validity. We conclude by discussing the implications of this survey.

6.4.1 Methodology

We carried out a Systematic Literature Review (SLR) in order to establish a complete list of AC
tools and provide a comprehensive assessment of their features. Our SLR followed a simplified
version of the guidelines proposed by [A. Kitchenham(2007)], as well as the search strategy proposed
by [Zhang et al.(2011)]. It consists of three stages: (1) establishing the quasi-gold standard (QGS)
through a manual search of different publication venues, (2) an automated literature search of digital
libraries, e.g., Springer Link and IEEE Xplore, and (3) a web-based search for commercial tools and
tools that may not have been mentioned in publications. We describe these steps below.

Manual Search and Establishing the QGS. A QGS is a set of high quality studies from the re-
lated publication venues on a research topic, e.g., domain-specific conferences and journals recognized
by the community in the subject, for a given time span [Zhang et al.(2011)]. To create a QGS, rele-
vant publication venues are identified and manually searched in order to retrieve studies that serve
as a benchmark for the subsequent automated search. Through consultation with domain experts,
we identified six major conferences and journals that published research on ACs: (1) SAFECOMP
(International Conference on Computer Safety, Reliability, & Security), (2) HASE (International
Symposium on High Assurance Systems Engineering), (3) IMBSA (International Symposium on
Model-Based Safety and Assessment), (4) ISSRE (International Symposium on Software Reliability
Engineering), (5) Reliability Engineering & System Safety (journal), and (6) COMPSAC (Interna-
tional Conference on Computers, Software & Applications). We performed a manual search through
the proceedings of these venues including all associated workshops, for 2015-17 inclusive, yielding
10 relevant AC tool papers which established our QGS.

Defining the Search String and Performing the Automated Search. A careful examination
of the papers in our QGS constructed the search string to be "("Safety Assurance" OR GSN OR
SACM OR "Safety Case" OR "Safety Cases" OR "Assurance Case" OR "Assurance Cases" OR
"Safety Compliance") AND (Editor OR Tool OR Editors OR Tools OR Toolset OR Toolsets)".
We used it to conduct an automated literature search on IEEE Xplore, Engineering Village, ACM

88

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Digital Library and Spring Link6, combined with the criterion that the papers were in English and
published after 1998.

IEEE Xplore, Engineering Village, ACM Digital Library, and Springer Link returned 112, 739,
21, and 80 papers respectively, for a total of 952 papers. We checked the resulting papers against our
QGS which captured 8/10 papers, achieving the recommended 80% sensitivity [Zhang et al.(2011)].
After filtering out duplicate papers, papers not accessible in full text, irrelevant papers (based on a
manual review of their abstracts or the full text), we identified 82 papers.

Performing the Web-Based Search. To obtain knowledge about commercial AC tools, tools
that were published but were not found by our literature search, or tools that simply were not
mentioned in publications, we conducted a web-based search7 using Google as the search engine.
We used the same search string as for the literature search and viewed the first 100 results. This
step yielded eight additional tools.

Evaluating the Tools. Having read all of the publications and the resources gathered by our
searches, we established six distinct recurring tool functionalities, using them as the basis for our
evaluation. These functionalities are categorized as AC creation, maintenance, assessment, collab-
oration, reporting and integration (see Table 6.1). We then defined four levels of tool support for
each of the categories, ranging from D (no support) to A (strong support), thus creating our grading
criteria. We then graded each tool’s degree of support for each category, using information from
the publications and the web resources. Since information in some of the publications can be out of
date, we made an effort to use the newest publications so as to arrive at a more accurate evaluation.
Please note that our evaluation is based purely on the information found in the above resources
rather than on the hands-on testing of the tools.

6.4.2 Results

Our systematic literature review discovered a total of 46 AC tools. Eight of
these tools (AssureNote [AssureNote(2018)], PREEVision [PREEVision(2018)], SMS
Pro [Pro(2018)], Artisan GSN modeler [University of York(2018)], Assure-It [Shida et al.(2013)],
SEAS [Ankrum and Kromholz(2005)], TurboAC [TurboAC(2018)] and eDependability-
Case [Lautieri et al.(2004)]) were discovered by our web search; two (MMINT-A [Fung et al.(2018)]
and Resolute [Gacek et al.(2014)]) were identified with the help of domain experts, and the
remainder were found by our literature search. Nine tools (AssureNote [AssureNote(2018)], DECOS
Test Bench [Althammer et al.(2009)], e-Safety Case [Larrucea et al.(2017)], GSN CaseMaker
ERA [Larrucea et al.(2017)], ISIS High Integrity Solutions [Larrucea et al.(2017)], PREEVi-
sion [PREEVision(2018)], SCAPT [Allan et al.(1998)], SEAS [Ankrum and Kromholz(2005)] and
SMS Pro [Pro(2018)]) did not provide sufficient information allowing us to conduct an educated

6The literature search was conducted in the dates between 02.02.2018 - 19.02.2018.
7carried out on 25.02.2018

89

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Feature Category Level of Tool Support
D
(No
Sup-
port)

C (Minimal Support) B (Moderate Support) A (Strong Support)

Support for AC creation
(Creation).

None Basic support for the manual
creation of ACs.

Partial automation or re-use
in creating ACs is available
(e.g. argument patterns and
templates).

Automatic creation of com-
plete ACs.

Support for maintaining ACs
as they evolve (Maintenance).

None Manual editing with no guid-
ance on affected parts pro-
vided.

Tracking of relevant arte-
facts (e.g. system models
and evidence), notifying user
of changes and/or indicating
their potential impact on the
AC.

Automatic updates of ACs to
reflect changes in the rele-
vant artefacts (e.g., evidence,
system models, requirements
specifications).

Support for assessing ACs
(Assessment).

None Support for manual anno-
tations to indicate potential
problems.

Support for syntactical
checks (e.g., for well-
formedness, completeness
and/or consistency).

Syntactic and semantic
checking (e.g., validity of
overall argument given its
supporting arguments and
evidence).

Support for collaboration be-
tween users (Collaboration).

None A basic concurrent multi-user
environment.

Additional features such as
user access/permission man-
agement.

A complex multi-user envi-
ronment (e.g., change re-
quests and change reviews).

Support for creating reports
from ACs (e.g. for certifica-
tion purposes or for different
stakeholders) (Reporting).

None Generic reports with no user
configurability, limited range
of document formats and/or
limited content.

Some user configurability, in
multiple document formats
and/or containing more con-
tent.

High user configurability,
extensive document formats
and/or detailed/interactive
content (e.g., generating
different reports).

Support for other de-
sign/assurance lifecycle
processes (e.g. RE specs,
hazop, verification) (Integra-
tion).

None Manual integration. Some support (e.g., bundling
with specific third-party
tools).

Extensive support for many
other design/assurance lifecy-
cle processes.

Table 6.1: Tool functionality categories and the corresponding degrees of support.

evaluation, and are thus excluded from further discussion8.
Out of the 37 AC tools (see Table 6.2), 32 offer support for GSN [GSN(2011)]. Some

exceptions to this are Modus [Sabetzadeh et al.(2013)] (a plug-in for Enterprise Architect),
ACBuilder [Kawakami et al.(2016)], NOR-STA [Gorski et al.(2012)], etc., which have their own no-
tations. Multiple tools (e.g., CertWare [Barry(2011)] and ASCE [Netkachova et al.(2015)]) also
offer support for a variety of different notations, such as the Structured Assurance Case Metamodel
(SACM) [OMG(2015)] and the Claims-Arguments-Evidence (CAE) [Bloomfield and Bishop(2010)]
notations, in addition to others. Our findings also show that most of the tools are not domain spe-
cific, meaning that they can be used to construct ACs for military, automotive, medical, and nuclear
systems, among others. Exceptions to this are tools such as ACBuilder [Kawakami et al.(2016)]
(hardware security analysis) and TurboAC [TurboAC(2018)] (medical devices). Non domain spe-
cific tools (e.g., D-Case Editor [Matsuno et al.(2010)]) have been marked with a hyphen under the
domain column in Table 6.2.

8A table listing more information about each evaluated tool, such as where it was produced, how it was discovered,
a link to the tool, its availability, its supported notations and domain, can be accessed at goo.gl/A4yWs9.

90

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Tool name Supported notations Domain
ACBuilder [Kawakami et al.(2016)] Textual Hardware security analysis
ACCESS [Larrucea et al.(2017)] GSN -
ACEdit [Larrucea et al.(2017)] GSN, ARM -
https://github.com/arapost/acedit
AdvoCATE [Denney and Pai(2017)] GSN, SACM, Bowtie -
https://ti.arc.nasa.gov/tech/rse/research/advocate/
AGSN [Luo et al.(2017)] GSN -
https://github.com/AGSNeditor/development
ASCE [Netkachova et al.(2015)] CAE, SACM, -
https://www.adelard.com/asce/choosing-asce/index/ GSN, Bowtie
Assure-It [Shida et al.(2013)] GSN -
Astah GSN [Larrucea et al.(2017)] GSN, ARM, SACM -
http://astah.net/download
Artisan GSN modeler [University of York(2018)] GSN -
AutoFOCUS3 [Cârlan et al.(2017)] GSN Distributed, reactive,
https://af3.fortiss.org/download/ embedded software systems
CertWare [Barry(2011)] ARM, CAE, GSN, -
https://nasa.github.io/CertWare/ EUROCONTROL
D-Case Communicator [Matsuno(2017)] GSN -
https://mlab.ce.cst.nihon-u.ac.jp/dcase/login.html
D-Case Editor [Matsuno et al.(2010)] GSN, SACM -
http://www.jst.go.jp/crest/crest-os/osddeos/en/tech.html
D-Case Weaver [Fujita et al.(2012)] GSN -
http://www.jst.go.jp/crest/crest-os/osddeos/en/tech.html
D-MILS [Cimatti et al.(2015)] GSN -
https://github.com/phy3rdh/DmilsMBAC
Eclipse & Papyrus extension [Huhn and Zechner(2009)] GSN -
eDependabilityCase [Lautieri et al.(2004)] GSN -
ENTRUST [Calinescu et al.(2017)] GSN Self-adaptive software
https://github.com/gerasimou/ENTRUST
eSafetyCase Toolkit [Newton and Vickers(2007)] GSN -
ETB (Evidential Tool Bus) [Cruanes et al.(2013)] Claims table -
https://github.com/SRI-CSL/ETB
Event-B extension [Laibinis et al.(2015)] GSN -
EviCA [Nair et al.(2015a)] GSN -Can be acquired by emailing the authors
GAGE [Bjornander et al.(2012)] GSN -
HiP-HOPS extension [Retouniotis et al.(2017)] GSN -
http://www.hip-hops.eu/
ISCaDE [Larrucea et al.(2017)] GSN, ASCAD, -
http://www.iscade.co.uk/ WeFA
MMINT-A [Fung et al.(2018)] GSN -
https://github.com/adisandro/MMINT
Modus [Sabetzadeh et al.(2013)] KAOS -
http://modelme.simula.no/Modus
NOR-STA [Gorski et al.(2012)] TRUST-IT -
https://www.argevide.com/purchase/assurance-case/ Argument Representation
OpenCERT [Larrucea(2016)] GSN -
https://www.polarsys.org/proposals/opencert
Resolute [Gacek et al.(2014)] Unique notation Distributed real-time
https://github.com/smaccm/smaccm embedded systems
SafeEd [Groza and Marc(2014)] GSN -
http://cs-gw.utcluj.ro/~adrian/tools/safed/gsn/gsn.html
Safety.Lab [Ratiu et al.(2015)] GSN -
SAM [Kelly and McDermid(2001a)] GSN -
SCT: Safety Case Toolkit [Aiello et al.(2014)] GSN, MDD -
http://www.dependablecomputing.com/ (MultiMarkdown doc.)
SBVR/GSN Editor [Luo et al.(2015b)] GSN -
TurboAC [TurboAC(2018)] Subset of GSN, Medical devices
http://www.gessnet.com/ Tabular, Narrative
Visio add-on [Larrucea et al.(2017)] GSN -
http://www-users.cs.york.ac.uk/~tpk/gsn/

Table 6.2: General tool information.

91

https://github.com/arapost/acedit
https://ti.arc.nasa.gov/tech/rse/research/advocate/
https://github.com/AGSNeditor/development
https://www.adelard.com/asce/choosing-asce/index/
http://astah.net/download
https://af3.fortiss.org/download/
https://nasa.github.io/CertWare/
https://mlab.ce.cst.nihon-u.ac.jp/dcase/login.html
http://www.jst.go.jp/crest/crest-os/osddeos/en/tech.html
http://www.jst.go.jp/crest/crest-os/osddeos/en/tech.html
https://github.com/phy3rdh/DmilsMBAC
https://github.com/gerasimou/ENTRUST
https://github.com/SRI-CSL/ETB
http://www.hip-hops.eu/
http://www.iscade.co.uk/
https://github.com/adisandro/MMINT
http://modelme.simula.no/Modus
https://www.argevide.com/purchase/assurance-case/
https://www.polarsys.org/proposals/opencert
https://github.com/smaccm/smaccm
http://cs-gw.utcluj.ro/~adrian/tools/safed/gsn/gsn.html
http://www.dependablecomputing.com/
http://www.gessnet.com/
http://www-users.cs.york.ac.uk/~tpk/gsn/

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

6.4.3 Evaluation of the Tools and Discussion

Each tool has been manually evaluated for its support in the previously established categories, with
the results shown in Table 6.3. Figure 6.15 represents the overall grade distribution for each category.
To simplify visualization, all split grades have been rounded up and represented as the higher grade.

Creation. Support for creation of ACs primarily ranges between minimal (43%) and moderate
(49%) (see Figure 6.15(a)). The notable exceptions, ENTRUST [Calinescu et al.(2017)] and Reso-
lute [Gacek et al.(2014)], offer strong support by providing the automatic generation of ACs, based
on various underlying system and/or behavioral models. As previously mentioned however, these
tools are domain specific. Unless modified, their use is confined to the specific underlying architec-
tural languages, models, etc., that they support. To our knowledge, a tool that can automatically
generate complete ACs for a broad range of domains is yet to be developed. Based on these obser-
vations, it would seem that the benefits obtained by creating a strong dependency between ACs and
system models come at the cost of flexibility and generalized usability.

Maintenance. Again, the absolute majority of tools provide either minimal (51%) or mod-
erate (41%) support for maintenance (see Figure 6.15(b)). Tools with moderate support for
maintenance often allow the linking of evidence, models and other artefacts to the correspond-
ing AC elements, making it easy to notify the user of the impacts of the change. In turn, EN-
TRUST [Calinescu et al.(2017)] and ETB [Cruanes et al.(2013)] offer strong support by automati-
cally reflecting artefact changes on the AC. ETB [Cruanes et al.(2013)] allows the incorporation of
3rd party tools for the purpose of generating evidence and logs timestamps of their invocations in
order to determine which analyses are out of date with respect to the current development artefacts,
re-running those that are not synchronized. ENTRUST [Calinescu et al.(2017)] is tightly coupled
with the design-time and runtime models of a system. It has the ability to dynamically verify
self-adaptive systems at runtime and update their ACs as necessary.
Assessment. Figure 6.15(c) shows that the results for AC assessment are fairly distributed among
all levels of support as compared to the other functional categories, with the majority offering mod-
erate support (38%). The highest percentage of strong support (19%) is seen in this category. Unlike
creation and maintenance however, 19% of tools offer no support for assessment. Furthermore, no
correlation is seen between support for assessment and any other category, implying that assessment
is a fairly standalone tool functionality, the support for which is not largely dependent on the other
categories.

Collaboration and Reporting. Most of the tools we surveyed offer no support for col-
laboration (68%) or reporting (57%). A pronounced trend (see Table 6.3) is that tools with
support in these categories are usually industrial, such as ASCE [Netkachova et al.(2015)], IS-
CaDE [Larrucea et al.(2017)], NOR-STA [Gorski et al.(2012)], OpenCERT [Larrucea(2016)] and
SCT: Safety Case Toolkit [Aiello et al.(2014)]. Perhaps such capabilities are not receiving ade-
quate interest among researchers, and thus are being developed only after tools reach significant
maturity, if at all.

92

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Integration. Support for integration is split between moderate (40%) and none (38%). Not a single
tool among the ones we evaluated offered strong support, indicating that some manual integration
between other assurance lifecycle activities and the ACs is always required. Table 6.3 shows a
strong correlation between high support for integration, and high support for AC creation and
maintenance. It would appear that a more integrated environment allows tighter coupling between
various artefacts, such as system models and evidence, subsequently enabling automation through
dependencies. As previously discussed however, the creation of these dependencies might introduce
limitations in other aspects.

6.4.4 Threats to Validity

The main threat to validity in our survey results is the completeness of our list of tools and tool
information. Even though our search methodology is thorough, it is possible that it did not capture
all existing AC tools. As discussed in Section 6.4.1, our evaluation was based only on information
found in the corresponding tool’s documentation, publications, website and other publically available
resources. It is possible that the description of some functionality received a lower grade because it
was not adequately described or the relevant resource was unavailable.

6.4.5 Summary

In this section, we reported on a comprehensive identification and a preliminary evaluation of AC
tools, comparing them w.r.t. several categories using the available documentation. In the future,
we intend to refine our results using deeper analysis, through a systematic evaluation of the tools
themselves.

Our experience shows that there is significant room for improvement of the tools in all of the
discussed categories. Furthermore, it appears that several categories are interdependent, i.e., high
support in one is strongly correlated with high support in another. For example, we expect that
improvements in the integration category will significantly benefit other categories such as creation
and maintenance. Yet, to the best of our knowledge, there is currently no tool that supports the
seamless linking of the various assurance lifecycle processes.

6.5 Chapter Summary

In this chapter, we have presented required material on the ISO 26262 standard and assurance
cases, including assurance case notations and tools as part of a survey we conducted and publised
in [Maksimov et al.(2018)]. We refer to these concepts in the rest of this thesis. Furthermore,
the results of the survey we presented demonstrate the need for tool support for assuance case
maintenance, a problem we aim to address in this thesis.

93

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
6.
12
:
E
xa

m
pl
e
sa
fe
ty

ca
se

in
G
SN

fr
om

[G
SN

(2
01
1)
].

94

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
6.
13
:
C
A
E

el
em

en
t
de
fin

it
io
ns

an
d
ex
am

pl
es
.

95

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 6.14: An example of a CAE structure.

Figure 6.15: Overall AC tool support for: a) creation, b) maintenance, c) assessment, d) collabora-
tion, e) reporting and f) integration.

96

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

T
oo

l
n
am

e
C

re
at

io
n

M
ai

nt
en

an
ce

A
ss

es
sm

en
t

C
ol

la
b
or

at
io

n
R

ep
or

ti
n
g

In
te

gr
at

io
n

A
C
B
ui
ld
er

[K
aw

ak
am

ie
t
al
.(
20

16
)]

B
D

D
D

D
D

A
C
C
E
SS

[L
ar
ru
ce
a
et

al
.(
20

17
)]

B
C

C
D

C
D

A
C
E
di
t
[L
ar
ru
ce
a
et

al
.(
20

17
)]

C
C

B
D

D
D

A
dv

oC
A
T
E

[D
en
ne
y
an

d
P
ai
(2
01

7)
]

B
B

A
D

A
/B

B
A
G
SN

[L
uo

et
al
.(
20

17
)]

C
C

B
D

C
D

A
SC

E
[N

et
ka
ch
ov
a
et

al
.(
20

15
)]

C
B

B
B

A
/B

C
A
ss
ur
e-
It

[S
hi
da

et
al
.(
20

13
)]

C
C
/D

D
D

D
D

A
st
ah

G
SN

[L
ar
ru
ce
a
et

al
.(
20

17
)]

B
C

B
D

C
D

A
rt
is
an

G
SN

m
od

el
er

[U
ni
ve
rs
it
y
of

Y
or
k(
20

18
)]

B
C

B
A

D
D

A
ut
oF

O
C
U
S3

[C
âr
la
n
et

al
.(
20

17
)]

B
B

B
D

D
B

C
er
tW

ar
e
[B
ar
ry
(2
01

1)
]

B
B

A
C

D
B

D
-C

as
e
C
om

m
un

ic
at
or

[M
at
su
no

(2
01

7)
]

C
C

D
C

D
D

D
-C

as
e
E
di
to
r
[M

at
su
no

et
al
.(
20

10
)]

B
B

B
D

D
B

D
-C

as
e
W
ea
ve
r
[F
uj
it
a
et

al
.(
20

12
)]

C
C

C
C

C
B

D
-M

IL
S
[C
im

at
ti
et

al
.(
20

15
)]

B
B

B
D

D
B

E
cl
ip
se

&
P
ap

yr
us

E
xt
.[
H
uh

n
an

d
Ze

ch
ne

r(
20
09

)]
C

C
A

D
D

D
eD

ep
en
da

bi
lit
yC

as
e
[L
au

ti
er
ie

t
al
.(
20

04
)]

C
C

B
D

D
D

E
N
T
R
U
ST

[C
al
in
es
cu

et
al
.(
20

17
)]

A
A

C
D

D
B

eS
af
et
yC

as
e
T
oo

lk
it
[N

ew
to
n
an

d
V
ic
ke
rs
(2
00

7)
]

B
C

B
B

B
D

E
T
B

(E
vi
de
nt
ia
lT

oo
lB

us
)
[C
ru
an

es
et

al
.(
20

13
)]

C
A

D
C

D
B

E
ve
nt
-B

ex
te
ns
io
n
[L
ai
bi
ni
s
et

al
.(
20

15
)]

B
C

B
D

D
B

E
vi
C
A

[N
ai
r
et

al
.(
20

15
a)
]

C
C

B
D

D
D

G
A
G
E

[B
jo
rn
an

de
r
et

al
.(
20

12
)]

D
B

B
D

D
D

H
iP
-H

O
P
S
ex
te
ns
io
n
[R

et
ou

ni
ot
is
et

al
.(
20

17
)]

B
B

D
D

D
B

IS
C
aD

E
[L
ar
ru
ce
a
et

al
.(
20

17
)]

B
C

C
B

A
/B

B
M
M
IN

T
-A

[F
un

g
et

al
.(
20

18
)]

C
B

C
D

D
C

M
od

us
[S
ab

et
za
de
h
et

al
.(
20

13
)]

C
B

A
B

C
C

N
O
R
-S
T
A

[G
or
sk
ie

t
al
.(
20

12
)]

B
B

B
A

A
/B

C
O
pe

nC
E
R
T

[L
ar
ru
ce
a(
20

16
)]

B
B

C
B

B
C

R
es
ol
ut
e
[G

ac
ek

et
al
.(
20

14
)]

A
B

A
D

C
B

Sa
fe
E
d
[G

ro
za

an
d
M
ar
c(
20

14
)]

C
C

A
D

B
C

Sa
fe
ty
.L
ab

[R
at
iu

et
al
.(
20

15
)]

C
B

A
/B

D
D

B
SA

M
[K

el
ly

an
d
M
cD

er
m
id
(2
00

1a
)]

B
B

C
D

B
B

SC
T
:S

af
et
y
C
as
e
T
oo

lk
it
[A

ie
llo

et
al
.(
20

14
)]

B
C

C
A
/B

A
C

SB
V
R
/G

SN
E
di
to
r
[L
uo

et
al
.(
20

15
b)
]

C
C

D
D

D
C

T
ur
bo

A
C

[T
ur
bo

A
C
(2
01

8)
]

B
C

C
D

A
/B

B
V
is
io

ad
d-
on

[L
ar
ru
ce
a
et

al
.(
20

17
)]

C
C

D
D

D
D

T
ab

le
6.
3:

E
va
lu
at
io
n
of

ca
pa

bi
lit
ie
s
of

in
di
vi
du

al
to
ol
s.

97

Chapter 7

An Approach for Assurance Case
Reuse due to System Evolution

Evolution in software systems is a necessary activity that occurs due to fixing bugs, adding func-
tionality or improving system quality. Systems often need to be shown to comply with regulatory
standards. Along with demonstrating compliance, an artifact, called an assurance case, is often pro-
duced to show that the system indeed satisfies the property imposed by the standard (e.g., safety,
privacy, security, etc.). Since each of the system, the standard, and the assurance case can be pre-
sented as a model, this chapter discusses the extension and use of traditional model management
operators to aid in the reuse of parts of the assurance case when the system undergoes an evolution.
Specifically, we present a model management approach that eventually produces a partial evolved
assurance case and guidelines to help the assurance engineer in completing it. We demonstrate how
our approach works on an automotive subsystem regulated by the ISO 26262 standard. The content
of this chapter has been published in [Kokaly et al.(2016a)].

7.1 Introduction

The pervasiveness of software in all aspects of human activity has created special concerns regarding
issues such as safety, security and privacy. Governments and standard organizations (e.g., ISO)
have responded to this trend by creating regulations and standards that software must comply
with. For companies, compliance is a complex and costly goal to achieve. They may have to
comply with multiple standards due to multiple jurisdictions and track the changes in standards.
Assurance cases – collections of arguments and evidence to support the claims of compliance –
must be developed and managed. Finally, maintaining families of related software products further
multiplies the effort. Increasingly, models and model-driven engineering are being used as means to
facilitate communication and collaboration between the stakeholders in the compliance value chain

98

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

𝐴

𝑆 𝑆′

𝐴′

change

𝑅 𝑅′

?

Figure 7.1: Assurance case evolution scenario.

and further to introduce automation into regulatory compliance tasks.
In Chapter 1, we a laid out a research agenda for applying model management to address the

software compliance problem and sketched its use in particular compliance management scenarios.
In this chapter, we focus on one of these scenarios – assurance case reuse due to system evolution
(P2) – and develop it in detail. Figure 7.1 illustrates the scenario at a high level. Assume that
a current specification S describes the specification for the software in a vehicle. In addition, a
type of assurance case A, called a safety case, has been developed complying with the ISO 26262
vehicle functional safety standard [ISO(2011)]. Safety case A contains perhaps thousands of safety
claims about different components of the vehicle, as well as arguments and evidence to support these
claims. Now if S is evolved to S′ – for example, as a result of a new requirement or a bug fix – a
corresponding safety case A′ for S′ must be developed. Due to complexity and effort required to
develop a safety case, there is strong incentive to reuse as much of A as possible in the creation of
A′. We address this problem using a model management strategy.

Contributions. This chapter makes the following contributions:

1. We define a generic model management framework for assurance case reuse due to model
evolution.

2. We identify and specify the model management operators needed for a semi-automated solution
to the assurance case reuse problem and present an algorithm for reuse.

3. We evaluate the generic framework and proposed solution by instantiating it for ISO 26262
vehicle safety cases with the KAOS goal modeling language [Dardenne et al.(1993)] used for
expressing assurance cases. We then apply this instantiation to an automotive subsystem,
namely, a power sliding door system.

Organization. The rest of this chapter is structured as follows: Section 7.2 discusses our generic
assurance case reuse framework, where we present an algorithm that is then evaluated in Section 7.3.
Section 7.4 is an application of our generic framework on the power sliding door example. Section 7.5
discusses related work, and Section 7.6 ends with a chapter summary.

99

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

7.2 A generic assurance framework for model evolution

In this section, we develop a generic model management-based framework for assurance case reuse
in the context of system evolution.

7.2.1 Objective of Reuse

The objective of the assurance case reuse problem due to the system evolution can be stated as
follows:
(Objective) Given system specification S with complete and correct assurance case A, if S evolves
to S′, determine the maximal reuse of A to produce a complete and correct assurance case A′ for
S′.

Note that we take a “complete and correct assurance case” to mean one that is acceptably complete
and correct by the organization developing the system. The goal of finding the maximal reuse can
be refined into two subgoals:

1. identify the impact set AS−S′ – the subset of A impacted by the change in S; and

2. identify the kind of impact for the atoms within the impact set.

Goal 1 implies that atoms of A outside the impact set can be reused within A′ since they are not
impacted by the change; thus, the impact set implicitly defines the maximal subset of A that can
be reused. The relevance of Goal 2 is that there are two possible types of impact to an atom due to
a change, and this affects the degree of reuse:

1. The change may affect the truth state of a claim or the validity of a piece of evidence. Thus,
the claim/evidence can be reused directly but its truth/validity state must be rechecked.

2. The change may affect the definition of a claim, argument or piece of evidence and hence affect
its interpretability. Thus, the claim, argument or piece of evidence must first be revised and
then additionally, in the case of claim/evidence, its truth/validity state must be checked.

A Type 1 impact requires less effort because the claim/evidence can be reused directly (i.e., no
revision) and rechecking can sometimes be automated. For example, rechecking a test-based evidence
involves re-running the test cases, rechecking a claim containing a formally specified property may
be rechecked using a property checker, etc. Thus, a Type 1 impact exhibits greater reuse than a
Type 2 impact.

For example, assume that the assurance case A contains the claim that the following property
holds for the AutoLight subsystem that controls a vehicle headlight:

(Property1) If the ambient light sensor detects less than 25 lumens then the head lights turn on.

Furthermore, assume that this claim has been verified using a set of test results as evidence.
Now if the subsystem is evolved so that it uses a new algorithm to turn the head lights on, then this

100

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

claim is impacted because its truth state may be affected, and the property needs to be rechecked.
Furthermore, the evidence used previously is no longer valid and the tests must be re-performed to
check the property. Now consider another evolution of the subsystem in which the ambient light
sensor is removed since some other approach to detecting light is used. In this case, the definition of
the claim is affected and the property Property1 can no longer be properly interpreted since there is
no ambient light sensor. In this case the claim must be first revised based on the new design to be
interpretable and then have its truth state checked. Similarly, a revision to the test cases producing
the evidence is required.

Identifying the impact set and kinds of impacts represents the ideal behaviour for an assurance
case impact assessment approach. We define an actual impact assessment approach as follows:

Definition 23 (Impact assessment approach) Given a system specification S with a complete
and correct assurance case A, if S evolves to S′ then an impact assessment approach R can be
applied as R(S,A, S′) to produce a pair 〈AR, k〉 where AR is the impact set estimate and function
k : AR → {revise, recheck} identifies the impact kind annotation for the atoms of AR.

We can evaluate an impact assessment approach by comparing it to the ideal case.

Definition 24 (Soundness and relative efficiency) Given a system specification S with a com-
plete and correct assurance case A, and S evolves to specification S′,
(Soundness) Impact assessment approach R is sound if
AS−S′ ⊆ AR.
(Relative efficiency) A sound impact assessment approach R is relatively more efficient than R′ iff
AR ⊆ A′R.

Soundness is a correctness criterion for an impact assessment approach – a sound approach guaran-
tees that all actually impacted atoms of the assurance case are identified by the approach. Relative
efficiency is a quality criterion, and greater efficiency means that it finds fewer “false positives” (i.e.,
when it says an atom is impacted although it is not) and hence facilitates greater reuse.

7.2.2 The Framework

We have defined the objective of reuse and how to evaluate a possible impact assessment approach.
We now define a generic assurance case evolution framework RMM (Reuse with Model Management)
based on model management that addresses reuse. The framework is generic because, as is typical
with model management, it is defined independently of the specific model types used in an evolution
scenario. Thus, applying it to a particular evolution case requires instantiating it for the model
types used.

Figure 7.3 gives a conceptual overview of the framework as well as embedding the impact assess-
ment algorithm detailed below. The initial systems specification S has a corresponding assurance
case A. These are connected by traceability relation R. System S is first evolved by changing it
to a system specification S′. The difference between these specifications is captured in the relation

101

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

D. After performing the impact assessment algorithm, the resulting impact set estimate ARMM and
impact kind annotation kRMM (see Definition 23) are used as guidance by an Assurance Engineer to
complete the new assurance case A′ and the corresponding traceability relation R′.
Impact assessment algorithm. The impact assessment algorithm used by RMM assumes that
potential impact on an assurance case is defined as follows.

Definition 25 (Potential impact) An atom in A is potentially impacted by the change D iff it is
dependent on an atom of A that mentions the name/identifier of an atom of S that is itself affected
by the change D.

Potential impact means that the atom may be impacted but is not guaranteed to be impacted.
For example, it is possible for a claim to be identified as potentially impacted but its truth value
happens not to change. However, an atom that does not satisfy this definition is guaranteed to be
unimpacted.

The algorithm makes the following assumptions:

Assumption 3 (RMM Assumptions)
3.1. Specifications S and S′ consist of one or more related models defining the systems. We identify
the type of these specifications as T .
3.2. Delta D consists of the three submodels C0a ⊆ S′, C0d ⊆ S and C0c ⊆ S′ representing the
added atoms, deleted atoms and changed atoms, respectively. Atom addition and deletion can apply
to any element, reference or attribute. Atom changes are limited to attribute value changes and
changes in the target element of a reference.
3.3 Assurance case A is considered acceptably correct and complete by the organization developing
the system.
3.4 We are provided with a correct model slicer SliceT and merge operator MergeT for models of
type T . In particular, SliceT is assumed to identify all atoms affected by the slicing criterion.
3.5. Traceability relation R links an atom x ∈ A to an atom y ∈ S iff x mentions the name or
identifier of y, i.e., x makes a direct reference to y.

Thus, in Definition 25, checking whether an atom of A mentions an atom of S is possible via R

due to Assumption 3.5 and checking whether an atom of S is affected by D is possible using SliceT

due to Assumption 3.4. In addition, checking whether an atom of A is dependent on another atom
of A is done using the relation ACdep (see Definition 22).

To determine kinds of impacts on atoms we observe that if an impacted atom of A mentions an
atom of S that is deleted, it must be revised because it can no longer be “well-formed”. In addition,
any other atoms of A that are ACdep dependent on the revised atom may need revision as well.
All other impacted atoms need not be revised but need to be rechecked. Note that this focuses on
deletion as the sole cause of revision. Clearly, additions of atoms in S′ likely lead to revisions on A

as well, but since these are new, the places where such revisions occur cannot be detected by the

102

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

impact assessment algorithm; thus, these decisions are left for the post-algorithm manual step by
the Assurance Engineer.

The algorithm is given in Figure 7.2. This a model management algorithm, i.e., it is expressed in
terms of standard types of model management operators. In addition, the algorithm is expressed at
an abstract level and is parameterized by operators for model type T of the specification S. These
operators are given a parameters SliceT and MergeT . Figure 7.3 gives a visual overview of the
algorithm embedded in the overall RMM evolution process. The gray circled numbers correspond to
line numbers in the algorithm.

In line 1 of the algorithm, the traceability map from S′ to A is computed by restricting the
original map R using delta D (see Section 7.2.3). Thus R′A contains the mappings from all the
atoms in S′ except the added ones. Lines 2 and 3 use the T -specific slicing operator (SliceT) to
expand the changed regions to all affected atoms of S and S′, respectively. In line 4, these are
then traced across the traceability relations to A and merged (see Section 7.2.3) to identify the core
subset C2recheck of A that must be rechecked. In line 5, the core subset C2revise of A that must
be revised is obtained by tracing the set of deleted atoms C0d across the traceability relation. In
lines 6 and 7, these core subsets are expanded to the full impacted subsets using the assurance case
slicing operator (see Section 7.2.3) Finally, in lines 8-11, the impact set estimate ARMM and impact
kind annotation kRMM are prepared and returned as the output of the algorithm.
Post-algorithm human actions. After applying the impact assessment algorithm, the Assurance
Engineer uses the impact set and impact kind annotation on A as guidance to completing the new
assurance case A′ for S′. All atoms in A not in ARMM are considered unimpacted and can be reused
in A′ without change. Those atoms marked ′revise′ must be changed to make them well-formed and
then rechecked. The action for an atom marked ′recheck′ is dependent on its type. A Claim must
be re-evaluated to check that it has an acceptable truth state (e.g., true or affirmed) based on the
arguments that support it. For an Evidence element, the procedure for producing the results must
be re-performed. For example, if the evidence consists of test results, the test cases must be rerun;
for analysis results, the analysis procedure is rerun, etc. In some case the recheck procedure may
be automated. For an Argument, its details must be checked to ensure that they are still valid. If
the result of the recheck is not acceptable (e.g., new test results fall outside acceptable limits) the
Assurance Engineer must assess how to respond. For example, this may mean that the atom must
now be revised or it may mean that the system specification requires further changes.

7.2.3 Additional Model Management Operators

Other than the operators SliceT and MergeT provided as parameters, the algorithm in Figure 7.2
uses four additional model management operators. We describe them declaratively below.

Definition 26 (Additional Operators) Let R be the traceability relation between S and A, D =

〈C0a,C0d,C0c〉 be the delta between S and S′. Then

103

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Algorithm: RMM impact assessment
Params: 〈SliceT , MergeT 〉
Input: initial spec S : T , assurance case A : AC,

traceability map R, changed spec S′ : T ,
delta D = 〈C0a,C0d,C0c〉

Output: Impact set estimate ARMM, impact kind annotation kRMM
1: R′A ← Restrict(R,D)
2: C1dc← SliceT (S, MergeT (C0d,C0c))
3: C1ac← SliceT (S

′, MergeT (C0a,C0c))
4: C2recheck ← MergeAC(Trace(R,C1dc), Trace(R′A, C1ac))
5: C2revise ← Trace(R,C0d)
6: C3revise ← SliceAC(M,C2revise)
7: C3recheck ← SliceAC(M,C2recheck)
8: ARMM ← MergeAC(C3revise, C3recheck)
9: kRMM(C3recheck)←

′recheck′

10: kRMM(C3revise)← ′revise′

11: return ARMM, kRMM

Figure 7.2: Algorithm for assessing assurance case impact due to system evolution used in the RMM

evolution framework.

𝑆

𝐴

𝑆′

𝐴′

complete

change
𝐶1𝑎𝑐

𝐶0𝑐

𝐶0𝑎

𝐶1𝑑𝑐
𝐶0𝑐

𝐶0𝑑

revise

𝐶3

recheck

𝐷

𝑅 𝑅′𝑅𝑀
′1

2
3

𝐶2

44
5

6 7

8-
11

Figure 7.3: Conceptual overview of model management based assurance case evolution framework
RMM. Numbers in gray circles correspond to the line numbers of the impact assessment algorithm
in Figure 7.2.

• Restrict(R,D) is the relation between S′ and A defined as {〈a, c〉 |a ∈ atomsA∧c ∈ (atomsS′ \
atomsC0a) ∧R(a, c)}.

• Trace(R,C), where C ⊆ atomsS, is the subset of atomsA defined as {a|a ∈ atomsA ∧ ∃c ∈
atomsC ·R(a, c)}.

• SliceAC(A,C), where C ⊆ atomsA, is the subset of atomsA defined as {a′|a ∈ C ∧

104

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

ACdep(a, a′)}.

• MergeAC(A,A′) is the assurance case A′′ : AC defined as atomsA′′ = atomsA ∪ atomsA′ .

Restrict(R,D) creates a new traceability relation from S′ to A that contains all links in R

except those involving deleted atoms. Trace(R,C) traverses the traceability relation R to produce
the set of atoms linked to atoms in C. SliceAC(A,C) expands a subset C of atoms in A to the
subset of all atoms dependent on atoms in C through the ACdep relation defined in Definition 22.
MergeAC(A,A′) produces the assurance case containing the union of atoms in each of A and A′.
Note that in our algorithm we use MergeAC to combine submodels of a larger model. If A and A′

overlap, the union includes only one copy of the atoms in the overlap.

7.3 Algorithm Analysis

Definition 24 provided two criteria against which an assurance case impact assessment approach
can be evaluated. In this section, we apply these criteria to the impact assessment algorithm in
Figure 7.2 and briefly discuss the important issue of emergent propeties [Johnson(2006)] in systems
and how the algorithm handles this.

7.3.1 Soundness

As discussed in Section 7.2.2, although the algorithm does find some indirect impacts due to added
atoms in C0a, it cannot possibly find them all since the Assurance Engineer is required to assess
these. Thus, we limit our soundness claim to evolution due to atom changes and deletions.

Proposition 1 Given a system specification S with an assurance case A and a traceability relation
R, and S evolves to a specification S′ with delta D = 〈C0a,C0d,C0c〉, the impact assessment
algorithm in Figure 7.2 is sound as defined in Definition 24 with respect to impacts due to atoms in
C0d, C0c.

(Proof) We use Definition 25 as the definition of potential impact and argue by contradiction.
Assume the algorithm is not sound. Then there is an atom x ∈ atomsA, x /∈ ARMM and yet it is
impacted by some atom y ∈ D. Since x is impacted by y, according to Def 25, this means that
either (1) x directly mentions y, (2) x mentions some other atom y′ in S′ or S that is affected by y,
or (3) x is dependent on another atom x′ in A that is impacted by y.

In case (1), x will necessarily be in one of C0c or C0d (added atoms cannot be mentioned in A)
and so it will be in C1dc in line 2. Also, if a mentions x then it will be in C2recheck or C2revise
due to Assumption 3.5 and the use of Trace in lines 4-5. The slicing in lines 6-7 will retain x since
ACdep is reflexive and thus x ∈ ARMM is in contradiction to our assumption. Case (2) is similar to
case (1) except that we use Assumption 3.4 to ensure that if y′ is affected by y then it is captured by
SliceT in lines 2-3. Also, we allow x to be an added atom in C0a since added atoms can indirectly

105

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

impact atoms of A in lines 3-4. Finally in case (3), if x′ is impacted, then x′ must be in C3recheck or
C3revise constructed using SliceAC in lines 6-7. But since ACdep is transitive and ACdep(x, x′)

holds, SliceAC would capture x in line 6 or 7 and then x ∈ ARMM in line 8 is in contradiction with
our assumption. Since we have shown that all cases contradict the assumption that x /∈ ARMM, we
conclude that if x is impacted by y then x ∈ ARMM, and so the algorithm is sound.

7.3.2 Relative Efficiency

According to Definition 24, an impact assessment approach is more efficient if it reports fewer “false
positives”. Because RMM is defined at an abstract level, its efficiency is determined by the information
it has available on which to base impact assessments. For example, the algorithm will mark a claim
x to be rechecked if it is ACdep dependent on another claim x′. However, if we had access to the
particular argument structure connecting the claims, it may be that changing the truth state of x′

does not affect the truth state of x and so x should not have been marked for recheck. In Chapter 8
we discuss ways that the efficiency could be improved by utilizing additional information available
when the framework is instantiated for a particular modeling language.

7.3.3 Emergent Properties

An emergent property of S arises as a result of the integration of parts of S, where no part of
the system is directly responsible for it. We consider two cases of emergent properties: system
properties [Leveson(1995)] and feature interactions [Calder et al.(2003)].

Consider the following claim for a vehicle: “99.5% of the time, a collision when the vehicle is
moving 80kph will not result in a fatality of a passenger.” In an assurance case for the vehicle
system, the argument to support this claim might use crash test results as evidence. This property,
if true, clearly results from the interaction of the parts of the vehicle rather than from any one part.
Evolving the vehicle specification may impact the truth of this claim but some changes would not.
For example, a change to the headlight colour would probably have no impact on the truth of the
claim. In this scenario, the RMM impact assessment algorithm behaves conservatively – if the vehicle
specification evolved in any way, the claim is flagged to be rechecked. This follows because we
would expect the specification slicer SliceT to identify the whole system “vehicle” to be affected by
any change within the specification, and the identifier “vehicle” is mentioned directly in the claim.
Thus, although the RMM assessment algorithm sacrifices efficiency by being conservative, it ensures
soundness for such system properties.

A feature interaction occurs when using two or more features together results in an unintended
behaviour. For example, assume the AutoLight subsystem described above interferes with the AutoOff

subsystem responsible for (among other things) turning off the headlights when they are left on after
the car is turned off. Even if an assurance case contains separate claims about each subsystem, since
they interact, a change to one subsystem could impact the claim of the other. Since the RMM algorithm
relies on the slicer SliceT to detect dependencies between parts of the specification, the extent to

106

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

which impacts due to feature interaction are handled correctly depends on the quality of the slicer
(see Assumption 3.4). Thus, the algorithm is sound in these situations “up to” the soundness of the
slicer.

7.4 Demonstration: PSD example

In this section, we demonstrate our general approach for the reuse of assurance case artifacts on
an automotive subsystem, namely, the PSD system introduced in Section 2.1, which is shown to
be compliant with part of the ISO 26262 standard. First, we instantiate the framework for specific
models of the system and the assurance case. Afterwards, we present the example along with the
application of our framework on an evolution scenario.

7.4.1 Instantiating the Framework

For the purpose of the example presented here, we instantiate our general framework such that its
input is an initial specification (S) of a system given by a megamodel [Diskin et al.(2013)] comprised
of a class diagram, a sequence diagram and a relationship between them. This megamodel forms
the type (T) of our system specification. The assurance case A for the initial system is given by
a KAOS goal tree model (AC), along with traceability to the system megamodel. We are also
given an evolution scenario that creates an evolved specification (S′) along with a mapping from
the original specification (D). We assume we are given class diagram slice and merge operators,
similar to those presented in [Lano and Rahimi(2010)] and [Fahrenberg et al.(2014)], respectively.
We also assume we are given sequence diagram slice and merge operators similar to those presented in
[Noda et al.(2009)] and [Widl et al.(2012)], respectively. Finally, we assume that the slice and merge
operators, SliceT and MergeT , respectively, for the megamodel comprised of the class diagram
and sequence diagram and the relationship between them can be computed and are given. The
megamodel slice is then computed by following the approach presented in Chapter 5.

7.4.2 Application to PSD System

Consider our running example. Following the guidelines of ISO 26262, we consider the following
hazard which is obtained via appropriate hazard analysis techniques [ISO(2011)]: HE1: “the acti-
vation of the actuator while driving at a speed above 15 km/h, with or without a driver request.”.
Then, a safety goal is presented in such a way as to prevent the hazard from occurring: SG1: “Avoid
activating the actuator while the vehicle speed is greater than 15 km/h.”.

Once we have a safety goal defined, a set of functional safety requirements FSR1-5 are put in
place to help achieve SG11. FSR1 states that the VS ECU sends accurate vehicle speed information
to the AC ECU. Alternatively, this means that the incorrect transmission that the vehicle speed is

1For simplicity, we ignore the ASIL (Automotive Safety Integrity Level) assignments and decomposition and address
these later in Chapters 8 and 9.

107

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

less than or equal to 15 km/h is prevented. FSR2 states that the AC ECU does not power the
Actuator if the vehicle speed is greater than 15 km/h. FSR3 is a requirement that the VS ECU
sends accurate vehicle speed information to the Redundant Switch. FSR4 ensures the Redundant
Switch is in an open state if the vehicle speed is greater than 15 km/h. And finally, FSR5 ensures
that the Actuator operates only when powered by the AC ECU and the Redundant Switch is closed.

Figure 7.4 shows a KAOS goal tree that depicts the refinement of SG1 into FSR1-FSR5. This
refinement is based on the AND-refinement strategy. For simplicity, we skip the TSRs which are
decomposed into HWSRs and SWSRs (see Section 6.2.3), and we go directly from the FSRs to
the evidence nodes shown in ellipses. For FSR1, since this is a requirement related to the quality
of the vehicle speed sensor, evidence is given by some test results performed on the sensor. For
FSR2-5, these can be specified as properties that we can check on the system model using some
model-checking tool. Moreover, SG1 and FSR1-FSR5 are all expressed in temporal logic, and it
can be proven that (FSR1 ∧ FSR2 ∧ FSR3 ∧ FSR4 ∧ FSR5) ` SG1. Note that traceability to
the system model is given by referencing the parts of the goals that appear in the system model in
black font.

7.4.3 Evolution of PSD System

Up to this point, we have a description of our system specification S which is of type “megamodel of
class diagram and sequence diagram” T , safety case A which is of type KAOS (recall that a safety
case is a particular kind of assurance case), relationship R between S and A, and we are given slice
and merge operators for T (SliceT and MergeT) as discussed in Section 7.4.1. We now describe an
evolution scenario and demonstrate how our algorithm works on it.

Consider that the power sliding door system changes in order to decrease its integrity (change in
model quality). This could be due to the need to minimize costs and produce a cheaper vehicle. The
redundancy is therefore eliminated and the Redundant Switch is removed, as shown in Figure 7.5,
also borrowed from Part 10 of ISO 26262.

The dynamic VS ECU provides the AC ECU with the vehicle speed. The AC ECU monitors
the driver’s requests, tests if the vehicle speed is less than or equal to 15 km/h, and if so commands
the Actuator. The Actuator is activated when it is powered.

The parts with labels underlined in each of Figure 2.2 and Figure 2.3 represent the delta D. All
the underlined parts of the class diagram and the underlined parts in the top thread of the sequence
diagram are to be deleted (C0d); however, the underlined parts in the guards of the bottom two
threads of the sequence diagram mean that these guards will be changed (C0c). In this example, no
new parts are added in S′, so C0a is empty. S′ is the parts of S without the underlined components
in each of the class and sequence diagram.

Having all of the required parameters (SliceT , MergeT) and inputs to the algorithm (initial
spec S : T , assurance case A : KAOS, traceability map R, changed spec S′ : T and delta D =

〈C0a,C0d,C0c〉), we now demonstrate application of the reuse algorithm presented in Figure 7.2.

108

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Line 1 produces the traceability of the assurance case to the evolved system based on the changes
made. This is shown in Figure 7.6 by colouring the elements that reference the changed components
in black.

Lines 2-3 use the specific slicers and merge operators for our megamodel as described in Section 7.4.1
to expand the changed regions to all affected elements of S and S′. This means deleting or changing
elements based on deleted (C0d) and changed (C0c) elements, respectively. For example, the removal
of the Redundant Switch will impact the behaviour of the Actuator and therefore, its powered and
activated states. But the relation between the Actuator and VS ECU is not impacted by the removal
of the Redundant Switch, which means the speed reading given to the Actuator is not impacted. This
is something we would get from the system-level change impact analysis, and we assume that SliceT
is powerful enough to catch that.

Line 4 identifies the core subset of the original assurance case A that must be rechecked by tracing
from the results of Lines 2-3 back to the original assurance case A. C2recheck = (FSR2,E2).

Line 5 identifies the core subset of original assurance case A that must be revised by
tracing the set (C0d) across the traceability relation between S and A. C2revise =

(FSR3,E3,FSR4,E4,FSR5,E5).

Lines 6-7 expand the core subsets identified in lines 4 and 5 to produce the full rechecked/revised
subsets. In this example, SG1 is directly affected by the change and is marked ’revised’ on line
5. Yet it could be the case that is does not refer to elements being deleted/changed and is marked
’revised’ in line 6 because it is the parent claim of claims that have been marked ’revised’, and this
would be caught by the assurance case slicer. The results so far implicity mean that the set of
resuable components is = (FSR1,E1).

Lines 8-11 produce the impact set estimate ARMM which is an assurance case given by the KAOS tree
in Figure 7.6, along with the kind annotation kRMM which is represented by the following: checkmark
means that claim can be reused safely; circular arrow – that claim should be rechecked; exclamation
mark – that claim should be revised.

Finally, the Assurance Engineer will take the result of the algorithm, which is the annotated
goal tree in Figure 7.6, and make some decisions to produce an evolved safety case. For example,
she may decide that the top level safety goal remains the same, and yet she defines a new set of
FSRs that will help achieve this safety goal. FSR1 states that the VS ECU sends the accurate
vehicle speed information to the AC ECU (safely reused FSR1 from original system). FSR2
states that the AC ECU does not power the Actuator if the vehicle speed is greater than 15 km/h
(rechecked FSR2 from the original system and reused it as it still holds). FSR3 states that the
Actuator is activated only when powered by the AC ECU (revised FSR5 and removed part about
Redundant Switch). Note that both FSR3 and FSR4 from the original goal tree have been deleted
as they were revised and removed since they no longer impact the system or the top level safety
goal. A final goal tree for the evolved assurance case is given in Figure 7.7. We can then prove
that (FSR1∧FSR2∧FSR3) ` SG1. This is compliant with the ISO 26262 refinement guidelines

109

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

presented in Section 6.2.3, as desired.

7.5 Related Work

We identify three main categories of related work: work on model evolution, work on modeling of
assurances cases, and work on assurance case reuse due to system evolution. We describe them
below.

Model evolution. A survey on the evolution of UML models in model-driven software develop-
ment is presented in [Khalil and Dingel(2013)]. The scenarios that cause a model to change are
discussed and they form the basis for system evolution in our approach. Our approach is consistent
and complimentary to the existing work on model evolution, including theoretical work on model
synchronization [Diskin et al.(2014)]. However, we specifically focus on assurance cases as the target
of coevolution due to our interest in compliance management. An assurance case in this sense is not
a traditional model describing a system specification, but a model of an argument over the system
satisfying a property of interest, which differentiates our work from the traditional work on model
evolution.

Modeling of assurance cases A variety of methods have been proposed for modeling as-
surance cases. Goal models and requirements models are used in [Ghanavati et al.(2011)].
[Brunel and Cazin(2012)] presents a formal approach for safety argumentation using KAOS goal
models and applies it to a Complex UAV System. The GSN notation [Kelly and Weaver(2004)] has
also been proposed as a modeling notation for assurance cases. Our work builds on all of these ideas
and assumes that an assurance case can be modelled in a variety of ways as long as it presents the
core components – claims, arguments and evidence.

Assurance case reuse due to system evolution. [Fenn et al.(2007)] and
[Kelly and McDermid(1997)] also approach the problem of safety assessment after design changes.
[Fenn et al.(2007)] only defines the problem of incremental certification and offers some thoughts
on how to address it from the perspective of assurance cases represented in modular GSN diagrams.
[Kelly and McDermid(1997)] proposes the notion of patterns for building GSN diagrams. Our
model-based approach to assurance case reuse could use the structure of such patterns to identify
which parts of the GSN diagram can be reused.

7.6 Chapter Summary

In this chapter, we have presented a generic framework for the reuse of assurance case components
due to system evolution. We specified a model management reuse algorithm which uses known
model management operators (e.g., slice, merge) and produces a semi-automated solution to the
assurance case reuse problem. We evaluated our algorithm and demonstrated its applicability on an
automotive subsystem – a power sliding door system.

110

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

SG
1:
	A
vo
id
	a
c-
va
-n

g	
th
e	
ac
tu
at
or
	w
hi
le
	th

e	
ve
hi
cl
e	
sp
ee
d	
is	
gr
ea
te
r	t
ha
n	
15
	k
m
/h
	

	
G(
no
t(
a.
ac
ti
va
te
d	
an
d	
(s
en
se
d_
sp
ee
d	
>	
15

))
	a
nd
		

a.
se
ns
ed
_s
pe
ed

=v
eh
ic
le
_s
pe
ed

	a
nd
	s
.s
en
se
d_
sp
ee
d=

ve
hi
cl
e_
sp
ee
d)
	

	

FS
R1

:	T
he

	V
S	
EC

U
	se

nd
s	

th
e	
ac
cu
ra
te
	v
eh

ic
le
	

sp
ee
d	
in
fo
rm

a-
on

	to
	

th
e	
AC

	E
CU

	
	

G	
(a
.s
en
se
d_
sp
ee
d	

=	
ve
hi
cl
e_
sp
ee
d)

	

FS
R2

:	T
he

	A
C	
EC

U
	d
oe

s	
no

t	p
ow

er
	th

e	
ac
tu
at
or
	if
	

th
e	
ve
hi
cl
e	
sp
ee
d	
is	

gr
ea
te
r	t
ha
n	
15
	k
m
/h
	

	
G	
(a
.p
ow
er
ed

à
	

a.
se
ns
ed
_s
pe
ed
<=
15
)	

	

FS
R3

:	T
he

	V
S	
EC

U
	se

nd
s	

ac
cu
ra
te
	v
eh

ic
le
	sp

ee
d	

in
fo
rm

a-
on

	to
	th

e	
Re

du
nd

an
t	S

w
itc
h.
	

	
G	
(s
.s
en
se
d_
sp
ee
d	

=	
	

ve
hi
cl
e_
sp
ee
d)

	
	

FS
R4

:	T
he

	R
ed

un
da
nt
	

Sw
itc
h	
is	
in
	a
n	
op

en
	

st
at
e	
if	
th
e	
ve
hi
cl
e	

sp
ee
d	
is	
gr
ea
te
r	t
ha
n	
15
	

km
/h
.	

	
G	
(s
.s
en
se
d_
sp
ee
d>

15
	

à
	~
s.
cl
os
ed

)	
	

FS
R5

:	T
he

	a
ct
ua
to
r	i
s	

ac
-v
at
ed

	o
nl
y	
w
he

n	
po

w
er
ed

	b
y	
th
e	
AC

	E
CU

	
an
d	
th
e	
Re

du
nd

an
t	

Sw
itc
h	
is	
cl
os
ed

	
G	
(a
.a
ct
iv
at
ed
	à

	
(a
.p
ow
er
ed
	a
nd
	

s.
cl
os
ed
))
	

S
tra

te
gy

: A
N

D
 re

fin
em

en
t

E1
:	V

S	
Se
ns
or
	

Ac
cu
ra
cy
	T
es
t	

Re
su
lts
	

E2
:	M

od
el
	

Ch
ec
ki
ng
	S
ys
te
m
	

M
od

el
s	

E3
:	M

od
el
	

Ch
ec
ki
ng
	S
ys
te
m
	

M
od

el
s	

E4
:	M

od
el
	

Ch
ec
ki
ng
	S
ys
te
m
	

M
od

el
s	

E5
:	M

od
el
	

Ch
ec
ki
ng
	S
ys
te
m
	

M
od

el
s	

F
ig
ur
e
7.
4:

G
oa
lt
re
e
fo
r
sy
st
em

w
it
h
re
du

nd
an

cy
.

111

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 7.5: PSD system without redundancy [ISO(2011)].

112

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

SG
1:
	A
vo
id
	a
c-
va
-n

g	
th
e	
ac
tu
at
or
	w
hi
le
	th

e	
ve
hi
cl
e	
sp
ee
d	
is	
gr
ea
te
r	t
ha
n	
15
	k
m
/h
	

	
G(
no
t(

a.
ac
ti
va
te
d	

an
d	
(a

.s
en
se
d_
sp
ee
d	

>	
15
))
	a
nd
		

a.
se
ns
ed
_s
pe
ed

=v
eh
ic
le
_s
pe
ed

	a
nd
	s

.s
en
se
d_
sp
ee
d=

ve
hi
cl
e_
sp
ee
d	

)	
	

FS
R1

:	T
he

	V
S	
EC

U
	

se
nd

s	t
he

	a
cc
ur
at
e	

ve
hi
cl
e	
sp
ee
d	

in
fo
rm

a-
on

	to
	th

e	
AC

	
EC

U
	

	
G	
(a
.s
en
se
d_
sp
ee
d	

=	
ve
hi
cl
e_
sp
ee
d)

	

FS
R2

:	T
he

	A
C	
EC

U
	d
oe

s	
no

t	p
ow

er
	th

e	
ac
tu
at
or
	

if	
th
e	
ve
hi
cl
e	
sp
ee
d	
is	

gr
ea
te
r	t
ha
n	
15
	k
m
/h
	

	
G	
(a
.p
ow
er
ed

à
	

a.
se
ns
ed
_s

pe
ed

<=
15
)	

	

FS
R3

:	T
he

	V
S	
EC

U
	se

nd
s	

ac
cu
ra
te
	v
eh

ic
le
	sp

ee
d	

in
fo
rm

a-
on

	to
	th

e	
Re

du
nd

an
t	S

w
itc
h.
	

	
G	
(s
.s
en
se
d_
sp
ee
d	

=	
	

ve
hi
cl
e_
sp
ee
d)

	
	

S
tra

te
gy

: A
N

D
 re

fin
em

en
t

E1
:	V

S	
Se
ns
or
	

Ac
cu
ra
cy
	T
es
t	

Re
su
lts
	

E2
:	M

od
el
	

Ch
ec
ki
ng
	S
ys
te
m
	

M
od

el
s	

E3
:	M

od
el
	C
he

ck
in
g	

Sy
st
em

	M
od

el
s	

FS
R4

:	T
he

	R
ed

un
da
nt
	

Sw
itc
h	
is	
in
	a
n	
op

en
	

st
at
e	
if	
th
e	
ve
hi
cl
e	

sp
ee
d	
is	
gr
ea
te
r	t
ha
n	

15
	k
m
/h
.	

G(
s.
se
ns
ed
_s
pe
ed

>1
5	

à
	~
s.
cl
os
ed

)	
	

FS
R5

:	T
he

	a
ct
ua
to
r	i
s	

ac
-v
at
ed

	o
nl
y	
w
he

n	
po

w
er
ed

	b
y	
th
e	
AC

	E
CU

	
an
d	
th
e	
Re

du
nd

an
t	

Sw
itc
h	
is	
cl
os
ed

	
G	
(a
.a
ct
iv
at
ed

	à
	

(a
.p
ow
er
ed

	a
nd
	

s.
cl
os
ed

))
	

E4
:	M

od
el
	

Ch
ec
ki
ng
	S
ys
te
m
	

M
od

el
s	

E5
:	M

od
el
	C
he

ck
in
g	

Sy
st
em

	M
od

el
s	

✓

!

✓

!
!

!

!
!

!

✓ !

re
us

e
re

ch
ec

k
re

vi
se

F
ig
ur
e
7.
6:

G
oa
lt
re
e
af
te
r
ru
nn

in
g
th
e
ev
ol
ut
io
n
al
go
ri
th
m
.

113

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

SG
1:
	A
vo
id
	a
c-
va
-n

g	
th
e	
ac
tu
at
or
	w
hi
le
	th

e	
ve
hi
cl
e	
sp
ee
d	
is	

gr
ea
te
r	t
ha
n	
15
	k
m
/h
	

	
G(
no
t(
a.
ac
ti
va
te
d	

an
d	
(a
.s
en
se
d_
sp
ee
d	

>	
15
))
	

an
d	
a.
se
ns
ed
_s
pe
ed

=v
eh
ic
le
_s
pe
ed

)	
	

FS
R1

:	T
he

	V
S	
EC

U
	se

nd
s	t
he

	a
cc
ur
at
e	
ve
hi
cl
e	

sp
ee
d	
in
fo
rm

a-
on

	to
	th

e	
AC

	E
CU

	
	

G	
(a
.s
en
se
d_
sp
ee
d=

ve
hi
cl
e_
sp
ee
d)

	
	

FS
R2

:	T
he

	A
C	
EC

U
	d
oe

s	n
ot
	p
ow

er
	th

e	
ac
tu
at
or
	if
	th

e	
ve
hi
cl
e	
sp
ee
d	
is	
gr
ea
te
r	t
ha
n	

15
	k
m
/h
	

G	
(a
.p
ow
er
ed

à
	

a.
se
ns
ed
_s
pe
ed
<=
15
)	

FS
R3

:	T
he

	a
ct
ua
to
r	i
s	a

c-
va
te
d	
on

ly
	

w
he

n	
po

w
er
ed

	b
y	
th
e	
AC

	E
CU

	
	

G	
(a
.a
ct
iv
at
ed
	à

	a
.p
ow
er
ed
)	

E1
:	V

S	
Se
ns
or
	

Ac
cu
ra
cy
	T
es
t	R

es
ul
ts
	

E2
:	M

od
el
	C
he

ck
in
g	

Sy
st
em

	M
od

el
s	

S
tra

te
gy

: A
N

D
 re

fin
em

en
t

E3
:M

od
el
	C
he

ck
in
g	

Sy
st
em

	M
od

el
s	

F
ig
ur
e
7.
7:

F
in
al

go
al

tr
ee

fo
r
po

w
er

sl
id
in
g
do

or
sy
st
em

w
it
ho

ut
re
du

nd
an

cy
.

114

Chapter 8

Instantiating the Approach for Safety,
Automotive and GSN

In the previous chapter, we introduced a generic model-based assurance case change impact as-
sessment approach, that, while sound, was not particularly precise. In this chapter, we show how
exploiting knowledge about system changes, the particular safety case language, and the standard
can increase the precision of the impact assessment, reducing any unnecessary revision work required
by a safety engineer. We present six precision improvement techniques illustrated on a GSN safety
case used with ISO 26262.

The content of this chapter has been published in [Kokaly et al.(2017)].

8.1 Introduction

In this chapter, we build on our work in the previous chapter where we presented a model-based
approach to perform impact assessment on an assurance case due to system changes. Our technique
is applicable to assurance cases in general and ensures soundness, i.e., it does not miss any elements
that are impacted. Yet, the approach is conservative. i.e., it can flag elements as impacted when
they are not, resulting in “false positives”. Using knowledge about the system models, the safety
case language and the standard under consideration, the precision of our approach can be improved,
thus reducing unnecessary effort by the safety engineer.

Contributions. The contributions of this chapter are as follows:

1. We provide a model-based approach for impact assessment instantiated from Chapter 7 to
GSN safety cases used with ISO 26262.

2. We identify and describe six techniques for improving the precision of the impact assessment
approach.

115

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Organization. The rest of the chapter is organized as follows: Section 8.2 describes how our
model-based approach is instantiated for GSN safety cases linked to ISO 26262. Section 8.3 presents
the techniques that can be used to improve the precision of our model-based impact assessment
approach. Section 8.4 discusses related work, and Section 8.5 summarizes the chapter.

8.2 GSN Safety Case Impact Assessment

In this section, we present our generic safety case impact assessment approach from Chapter 7
specifically instantiated for GSN Safety Cases [Kelly and Weaver(2004)]. First, we define the GSN
metamodel and the result of the impact assessment algorithm. Then, we describe the algorithm,
which we name GSN-IA (GSN Impact Assessment), and the supporting model transformations.

8.2.1 GSN and Annotation Models

Figure 8.1 gives a fragment of the GSN metamodel extended with state information. A Goal has a
truth state and we assume that the truth state is two-valued truth (true, false) and that every goal
represents a claim about the system for which the truth can be determined (e.g., claim expressed
as a temporal logic statement). Thus, for the time being, we preclude more fine-grained measures
of truth (e.g., degrees of confidence) and goals that have fuzzy truth conditions, and leave as future
work. A Solution represents some kind of evidence about the system and has a validity state that
indicates whether the evidence is applicable or it is “stale” and must be regenerated (e.g., old test
results). A Strategy is used to decompose goals (conclusions) into subgoals (premises), and its
validity state indicates whether the strategy is a valid one for connecting its premise goals to its
conclusion. Finally, a Context element describes assumptions on the elements it connects to, and
also has a validity state.

We consider two ways that a change to the system can impact the elements of the safety case:
(1) revise – the content of the element may have to be revised because it referred to a system element
that has changed and the semantics of the content may have changed, and (2) recheck – the state
of the element must be rechecked because it may have changed. For example, the goal “The power
sliding door opens when the function DriverSwitch.RequestDoorOpen() is invoked and the vehicle
speed is not greater than 15km/h.” (see the class diagram in Figure 2.2 must be revised if the
function name is changed to CommandDoorOpen() since the goal now refers to an element that does
not exist. However, if some aspect of the system that affects door opening functionality changes,
then the goal must be rechecked because it may no longer hold. We assume that after a revision, a
recheck must take place; thus, at most one of these impacts can apply to an element. If an element
is not impacted by a system change we say that it can be reused and mark it as reuse.

The purpose of executing our impact assessment algorithm, GSN-IA, on a safety case is to
determine the impact type for each safety case element and to “mark” the element accordingly. This
marking is stored in a simple annotation model with the metamodel shown in Figure 8.2b. Thus, an

116

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 8.1: Fragment of GSN Metamodel ex-
tended with validity states.

Model	
Checking	

PSD:	CD	

Test	Results	

PSD:	SD	

(a) PSD System Megamodel

	
Status:	{“Revise”,”Recheck”,	
“Reuse”}	
Element:	GSN_Element	

Annota>on	

(b) Annotation Metamodel

Figure 8.2: PSD System Megamodel
and Annotation Metamodel.

annotation model consists of an Annotation element for each GSN element that contains the marking
as its Status attribute.

8.2.2 GSN-IA: GSN Impact Assessment Algorithm

Figure 8.3 shows the GSN-IA algorithm both in pseudocode and diagrammatically. The input to
GSN-IA is the initial system model S and a safety case A connected by a traceability mapping R,
the changed system S′ and the delta D recording the changes between S and S′. Specifically, D is
the triple 〈C0a,C0d,C0m〉 where C0a is the set of elements added in S′, C0d is the set of elements
deleted from S and C0m is the set of modified elements that appear in both S and S′. These
are shown in the top part of the diagram. GSN-IA is parameterized by the model slicer SliceSys

used to determine how change impact propagates within the system model – that is, we consider
this slicer to be given as an input to GSN-IA. Note that our approach readily applies not only to
singleton models but also to more realistic cases where the system is described by a heterogeneous
collection of related models as a megamodel. We have defined a sound slicing approach for this case
in Chapter 5. The output of GSN-IA is the model K that annotates A to indicate which elements
are marked for revise, recheck or reuse.

GSN-IA uses severalmodel transformations described below. In line 1, the Restrict transformation
extracts the subset R′A of traceability links from R that are also valid for S′. Lines 2 and 3 use the
model slicer SliceSys to expand the combined (using Union) set of changed elements in S and S′,
respectively, to all elements potentially impacted by the change. Then, in line 4, these potentially
impacted elements are traced to A across the traceability relationships using the Trace transformation
and combined to identify the subset of elements in A that must be rechecked. The subset of safety
case elements for revision is identified in line 5 by tracing the deleted and modified elements of S
to A. Note that the elements of A marked revise is a subset of those marked recheck. Only those
that are directly traceable to changed elements of S may require revision; others only need to be

117

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

rechecked. In lines 6 and 7, the appropriate GSN slicer SliceGSNV
(SliceGSNR

) is invoked to
propagate each of the revise (recheck) subsets to dependent elements in A which are added to the
recheck subset. Finally, line 8 invokes CreateAnnotation to construct the annotation model K from
the identified subsets of A. The elements of the subset C2revise are marked revise; the remaining
elements in the subset C3recheck2 are marked recheck, and all other elements are marked reuse.

Algorithm: GSN-IA
Params: 〈SliceSys〉
Input: initial system model S : Sys, safety case A : GSN ,

traceability map R, changed system megamodel S′ : Sys,
delta D = 〈C0a,C0d,C0m〉

Output: Annotation K
1: R′A ← Restrict(R,D)
2: C1dm← SliceSys(S, Union(C0d,C0m))
3: C1am← SliceSys(S

′, Union(C0a,C0m))
4: C2recheck ← Union(Trace(R,C1dm), Trace(R′A, C1am))
5: C2revise ← Trace(R,C0d)
6: C3recheck1 ← SliceGSNV

(A,C2revise)
7: C3recheck2 ← SliceGSNR

(A, Union(C2recheck, C3recheck1))
8: K ← CreateAnnotation(A,C3recheck2, C2revise)
9: return K

Figure 8.3: Algorithm for assessing impact of system changes on a GSN safety case.

Rule Element Dependent Element(s)
GSN1 Goal G 1. All goals/strategies linked to G on either end of the

IsSupportedBy relation.
2. All solutions linked to G via the IsSolvedBy relation.

GSN2 Strategy S All goals linked to S on either end of the IsSupportedBy
relation.

GSN3 Context C 1. All goals, strategies and solutions A that introduce C as
the context via the InContextOf relation.
2. All goals, strategies and solutions that inherit C as the
context (i.e., all children of A).

GSN4 Solution S All goals related to S via the IsSolvedBy relation.

Table 8.1: SliceGSNV
dependency rules.

Our SliceGSNV
slicer uses the dependency rules in Table 8.1 adapted from the set of propagation

rules described in [Kelly and McDermid(2001b)] to identify elements to be marked for rechecking.
For example, GSN1.1 says that all goals and strategies linked to a goal G on either end of the
IsSupportedBy relation are dependent on G (and are therefore marked “recheck”), if G is marked for
revision. On the other hand, SliceGSNR

only uses two dependency rules to identify elements to be

118

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

𝐴

𝐶3

recheck
𝐶2

6 7

𝑆 𝑆′

𝐴′
complete

change
𝐶1𝑎𝑚

𝐶0𝑚

𝐶0𝑎

𝐶1𝑑𝑚
𝐶0𝑚

𝐶0𝑑
𝐷

𝑅 𝑅′𝑅𝐴
′1

2
3

4
4

5

revise 8,9

Figure 8.4: Visualization of GSN-IA algorithm.

marked for rechecking: (1) Conclusion goals depend on premise goals they are indirectly linked to by
the same strategy, and (2) Goals depend on solutions they are linked to by the IsSolvedBy relation.

While SliceGSNV
only performs a one-step slice to find the revised elements’ direct dependencies,

SliceGSNR
works by continuously expanding a subset of elements in a GSN model to include its

dependent elements until no further expansion is possible.

8.2.3 Illustration: PSD Example

In our PSD example, the change in the system is the removal of the redundant switch, so the delta D

is 〈∅, (RedundantSwitch), ∅〉. The change directly affects goals B3-6 shown in Figure 8.5, which refer
to the Redundant Switch, and are therefore marked as revise by GSN-IA. The change also affects
solutions SN3-6 which would include information about the Redundant Switch. Goal B2 refers to the
AC ECU which is traced to the Redundant Switch in the PSD Class Diagram. SliceSys would have
detected that; therefore, B2 is marked recheck. Goal B1 does not link to any system components,
so it does not appear in the result of SliceSys, and is therefore marked reuse. The remaining parts
of the safety case elements are not traced directly to elements in the delta, but get marked using
SliceGSNV

and SliceGSNR
described earlier. The result of GSN-IA is the annotation given on top

of the original safety case and shown in Figure 8.5.

8.3 A More Precise Impact Assessment

The algorithm GSN-IA, presented in in Section 8.2, is conservative, i.e., more elements are marked
recheck and revise than potentially necessary to still be sound. In this section, we present six different

119

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
8.
5:

A
n
an

no
ta
te
d
G
SN

sa
fe
ty

ca
se

fo
r
P
SD

sy
st
em

af
te
r
ru
nn

in
g
G
SN

-I
A
.

120

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

CostIA = CostRevise + CostRecheck

= (CostGV
+ CostCV

+ CostSolV + CostStrV) + (CostGR
+ CostCR

+ CostSolR + CostStrR)

= (
∑

g∈GV

KV (1 + n(g)) +
∑
c∈CV

KV (1 + n(c)) +
∑

s∈SolV

KV +
∑

s∈StrV

KV)+

(
∑
g∈GR

KR +
∑
c∈CR

KR +
∑

s∈SolR

KR +
∑

s∈StrR

KR)

= KV (
∑

g∈GV

(1 + n(g)) +
∑
c∈CV

(1 + n(c)) + |SolV |+ |StrV |) +KR(|GR|+ |CR|+ |SolR|+ |StrR|)

= KV (
∑

g∈GV

(1 + n(g)) +
∑
c∈CV

(1 + n(c)) + |SolV |+ |StrV |) +KR(|ER|), where:

• CostRevise (CostRecheck): Cost of all revisions (rechecks).
• EV (ER): Number of total elements marked for revision (rechecking).
• GV (GR): Number of goals marked revise (recheck).
• CV (CR): Number of contexts marked revise (recheck).
• StrV (StrR): Number of strategies marked revise (recheck).
• SolV (SolR): Number of solutions marked for revise (recheck).
• n(x): Number of identifiers in x marked for revise.
• KV (KR): Cost of performing a revision (a recheck).

Figure 8.6: Cost equation for effort incurred after an impact assessment.

techniques, T1-T6, aimed to improve the precision of GSN-IA. Together, they form a variant of
GSN-IA, called GSN-IA-i (improved). The improvements in assigning annotation can be both at
the level of safety case elements (goals, strategies, contexts and solutions), or finer, at the level of
element identifiers. In order to validate GSN-IA-i, we use a metric CostIA to compute the cost
associated with revision and rechecking after impact assessment. The equation for CostIA is shown
in Figure 8.6. For each technique, we describe the current state of GSN-IA, show how to improve
the precision in each case (GSN-IA + Ti), present the prerequisites to ensure its soundness, and
illustrate it on the PSD example. The techniques are summarized in Table 8.2.

Technique Improvement
1 n(g) ↓, n(c) ↓
2 |GV | ↓, |CV | ↓
3 |ER| ↓
4 |ER| ↓
5 |ER| ↓
6 |ER| ↓

Table 8.2: GSN-IA +Ti techniques and improvements.

121

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

8.3.1 T1: Increasing the Granularity of Traceability between the System
and the Safety Case

GSN-IA: Trace links between the system and safety case provided to GSN-IA are assumed to link
entire safety case elements to system elements. That is, if a change occurs in any of the linked
system elements, the entire safety case element is marked for revision.

GSN-IA + T1: Trace links between the system and safety case connect identifiers in safety case
elements to corresponding system elements. Annotations are then assigned to safety case element
identifiers rather than to entire elements.

Improvement: With more fine-grained trace links, GSN-IA + T1 can identify which specific iden-
tifiers in a safety case element should be marked for revision, allowing the safety engineer to focus
on revising only those parts instead of the entire element. This in turn decreases the number of
unnecessary identifier revisions, i.e., n(g) and n(c), since only goals and context nodes are assumed
to have identifiers traceable to the system, thus decreasing the overall cost.

Prerequisites: A safety case language that clearly distinguishes identifiers from other text, ensuring
that the finer-grained trace links cover at least all the originally covered links in order to preserve
soundness of the technique.

Example: In the PSD system, the goal B3 “The VS ECU sends accurate vehicle speed information
to the Redundant Switch” can be traced to both VS ECU and Redundant Switch components.
Currently, when either VS ECU or Redundant Switch changes, GSN-IA marks the entire goal revise.
A more fine-grained traceability would link the identifier “VS ECU” to VS ECU in the system and the
identifier “Redundant Switch” to the Redundant Switch in the system. Now, if Redundant Switch
changes in the system but VS ECU does not, then only the identifier “Redundant Switch” in goal
B3 needs to be marked for revision, while the rest of the goal can be reused.

Discussion: Traceability between the system and its safety case can be established at different levels
of granularity. Formal safety case languages have clearly defined identifiers, thus they can easily
be traced to the appropriate system elements. For example, the author of [Kelly(1997)] defines a
six-step approach for creating well-formed GSN goal structures that in turn aid in a finer-grained
system traceability. For languages that only use natural language to describe goals, this fine grained
traceability may not be feasible.

8.3.2 T2: Identifying Sensitivity of Safety Case to System Changes

GSN-IA: Any change to a system element will cause its associated element in the safety case to be
marked for revision.

122

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

GSN-IA + T2: We mark the safety case element for revision only if it is required by the type of
system change.

Improvement: Unnecessary revisions of safety case element are minimized by identifying cases
where a system change should actually impact the element, and where it can be ignored. This in
turn decreases the number of goal (|GV |) and context (|CV |) elements marked for revision, decreasing
the overall cost.

Prerequisites: For each model type in the system megamodel, a sensitivity table that lists all
element types of that model and the kinds of changes that they can undergo, and, for each trace
link between the system and the safety case, the type of change the link is sensitive to. We assume
that the types of changes that occur as part of the system evolution are captured with each of
the corresponding changes in the Delta we are provided. Since the assignment of sensitivity to
change is performed by the domain expert, we require these assignments to be correct to ensure the
preservation of soundness.

Example: In the PSD System, the class Door in the Class Diagram model has an attribute state,
which is an enumeration with possible values open and closed. Assume a goal such as “If the door
state is open and the speed is greater than 15km/h, the driver is notified.”. Currently, if we add
a new option to the door state (e.g., “stuck”), that is considered a change in the door state, which
marks the goal for revision. However, such a change (an attribute enumeration extension) should
not impact the goal which is only concerned with the door state being open. If we do not add that
type of change in the sensitivity list of that particular trace link between system and goal, we are
able to ignore it and allow the goal to be reused.

Discussion: In the example above, if the goal had been “If the door state is not closed and the
speed is greater than 15km/h, the driver is notified.”, then the change should have impacted this
goal, as “stuck” is considered “not closed”. We assume that goals are structured in a way that specific
states are identified; if they are not, T2 cannot be used. Interestingly, in such a case, the goal would
have to be marked revise, which may allow detecting missing test cases or other evidence for the
“stuck” state.

8.3.3 T3: Understanding Semantics of Strategies

GST-IA: Any truth valuation change of the premise goals of a strategy lead to rechecking the
conclusion goal.

GSN-IA + T3: Here, we use semantic knowledge, i.e., which changes in truth values of the premises
do not affect the truth value of the conclusion.

123

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Improvement: We limit the unnecessary propagation of recheck annotations across the safety case,
thus |ER| decreases, causing the overall cost to decrease.

Prerequisites: Semantics of the strategies connecting premise and conclusion goals. This applies
to a fixed set of known strategies and not to strategies expressed in natural language. Soundness is
preserved since we are using sound semantics of logical connectives to make decisions.

Example: Assume in the PSD system that SG1 was connected to its subgoals B1-B6 via an “OR”
decomposition strategy (as opposed to an “AND”). Also assume that currently all of B1-B6 have
true states. This means that SG1 is also evaluated to true. If the system changes so that B5-B6 are
marked recheck, we don’t need to mark SG1 recheck since, due to disjunction, it must still be true.

Discussion: Marking a premise of an “OR” strategy recheck (while other premises are marked reuse)
can impact the overall confidence in the argument, as the premise can become false after the recheck
is performed. We do not take confidence into account at this point and consider it future work.

8.3.4 T4: Decoupling Revision from Rechecking

GSN-IA: Forces a recheck every time an element is marked revise.

GSN-IA + T4: By knowing circumstances under which revising a goal will not impact its truth
value, we require a recheck after a revision only when necessary.

Improvement: Eliminating unnecessary rechecks after revisions leads to possibly decreasing |ER|
and, therefore, the overall cost.

Prerequisites: An extra column in the sensitivity table described in T2 that lists if a particular
type of change affects the truth value of a goal. We require correctness of assignments of changes
to their effect on goal truth values as well as completeness of trace links to ensure soundness of the
approach.

Example: In the PSD system, changing the name of a system element such that it does not conflict
with other names (e.g., Redundant Switch is renamed to Extra Switch) will cause the goals referring
to that element (e.g., goal B3) to be marked for revision. However, since changing the name does not
impact the truth state of the goal, rechecking can be skipped. Other examples include capitalization
of names, spelling corrections or language translations, such that the renaming is done consistently
in both the system and the safety case.

8.3.5 T5: Strengthened Solutions do not Impact Associated Goals

GSN-IA: If a piece of evidence that a solution points to changes, the goal supported by that solution
is always marked recheck.

124

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

GSN-IA + T5: A change to a solution that strengthens it should not affect its support for
associated goals.

Improvement: Understanding which changes in solutions do not necessitate a rechecking of asso-
ciated goals can reduce the unnecessary goal rechecks. Thus, |ER| decreases causing the overall cost
to decrease.

Prerequisites: A sensitivity table (similar to T2) that identifies, for each type of evidence, the
types of changes it can undergo, and for each “isSupportedBy” link between a solution node pointing
to this kind of evidence and a goal, whether or not it is sensitive to each kind of change. Assignments
of changes to their effect on goal truth values need to be correct to guarantee soundness.

Example: Assume that B1 was “The VS ECU sends accurate vehicle speed information to the AC
ECU 90% of the time” and that it was linked to a solution with test cases which showed accuracy
90% of the time. If the system changes so that the test cases can now demonstrate accuracy 100%
of the time, this does not affect goal B1, meaning that it should not be marked for rechecking.

8.3.6 T6: Exploiting Knowledge about ASIL Work-Product Dependen-
cies and ASIL Propagation and Decomposition Rules

GSN-IA: Does not take into account how changes in the system impact ASILs.

GSN-IA + T6: Determine how ASILs should change due to system changes by using knowledge
about ASIL work-product dependencies and ASIL propagation and decomposition rules.

Improvement: Increase in precision due to distinguishing between changes to the goals and changes
to the ASILs, potentially decreasing the number of required goal rechecks. This decreases |ER|,
thereby decreasing the overall cost.

Prerequisites: Dependency tables from ISO 26262 Part 6 that describe the types of methods for
each work product required to achieve certain ASILs, and ASIL decomposition and propagation
rules as presented in ISO 26262 (refer to Section 6.2). We assume the soundness of the tables and
ASIL propagation and decomposition rules in order to guarantee soundness of our approach.

Example: We present two examples in the PSD system:
1. If method 1e (Back-to-back comparison test between models and code) used for unit testing

as part of the Software Verification Report work product for goal B1 is deleted, the ASIL for B1
supported by Sn1 changes from ASIL C to ASIL B based on the table in Figure 6.7. This would in
turn impact the ASIL on SG1, since the ASIL propagation rule no longer holds. In this case, claims
B1 and SG1 themselves are not impacted, only their ASIL levels are.

2. With redundancy present in the PSD system, ASIL decomposition was used to allocate

125

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

ASIL B to B2 and ASIL A to B4 (decomposed from ASIL C). B6 was added to demonstrate
sufficient independence of the Redundant Switch element from the AC ECU as required by ASIL
decomposition. When the system changes and the redundant switch is deleted, requirements B4
and B6 are marked for revision, causing the original decomposition rule to be impacted. B2 is only
marked recheck, but its ASIL level will be marked for revision (from ASIL B to ASIL C) to respect
ASIL propagation rules from SG1. The impact assessment now flags both C1_2 and Sn2 for revision.
Ideally, the safety engineer will revise Sn2 to be strengthened (e.g., unit testing method 1e is added)
to increase the ASIL on B2 to level C.

8.3.7 PSD Example Cost Comparison with T1

Assume that the revision cost KV is 2 units and the rechecking cost KR is 1 unit1. On the PSD
example, GSN-IA produced an annotation with 8 elements marked revise (4 goals, 4 solutions) and
4 marked recheck. Goals marked revise have the following number of identifiers: B3 has 3 (VS ECU,
vehicle speed, Redundant Switch), and similary, B4, B5 and B6 each respectively have 3, 6 and 2
identifiers. The cost incurred after GSN-IA is 2×((1+3)+(1+3)+(1+6)+(1+2)+4)+1×(4) = 48

units.
Using T1, for example, changes to the redundant switch link only to the Redundant Switch

identifier in goals B3-B6 (as opposed to the entire goals), dropping the number of revised elements
in each of these goals to only 1 (as opposed to marking all the identifiers in the goal for revision).
The cost after running GSN-IA + T1 is 2× ((1 + 1) + (1+ 1) + (1+ 1) + (1+ 1) + 4) + 1× (4) = 28

units, representing a clear improvement. Other techniques can be assessed in a similar manner.

8.4 Related Work

Model-based Approaches to Safety Case Management. Many methods for modeling safety
cases have been proposed, including goal models and requirements models [Ghanavati et al.(2011),
Brunel and Cazin(2012)] and GSN [Kelly and Weaver(2004)]. The latter is arguably the most widely
used model-based approach to improving the structure safety arguments. Building on GSN, Habli et.
al. [Habli et al.(2010)] examine how model-driven development can provide a basis for the systematic
generation of functional safety requirements and demonstrates how an automotive safety case can
be developed. Gallina [Gallina(2014)] proposes a model-driven safety certification method to derive
arguments as goal structures given in GSN from process models. The process is illustrated by
generating arguments in the context of ISO 26262. We consider this category of work complimentary
to ours; we do not focus on safety case construction but instead assume presence of a safety case
and focus on assessing the impact of system changes on it.

Safety Case Maintenance. Kelly [Kelly and McDermid(2001b)] presents a tool-supported pro-
cess, based on GSN, that facilitates a systematic safety case impact assessment. The work by Li

1In practice, KV > KR, since revision requires more effort than rechecking.

126

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

et. al. [Li(2016)] proposes an assessment process to specify typical steps in the safety case assess-
ment. The authors develop a graphical safety case editor for assessing GSN-based safety case and
use the Evidential Reasoning (ER) algorithm to assess the overall confidence in a safety case. Jara-
dat and Bate [Jaradat and Bate(2016)] present two techniques that use safety contracts to facilitate
maintenance of safety cases. As far as we are aware, none of the approaches provide a structured
model-based algorithm for impact assessment, or consider methods for improving its efficiency. In the
context of safety case maintenance, Bandur and McDermid [Bandur and McDermid(2015)] present
a formalization of a logical subset of GSN with the aim of revealing the conditions which must be
true in order to guarantee the internal consistency of a safety argument. This provides a sound basis
for understanding logical relationships between components of a safety case and thus to enhance
impact assessment.

8.5 Chapter Summary

In this chapter, we showed how using various sources of knowledge about the system changes, the
particular safety case language and the safety standard can increase the precision of the previously
presented impact assessment technique in Chapter 7, thus reducing the work required by the safety
engineer. We presented six precision improvement techniques and illustrated our ideas using a GSN
safety case used with ISO 26262.

127

Part IV

Tool Support & Validation

128

Chapter 9

Tool Support: MMINT-A

In this chapter, we present a tool MMINT-A that can, in the context of model-driven development,
assess the impact of system changes on their assurance cases. To achieve this, MMINT-A implements
the impact assessment algorithm from Chapter 8, and incorporates a graphical assurance case editor,
an annotation mechanism, and summary tables for the assessment results. We demonstrate the usage
of MMINT-A on the PSD system we have considered in this thesis.

The content of this chapter was published in [Fung et al.(2018)], where my contribution focused
on guiding the structure and content of the paper, including creation of the example presented. The
specifications for the tool came from my own work and ideas, and the development was done by the
first author. I participated in the testing and evaluation of the tool.

9.1 Introduction

To facilitate the assurance case change impact assessment process, we have developed a collection of
extensions to the MMINT model management framework presented in Chapter 3 to support auto-
mated Change Impact Assessment (CIA) on ACs, focusing specifically on the automotive domain.
The resulting tool, MMINT-A (which is available at https://github.com/nlsfung/MMINT), identi-
fies how different parts of an AC may be impacted by some given changes to the associated system,
whether they can be reused in the updated AC or must be revised or rechecked for either state or
content validity. Thus, the engineer can direct her efforts to reviewing and updating the appropriate
parts of the AC.

Contributions and Organization. The main contribution of this chapter is the MMINT-A tool
along with a description of its features. Section 9.2 lists the main requirements for the tool. We
describe the extensions on top of MMINT to create MMINT-A in Section 9.3, and demonstrate its
features using the PSD example in Section 9.4. We discuss related work in Section 9.5 and conclude
in Section 9.6.

129

https://github.com/nlsfung/MMINT

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

9.2 MMINT-A Requirements

The main high-level requirements for MMINT-A are:

1. The tool shall support an assurance case metamodel as defined in Chapter 8.

2. The tool shall provide an assurance case editor for creating ACs conforming to the defined
metamodel and the GSN concrete syntax in [GSN(2011)].

3. The tool shall provide the user with a way to trace assurance case elements to system models
(which appear as part of a megamodel in MMINT).

4. The tool shall support the notions of ASIL and ASIL decomposition from the automotive
domain and model them as part of the AC metamodel, allowing the user to define ASILs in
the editor provided.

5. The tool shall provide the user with a way to specify modified, deleted and added elements in
the system models.

6. The tool shall implement the AC impact assessment workflow defined in Chapter 8.

7. The tool shall support syntactic checks that are not enforced automatically by the AC meta-
model but are nevertheless required for well-formed ACs.

8. The tool shall provide the user a way to set the content validity of each node in the AC.

9. The tool shall present visualization of the impacted AC elements via revise, recheck, and reuse
annotations.

10. The tool shall report on percentages of elements marked by each annotation.

11. The tool shall provide the user with information on backward traceability from annotated AC
elements to the originating elements causing the impact from the system models.

12. The tool shall provide the user with a report on the cost of performing the impact assessment
based on the cost formula defined in Chapter 8.

9.3 Extensions for MMINT-A

Recall from Chapter 3 that MMINT is built on top of the Eclipse platform and is designed for
managing collections of related models (i.e., megamodels) that are represented as MIDs (Model
Interconnection Diagrams). In particular, MMINT supports both the “instance” level, in which
models, megamodels and their relations are instantiated and manipulated, as well as the “type” level,
in which the necessary metamodels, relation types and model operators are defined. For example,
a metamodel for UML class diagrams can be created on top of the Eclipse platform and plugged

130

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

into MMINT via the type support runtime layer. The Type MID would then be populated with
metadata about the new metamodel, allowing UML class diagrams to be created and manipulated
inside megamodels using the MID editor and the ModelRel (model relation) editor. With the
workflow editor, new operators can be created by connecting pre-defined model operators into a
directed, acyclic network, with the roots being the input models to the workflow and the leaves
being the outputs.

MMINT-A is comprised of a collection of extensions to MMINT for instantiating and operating
on ACs. However, since the impact assessment is driven by changes to the system, MMINT-A
also requires the availability of appropriate metamodels (and editors) for instantiating the desired
system models. Availability of operators, such as slicers, for CIA on individual system models is also
assumed since they form part of the overall procedure executed by MMINT-A. Currently, MMINT
supports CIA on simplified versions of UML class diagrams (CD), sequence diagrams (SD) and
state machines (SM), which involved: (1) creating the metamodels using EMF (Eclipse Modeling
Framework) [Eclipse(2018a)], (2) creating the corresponding editors using Sirius [Eclipse(2018b)],
(3) implementing each slicer as a Java class, and (4) incorporating them into MMINT by editing
their plug-in files.

9.3.1 Assurance Case Metamodel

Our metamodel for ACs (Figure 9.1) is derived from the Goal Structuring Notation (GSN) version
1 [Attwood et al.(2011)] in which an AC is modelled as a directed acyclic network of six types of
elements: goals, strategies, solutions, contexts, justifications and assumptions. The former three
form the core of an AC and are connected to each other via “supported-by” relations, with a top
level goal as the root and the solutions as leaves, while the latter three are connected to the core via
“in-context-of” relations. Each of these elements can also be given a unique identifier and description
in accordance to the standard, but we extended it by adding states to goals and solutions which,
although unnecessary for CIA in MMINT-A, allow the user to indicate, respectively, their truth
values and the currentness of their evidence as part of the overall change management process.

Furthermore, to capture the CIA results, we introduced annotations to our metamodel, which
we previously modelled in Chapter 8 as comprising three types: Reuse, to indicate that the element
is not impacted; Recheck, to indicate that the element may no longer be valid and needs a recheck;
and Revise, to indicate that the element’s contents require changing. However, in MMINT-A, we
also distinguish between: (1) recheck content, which indicates that the element’s content may (but
not necessarily) require revision, and (2) recheck state, which is applicable to goals and solutions
only and indicates that the element’s content, while reusable, may no longer be supported by the
underlying sub-goals or evidence.

Focusing on the automotive domain, certain domain-specific features were also incorporated into
our metamodel that can be disregarded in general. Specifically, goals are modelled to contain an
optional ASIL (automotive safety integrity level) attribute that captures the inherent safety risk of

131

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

ArgumentElement

id : EString
description : EString
contentValidity : ValidityValue

CoreElement

DecomposableCoreElement

ContextualElement

SupportedBy

InContextOf

Goal

Strategy

Solution

Context

AssuranceCase

Justification

BasicStrategy

ASILDecompositionStrategy

StatefulElement

stateValidity : ValidityValue

ASIL

value : ASILLevel

ASILfulElement

Assumption

ImpactAnnotation

type : ImpactType
source : EString

supports 0..*

inContextOf 0..*

contextOf
1..*

goals

0..*

strategies 0..*

solutions

0..*

contexts
0..*

context
1..1

justifications
0..*

supportedBy
0..*

premise 1..1

asil 0..1

assumptions
0..*

status

0..1
status

0..1

Figure 9.1: The AC metamodel in MMINT-A. Concrete and abstract classes are distinguished with
black and grey borders, respectively.

the associated system component and is annotated separately from its goal for CIA. ASILs of sub-
goals are generally inherited from their parent goals, but in accordance to ISO 26262 [ISO(2011)],
they can be decomposed following certain conditions, which are captured in MMINT-A using a
sub-type of Strategy, namely, ASILDecompositionStrategy.

9.3.2 Assurance Case Editor

Figure 9.2 shows a screenshot of the editor that was implemented on top of Sirius and comprises
multiple “views” for creating and visualizing ACs. In the main view (left), ACs are visualized

132

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
9.
2:

Sc
re
en
sh
ot

of
th
e
A
C

ed
it
or

in
M
M
IN

T
-A

.
T
he

m
ai
n
gr
ap

hi
ca
lv

ie
w

is
on

th
e
le
ft
,t
he

st
at
is
ti
cs

ta
bl
e
up

pe
r
ri
gh

t,
an

d
th
e

im
pa

ct
tr
ac
e
ta
bl
e
lo
w
er

ri
gh

t.

133

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

in accordance to the GSN standard but with additional decorations for ASILs and annotations.
In particular, ASILs are represented as small, rectangular nodes bordering the goal nodes, while
annotations are represented as exclamation marks, circular arrows and check marks to denote Revise,
Recheck and Reuse, respectively. The subscripts “C” and “S” are used to disambiguate Recheck
Content and Recheck State.

Although compliant with the GSN standard, this graphical representation may not always be
the most appropriate. The user may wish to, for example, quickly analyze the amount of impact
different changes have on an assurance case or review the source of each annotation. Therefore, to
address these use cases, we created two tabular representations to summarize the results of the CIA:

• Annotation report support. This helps address the question: How many elements are
marked revise/recheck/reuse in the safety case following a particular change (i.e., what is the
overall impact of a change on the reusability of a safety case)? The resulting table is shown
in the upper right in Figure 9.2. It displays the number (and percentage) of each type of node
that are annotated for revision, rechecking or reuse.

• Backward traceability support. This helps address the question: What system elements
caused a safety case element to be marked “revise”? The resulting table is shown in the lower
right in Figure 9.2. It displays the type of impact for each node and the source of the impact.
For example, Figure 9.2 shows that goal G1.2 must be revised because of a change in the class
Redundant Switch.

9.3.3 Assurance Case Slicers

As part of our overall AC CIA, we make use of two AC slicers based on the GSN slicers presented
in Chapter 8. The Revise Slicer uses rules V1 to V4 in Table 9.1 to identify elements to be rechecked
given an element marked for revision (which applies to the content and not the state of an element).
The Recheck Slicer uses the rules C1 and C2 in Table 9.1 to identify elements to be rechecked given
another element marked for rechecking. Note that the Recheck Slicer applies only to state rechecks
and that while the Revise Slicer only performs a one-step slice to find direct dependencies of the
revised elements, the Recheck Slicer recursively expands a subset of AC elements to include its
dependent elements until closure is reached. The main changes from the GSN slicing rules presented
in Chapter 8 are the following:

1. The updated rules differentiate between content and state. Content applies to all AC elements
and refers to the text, while state applies only to goals (representing a truth value) and solutions
(indicates whether the evidence is up-to-date or not).

2. The updated rules differentiate between revise (on content only) and recheck (on content or
state).

134

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Rule Element Dependent Element(s) (Annotation)
V1 Goal G All strategies linked to G on either end of the IsSupportedBy

relation (recheck content).
V2 Strategy S 1. All goals that S supports (recheck state).

2. All goals or solutions that support S (recheck content).
3. All justifications that are used to justify S (recheck con-
tent).

V3 Context C 1. All goals, strategies and solutions A that introduce C as
the context via the InContextOf relation (recheck content).
2. All goals, strategies and solutions that inherit C as the
context (i.e., all children of A) (recheck content).

V4 Solution S All strategies that S supports (recheck content).
C1 Goal G All parent goals that are linked to G by the same strategy

(recheck content).
C2 Solution S All goals that are linked to S by the same strategy (recheck

content).

Table 9.1: The assurance case slicer dependency rules.

Additionally, since we consider ASIL as its own element in the AC, the updated rules support
ASIL-aware impact assessment (e.g., by removing a redundancy mechanism, an ASIL decomposition
strategy is no longer valid, and ASILs of the corresponding goals must also be rechecked). The rule
introduced is the following: If a subgoal of an ASIL decomposition strategy is marked for revision,
we mark its ASIL for recheck content, the linked strategy for recheck content and the independence
goal for recheck content (unless it is marked for revise content due to direct traceability with the
system). To implement this in the tool, we introduce a special type of strategy (ASIL decomposition
strategy) which has two sub-goals and an independence goal as seen in Figure 9.1.

9.3.4 Change Impact Assessment Algorithm

MMINT-A implements our AC CIA algorithm from Chapter 8 which accepts as inputs the original
and the updated system megamodel, the set of changes made (i.e., additions, deletions and modifica-
tions) as well as the AC and its relation to the megamodel. However, the MMINT-A implementation
assumes that additions can only impact other model elements indirectly via the modifications and
deletions required to accommodate them. Thus, the implemented algorithm (see Figure 9.4) does
not require the added model elements nor the updated system megamodel.

This algorithm is encoded as a MMINT workflow with 13 model operators as seen in Fig-
ure 9.3. To ensure that the workflow is independent of any specific model types for the input system
megamodel, it utilizes higher-level collection-based operators (particularly, map from Chapter 4),
enabling it to apply the appropriate operators to the appropriate models in the system megamodel
at runtime.

135

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
9.
3:

T
he

as
su
ra
nc
e
ca
se

C
IA

w
or
kfl

ow
in

M
M
IN

T

136

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

1. Perform CIA on the system megamodel itself.

2. Propagate results to the AC to obtain the elements requiring content recheck.

3. Identify AC elements requiring revision from the deleted system model elements.

4. Apply Revise Slicer on results of step 3.

5. Merge and apply Recheck Slicer on results of steps 2 and 4.

6. Annotate the AC. The results of steps 2, 3 and 5 are marked for content recheck, revision, and
state recheck, respectively.

Figure 9.4: MMINT-A impact assessment algorithm.

ReduntantSwitch

- closed
- sensed_speed

+ requestSpeed

Door

- open

VS ECU

- sensed_speed

+ getSpeed

Actuator

- powered
- activated

+ openDoor
+ closeDoor

AC ECU

- sensed_speed

+ requestSpeed

Driver Switch

+ requestDoorOpen
+ requestDoorClose

commuticatesWith

powers

communicatesWith
controls

communicatesWith

controls

 : VS ECU : AC ECU : Actuator : Driver
Switch

 : Redundant
Switch

requestSpeed

requestDoorOpen
requestSpeed

sensed_speed

requestSpeed

sensed_speed

requestDoorClose

closed] activated = true, openDoor

[if sensed_speed <=15 and powered and
closed] activated = true, closeDoor

[if sensed_speed <= 15] s.closed else s.open

[if sensed_speed <=15 and powered and

(a) Class diagram (b) Sequence diagram

Figure 9.5: Models for the PSD system in MMINT-A

9.4 Power Sliding Door Example

As part of our evaluation process, we used MMINT-A on the PSD running example. The system is
modelled using a class diagram (CD) and a sequence diagram (SD) as shown in Figure 9.5, and it
is associated with an AC comprising 22 nodes as shown later in Figure 9.6.

The overall goal (G1) for system safety is decomposed into four main subgoals (G1.1 to G1.4),
each of which is decomposed further until they are directly supported by the appropriate evidence.
The third subgoal (G1.3) illustrates ASIL decomposition, i.e., how introducing an independent

137

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

redundant switch to the system allows a goal with a high ASIL (C) to be satisfied by subgoals with
a lower ASIL in accordance to ISO 26262.

For the case study, we suppose that the redundant switch is removed, and we wish to analyze its
potential impact on the AC. To achieve this using MMINT-A, we created a megamodel for the PSD
by incorporating the CD and SD models into a MID and adding a relation between them using the
ModelRel editor; the appropriate trace links to include in the relation were determined by matching
the names of the elements in the class and sequence diagrams. Relations were created similarly
between the AC and the system megamodel, all of which formed the inputs to the CIA algorithm,
with the original change being the deletion of the redundant switch class and all of its attributes
and operations.

The results of executing the workflow inMMINT-A (see Figure 9.6) agree with the manual results
presented in Chapter 8. For example, Figure 9.6 shows that all AC elements that refer directly to the
redundant switch must be revised, while any related elements must be rechecked for their content
(and/or state) validity. Also, by removing the redundancy mechanism, the ASIL decomposition
strategy is no longer valid, thus the ASILs of the corresponding goals must also be revised.

9.5 Related Work

As we showed in the survey presented in Section 6.4, a multitude of tools have been developed
over the past two decades to support various aspects of working with ACs, many of which can
perform CIA like MMINT-A. For example, D-MILS [University of York(2015)] and AutoFocus
3 (ExplicitCase) [Cârlan et al.(2017)] enable CIA by supporting trace links between system arte-
facts and the system AC, but unlike MMINT-A, they do not employ slicers to detect indirect
impacts of change. Other tools, such as ENTRUST [Calinescu et al.(2017)] and Evidential Tool Bus
(ETB) [Cruanes et al.(2013)], remove the need for CIA altogether by automatically propagating
changes in the system artefacts to the AC. However, ENTRUST only supports certain changes to
the AC, while ECB can only propagate changes to the underlying evidence.

Although the CIA functionality proposed and implemented in MMINT-A can be implemented on
top of existing AC tools, these tools are generally highly specialized, making it impractical to adapt
them for the automotive domain. On the other hand, before MMINT-A can become a usable tool
itself, it must be extended with many “standard” features such as strong support for AC creation
and assessment. In fact, unlike D-MILS and AutoFocus 3, MMINT-A can only support trace links to
system models; other system artefacts such as natural language documents are not yet incorporated
into the tool.

9.6 Chapter Summary

In this chapter, we presented the features of MMINT-A and demonstrated how it supports the
maintenance of ACs, specifically by performing CIA on them. However, since MMINT-A is built

138

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

G
1

A
vo

id
 a

ct
iv

at
in

g
th

e
ac

tu
at

or
 w

hi
le

 th
e

ve
hi

cl
e

sp

ee
d

is
 g

re
at

er
 th

an
 1

5

km
/h

.
A

S
IL

C

G
1.

1
T

he
 V

S
 E

C
U

 s
en

ds

th
e

ac
cu

ra
te

ve
h

ic
le

sp
ee

d
in

fo
rm

at
io

n
to

th
e

A
C

 E
C

U
.

A
S

IL

C

G
2.

1
T

he
A

C
E

C
U

do
es

no
t p

ow
er

 th
e

ac
tu

at
or

 if

th
e

ve
h

ic
le

 s
pe

ed
 is

gr

ea
te

r
th

an
 1

5
km

/h
.

A
S

IL B

G
1.

2
T

he
 V

S
 E

C
U

 s
en

ds

ac
cu

ra
te

ve
h

ic
le

sp
ee

d
in

fo
rm

at
io

n
to

 th
e

R
ed

un
d

an
t S

w
itc

h.
A

S
IL

C

G
2.

2
T

he
 R

ed
u

nd
an

t
S

w
itc

h
is

in
an

op
en

st
at

e
if

th
e

ve
hi

cl
e

sp
ee

d
is

gr

ea
te

r
th

an
 1

5k
m

/h
.

A
S

IL

A

G
1.

4
T

he
 a

ct
ua

to
r

is

ac
tu

at
ed

 o
nl

y
w

he
n

po
w

er
ed

 b
y

th
e

A
C

 E
C

U

an
d

th
e

R
ed

u
nd

an
t S

w
itc

h
is

cl
os

ed
.

A
S

IL

C

G
2.

3
S

uf
fic

ie
nt

in
de

pe
nd

en
ce

 o
f t

he
A

C

E
C

U
 a

nd
 th

e
R

ed
un

da
nt

S

w
itc

h
is

 s
ho

w
n.

A
S

IL C

G
1.

3
T

he
 a

ct
ua

to
r

is
 n

ot

po
w

er
ed

if
th

e
ve

hi
cl

e
sp

ee
d

is
 g

re
at

er
 th

an
 1

5

km
/h

A
S

IL

C

S
1

D
ec

om
po

se
by

A
N

D
re

fin
em

en
t.

S
1.

1
S

ol
ut

io
n

ha
s

be
e

n
sh

ow
n

to

ha
ve

 s
uf

fic
ie

nt
 c

ov
er

ag
e

to
 te

st

go
al

 G
1.

1.

S
2.

1
S

ol
ut

io
n

ha
s

be
e

n
sh

ow
n

to

ha
ve

 s
uf

fic
ie

nt
 c

ov
er

ag
e

to
 te

st

go
al

 G
2.

1.

S
1.

3
S

ol
ut

io
n

ha
s

be
e

n
sh

ow
n

to

ha
ve

 s
uf

fic
ie

nt
 c

ov
er

ag
e

to
 te

st

go
al

 G
1.

2.

S
2.

2
S

ol
ut

io
n

ha
s

be
e

n
sh

ow
n

to

ha
ve

 s
uf

fic
ie

nt
 c

ov
er

ag
e

to
 te

st

go
al

 G
2.

2.

S
1.

4
S

ol
ut

io
n

ha
s

be
e

n
sh

ow
n

to

ha
ve

 s
uf

fic
ie

nt
 c

ov
er

ag
e

to
 te

st

go
al

 G
1.

4. S
2.

3
S

ol
ut

io
n

ha
s

be
en

sh
ow

n
to

ha
ve

 s
uf

fic
ie

nt
 s

up
po

rt
 fo

r
G

2.
3.

S
2

A
S

IL
 D

ec
om

po
si

tio
n

S
tr

at
eg

y
(C

to
B

an
d

A
)

S
n1

.1
S

of
tw

ar
e

V
er

ifi
ca

tio
n

R
ep

or
t

(9
.5

.3
)

-
U

ni
t

Te
st

in
g

M
e

th
od

s
1a

, 1
b,

 1
e.

S
n2

.1
S

of
tw

ar
e

V
er

ifi
ca

tio
n

R
ep

or
t

(9
.5

.3
)

-
U

ni
t

Te
st

in
g

M
e

th
od

s
1a

, 1
b.

S
n1

.3
 S

o
ftw

ar
e

V
er

ifi
ca

tio
n

R
ep

or
t

(9
.5

.3
)

-
U

ni
t

Te
st

in
g

M
e

th
od

s
1a

, 1
b,

 1
e.

S
n2

.2
S

of
tw

ar
e

V
er

ifi
ca

tio
n

R
ep

or
t

(9
.5

.3
)

-
U

ni
t

Te
st

in
g

M
e

th
od

s
1a

, 1
b.

S
n1

.4
S

of
tw

ar
e

V
er

ifi
ca

tio
n

R
ep

or
t

(9
.5

.3
)

-
U

ni
t

Te
st

in
g

M
e

th
od

s
1a

, 1
b,

 1
e.

S
n2

.3
 E

xp
er

t
Ju

dg
em

en
t.

-
R

eu
se

-
R

ev
is

e

-
R

ec
he

ck
 S

ta
te

-
R

ec
he

ck
 C

o
nt

en
t

F
ig
ur
e
9.
6:

T
he

P
SD

A
C

af
te
r
ch
an

ge
im

pa
ct

as
se
ss
m
en
t
in

M
M
IN

T
-A

.

139

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

on top of the generic MMINT model management framework, it can be easily extended beyond
CIA to address other scenarios, including those presented in Chapter 1 for regulatory compliance
management. In fact, with the appropriate changes to the AC metamodel, MMINT-A can also be
applied to non-automotive domains, but because of the focus on models, MMINT-A (and MMINT)
are best suited for model-based software systems.

140

Chapter 10

Case Study: Lane Management
System

In this chapter, we present the use of MMINT-A on a Lane Management System (LMS) from the
automotive domain. We start by explaining the goal of the case study in Section 10.1. We describe
the LMS system in Section 10.2 and present a safety case we have constructed for it in Section 10.3.
We demonstrate the use of the tool on various change scenarios over LMS in Section 10.4. We
conclude with a summary in Section 10.5.

The LMS specification and models in this chapter came from the literature [Blazy et al.(2014)],
the safety case, the change scenarios and results are contributions of this thesis.

10.1 Introduction

In Chapter 9, we demonstrated the use of MMINT-A on the running PSD example. In this chapter,
we apply our approach and MMINT-A on a larger system, namely, the Lane Management System
(LMS) from the automotive domain. LMS is comprised of one class diagram, four sequence diagrams
and four state machines (a total of nine system design models), with a 100-node assurance case (we
consider ASILs their own nodes). We will discuss LMS in more detail in Section 10.2.

Recall that the goal of performing CIA on an assurance case, given a change in the system,
is to compute a set of (potentially) impacted safety case elements that includes: all the actually
impacted elements (high recall) and very few of the non-impacted elements (high precision), thus
decreasing the cost associated with the effort of performing a manual impact assessment.

The research question that we wish to address in this case study is: Given different kinds of system
design changes on the LMS system, does the application of our assurance case impact assessment
approach indeed reduce the effort/cost of performing CIA compared to a manual approach?

141

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

To do so, we use the cost formula derived in Chapter 8 and shown in Figure 8.6, and we make
the following modifications and assumptions for simplification:

1. We do not distinguish between the cost of rechecking content and rechecking state of a node.

2. We assume for the sake of computation that KV = 2 and KR = 1 (in practice, KV > KR,
since revision requires more effort than rechecking).

3. Since we consider ASIL nodes separately in MMINT-A, we add to the formula CostAV (ASIL
revise) and CostAR (ASIL recheck) with KV (KR) being the cost of performing an ASIL revise
(recheck), and AV (AR) being the number of ASIL nodes marked revise (recheck). We include
each of AV and AR in EV and ER, respectively, absorbing the ASIL annotations in the total
number of overall element annotations.

4. We assume that a fine-grained traceability (i.e., traceability to individual identifiers in a GSN
element rather than to the whole element) is not available, and therefore n(x) = 0 for all x.

With the above applied to the formula, we end up with the following simplified version of the
cost equation, which we will use in the scenarios considered in this case study in Section 10.4.

CostCIA = KV × EV +KR × ER

We estimate the cost of performing a manual impact assessment by assuming that each node will
have to be rechecked by the safety engineer to assess its content/state validity (we do not distinguish
between the two w.r.t. their cost). Therefore, we compute the cost of manual impact assessment on
a GSN safety case with E elements as follows:

CostMIA = KR × E

We are aware that there may be more intelligent ways to do a manual impact assessment on a
safety case, but since this may vary from one person to another depending on their expertise, and
since this hasn’t been systematically studied, we have gone with a worst-case scenario approximation.

Next, we describe the LMS system before using it with MMINT-A.

10.2 The Lane Management System (LMS)

LMS describes a lane management system from the automotive domain. It is considered an ADAS
(Advanced Driver Assistance System) system, which is safety critical and subject to the ISO 26262
standard.

The Software Requirements Specification (SRS) document for LMS from [Blazy et al.(2014)] de-
scribes LMS as consisting of several subcomponents. These subcomponents include a Lane Centering

142

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

System (LCS), a Lane Departure Warning System (LDWS) and a Lane Keeping System (LKS). The
LMS is designed to be placed in automobiles as a safety feature with the goal of keeping the driver’s
vehicle in or near the centre of their lane to avoid crashes caused by drivers who become distracted
and therefore inattentive to what lane they are in. The LDWS will issue warnings to the driver
when the system determines that a lane change was unintentional. The LCS and LKS will work
together to take control of the vehicle and adjust to a driver-defined centre of the lane. The overall
system will make use of output data from several already-developed subsystems including: Camera
Sensing Subsystem, Image Processing Subsystem, Vehicle State Estimation System, Path Prediction
Subsystem, Driver Interface Subsystem and a Supervisory Control System. The LMS will be able
to take control of the vehicle’s braking and steering systems; however, the system will not be able
to accelerate. Finally, the LMS will work at speeds above five miles per hour only.

LMS is comprised of 1 class diagram, 4 sequence diagrams and 4 state machines (a total of 9
system design models), which are all provided in Appendix B along with traceability tables that
show the trace links between them. Figure B.3, specifically, shows the various subcomponents and
how they are related. A megamodel of the LMS system in MMINT can be seen in Figure 10.1.

In the following section, we explain how a high level hazard analysis was done on LMS in order
to identify safety goals used to create a safety case for the system.

10.3 LMS Safety Case

The first step in creating a safety case is identifying the system hazards by means of a hazard
analysis activity. A hazard, as defined in ISO 26262 [ISO(2011)], is a potential source of harm
(physical injury or damage to the health of persons) caused by malfunctioning behaviour (failure or
unintended behaviour of an item with respect to its design intent) of the item (in this case the LMS
system under consideration).

As described in ISO 26262 [ISO(2011)], a hazard analysis and risk assessment method is typically
used to identify and categorize hazardous events of items and to specify safety goals and ASILs
related to the prevention or mitigation of the associated hazards in order to avoid unreasonable risk.
For this, the item is evaluated with regard to its functional safety. Safety goals and their assigned
ASIL are determined by a systematic evaluation of hazardous events. The ASIL is determined by
considering the estimate of the impact factors, i.e. severity, probability of exposure and controllability.
It is based on the item’s functional behaviour; therefore, the detailed design of the item does not
necessarily need to be known.

We have conducted a high level hazard analysis for LMS and identified the following two hazards:

• System Hazard 1 (H1): Failing to notify driver when LMS fails (Vehicle Hazard: Unintended
operation of vehicle feature)

• System Hazard 2 (H2): LMS prevents driver overriding control of steering (Vehicle Hazard:
Vehicle feature prevents driver from controlling the vehicle)

143

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Next, and in order to determine the appropriate ASIL level assigned to each of the hazards,
we assign levels for each of their severity, probability of exposure, and controllability. The severity
represents an estimate of the potential harm in a particular driving situation, while the probability
of exposure is determined by the corresponding situation. The controllability rates how easy or
difficult it is for the driver or other road traffic participant to avoid the considered accident type in
the considered operational situation.

Based on guidance in the standard and expert opinion on the LMS system, we have assigned the
two hazards the levels shown in Figure 10.2. We then used the ASIL determination table given by
the standard and shown in Figure 10.3, to compute the associated ASIL levels.

Next, we construct a GSN representation of a safety case for LMS as seen in Figure 10.41.
We start by defining a top level goal “G0: The LMS System Safety Goals are satisfied ”. This is

decomposed into:
- “G1: The set of safety goals is complete”, which is a claim about the completeness of the system
safety goals,
- “G2: The LMS system notifies driver if it fails”, which is a safety goal associated with hazard H1
(see the context node C0), and assigned an ASIL A, and
- “G3: LMS always allows user to override and take control ”, which is a safety goal associated with
hazard H2 (see the context node C1), and assigned an ASIL B.

G1 cannot be further decomposed, but is linked to the solution “Sn0: HAZOP reviewed by
expert” via the strategy “S1: HAZOP Analysis by technical expert”. The solution node Sn0 will
point to the document containing the HAZOP (Hazard and Operability Analysis) results which
would have been used to derive the safety goals and can be used to assess their completeness by an
expert review.
G2 is decomposed into:
- “G4: if the LMS fails, prior to shutting off it will alert the driver ”, and
- “G5: LMS can detect failure in any of its subsystems”.

This is done via the strategy “S2: Decomposition over procedure (check failure and then notify) “
which ensures coverage of both steps (checking failure and notification). Note that while G4 inherits
its parent goal’s ASIL level (A), G5 is assigned a higher ASIL (B) as it also supports goal G7 which
has an ASIL B.

Also of particular interest is the decomposition of “G4: If the LMS fails, prior to shutting off, it
will alert the driver (ASIL A)”. An ASIL decomposition strategy “(S4: Decompose over user alerts)”
is used and follows the rules of decomposing an ASIL A into an ASIL A and QM (refer to Figure 6.6).

We continue the goal decomposition until we have a set of leaf goals that can no longer be
1The MMINT-A editor does not properly display the entire text in each of the GSN elements. To help with this

problem, a version of the safety case was created in the Astah GSN tool and is presented in Figure 10.5. Note that
Astah does not support the addition of strategies to connect leaf nodes with solutions, something we enforce by our
AC metamodel, and therefore these strategies do not appear in the Astah version.

144

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

decomposed, but can be directly linked to supporting evidence via solution nodes. We do, however,
enforce the use of strategies to connect leaf goals to supporting solutions, as we believe this gives
a stronger argument for the linkage. Various types of supporting evidence are referred to in the
solution nodes, ranging from expert opinion, to test results, to the supporting software requirements
specification document, etc.

Upon completion of the goal decomposition and solution assignment, we end up with a 100-node
assurance case for the LMS system2.

Next, we create links from the LMS system design models to the safety case. The table in
Figure 10.6 shows a traceability matrix linking the LMS safety case elements to the LMS class
diagram model in Figure B.3. The trace links were created manually by linking safety case elements
to parts of the class diagram that they were deemed to refer to (e.g., there is a link between the
goal G0 and the class LMSSystem and the goal G12 and the operation TurnOff()) in the LDWS
class. We assume that the safety case has links only to the LMS class diagram, which in turn links
to the other LMS system design models that the LMS megamodel is comprised of. Such traceability
is then handled by the assurance case impact assessment approach and taken into account when
performing the megamodel slicing. We are aware that this is not a complete traceability, in the
sense that there could be other links from the safety case to the LMS class diagram; we have only
selected the apparent ones for the sake of demonstrating the approach.

In the following section, we demonstrate the use of the assurance case impact assessment approach
on various change scenarios in the LMS system.

10.4 LMS Change Impact Assessment Scenarios

In this section, we consider three types of change scenarios on the LMS system and their effect on
the corresponding safety case by using our impact assessment approach.

10.4.1 Change Scenario 1: Direct System Change

The first scenario we consider is a direct system change. In this scenario, a change is done on a
system element that is directly related to the safety case. Specifically, we consider the system design
change involving the removal of the audible alerts mechanism.

Change definition: Removal of audible alerts mechanism due to the deletion of the class
“AudibleAlarm” in the LMS CD model in Figure B.3. As seen in the traceability table in Figure 10.6,
the “AudibleAlarm” class is directly linked to the goals G20 and G18, as well as the solutions Sn12
and Sn3 in the safety case.

Result of running MMINT-A: Figure 10.7 demonstrates the resulting annotated safety case
after running the tool on this change. Goals G20 and G18, as well as the solutions Sn12 and Sn3

2Note that we consider ASILs as their own separate nodes.

145

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

are all marked for revision, as they directly refer to the AudibleAlarm. Other nodes are marked as
recheck or reuse following the assurance case slicing rules presented in Section 9.3.

Figure 10.8 displays the annotation statistics for this scenario. A total of two goals (7% of the
total number of goals) and two solution nodes (10% of the total number of solutions) are marked for
revision. A total of three goals (11% of the total number of goals) are marked for recheck state, and
five strategies (17% of the total number of strategies) and two ASIL nodes (8% of the total number
of ASIL nodes) are marked for recheck content. This means a total of 14 elements are affected
by this change, forming 14% of the assurance case. Finally, 21 goals (80% of the total number of
goals), 23 strategies (82% of the total number of strategies), 18 solutions (90% of the total number
of solutions), two contexts (100% of the total number of context nodes), and 22 ASIL nodes (91%
of the total number of ASIL nodes) are marked for reuse. This gives the safety engineer an idea of
the level of impact that this particular change can have on the safety case.

Figure 10.9 shows a portion of the backward traceability table produced inMMINT-A. Using this,
the safety engineer is able to identify the source of a particular impact (annotation). For example,
goal G20 is marked as revise, and the element that triggered that annotation is the lms_cd.Class
AudibleAlarm, which is the AudibleAlarm class in the LMS class diagram model. Goal G5 is
marked as recheck state, and the element that triggered that annotation is the lms_sc.Basic Goal

G18, which is goal G18 in the LMS safety case.
Cost analysis: Figure 10.10 shows the cost analysis for this scenario. There are a total number

of four elements marked for revision, and 10 elements marked for recheck. As stated in Section 10.1,
we assume the cost of revision KV = 2 and the cost of recheck KR = 1 (i.e., revisions cost double
the amount of rechecks). Therefore, the automated CIA cost (Cost_CIA) is computed to equal 18,
while the cost of performing a manual impact assessment (Cost_MIA) on a total of 100 elements is
100, an 82% cost reduction using our approach in this scenario.

10.4.2 Change Scenario 2: Indirect System Change

The second scenario we consider is an indirect system change. In this scenario, a change in a system
element that is indirectly related to the safety case occurs (i.e., an element in a system model that
does not have a direct trace link to the safety case, but can affect the safety case elements through
indirect links from other elements in the system megamodel). Specifically, we consider the design
change involving the modification of the path prediction system.

Change definition: Modification of path prediction system due to a change in the class “Path-
PredictionSystem” in the LMS CD model in Figure B.3. As seen in Figure 10.6, the “PathPre-
dictionSystem” class is not directly linked to any element in the LMS safety case. However, due
to traceability with other system models directly linked to the safety case, the megamodel slicing
approach on the system will pick up the effect of this change on the safety case.

Result of running MMINT-A: Figure 10.11 demonstrates the resulting annotated safety case
after running the tool given this change. As expected, we do not see any nodes marked for revision

146

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

as there is no direct impact on the safety case, however, we do see recheck annotations.
Figure 10.12 displays the annotation statistics for this scenario. No nodes are marked for revision.

A total of 14 goals (53% of the total number of goals) and five solution nodes (25% of the total number
of solutions) are marked for recheck content. A total of one goal (3% of the total number of goals)
is marked for recheck state. This means a total of 20 elements are affected by this change, forming
20% of the assurance case. Finally, 11 goals (42% of the total number of goals), 28 strategies (100%
of the total number of strategies), 15 solutions (75% of the total number of solutions), two contexts
(100% of the total number of context nodes), and 24 ASIL nodes (100% of the total number of ASIL
nodes) are marked for reuse. This gives the safety engineer an idea of the level of impact this change
can have on the safety case.

Figure 10.13 shows a portion of the backward traceability report that the safety engineer can use
to examine the source of impact for each annotation as needed.

Cost analysis: Figure 10.14 shows the cost analysis for this scenario. There are a total number
of zero elements marked for revision and 20 elements marked for recheck. Therefore, the automated
CIA cost (Cost_CIA) is computed to equal 20, while the cost of performing a manual impact
assessment (Cost_MIA) on a total of 100 elements in 100, an 80% cost reduction using our approach
in this scenario.

10.4.3 Change Scenario 3: Design Space Exploration

The third scenario that we consider is the activity of performing a design space exploration. In this
scenario, the safety engineer uses our approach and tool to explore the effects of different design
changes on the safety case before communicating back to the system design engineers to make any
modifications to the system. Specifically, we consider the potential effect of modifying the TurnOff
functions in the LCS and LKS subsystems on the overall system safety case.

Change definition: Modified LCS TurnOff versus modified LKS TurnOff. As seen in the LMS
to safety case traceability table in Figure 10.6, the LKS TurnOff function is linked to both G11 and
Sn5, whereas the LCS TurnOff function is linked to both G13 and Sn10.

Result of running MMINT-A: Figure 10.15 and Figure 10.16 demonstrate the resulting
annotated safety cases after running the tool given the LCS and LKS TurnOff changes, respectively.
As seen in Figure 10.17, modifying the LCS TurnOff function causes 16 goals and seven solutions to
be marked for recheck content, while, as seen in Figure 10.18, modifying the LKS TurnOff function
causes 18 goals and nine solutions to be marked for recheck content. They both cause one goal only
to be marked for recheck state. A change in LCS TurnOff affects a total of 24 elements or 24%
of the assurance case, while a change in LKS TurnOff affects 28 elements or 28% of the assurance
case. On the other hand, modifying the LCS TurnOff function allows for the reuse of nine goals, 28
strategies, 13 solutions, two context nodes and 24 ASIL nodes, while modifying the LKS TurnOff
function allows for the reuse of seven goals, 28 strategies, 11 solutions, two context nodes and 24
ASIL nodes.

147

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 10.19 and Figure 10.20 demonstrate the resulting backward traceability tables which show
the source of impact for each annotation in the LCS and LKS TurnOff change scenarios, respectively.

Cost analysis: Figures 10.21 and 10.22 show the cost analysis for LCS and LKS TurnOff
changes, respectively. For the LCS TurnOff case, there are a total number of zero elements marked
for revision and 24 elements marked for recheck. Therefore, the automated CIA cost (Cost_CIA)
is computed to equal 24, while the cost of performing a manual impact assessment (Cost_MIA) on
a total of 100 elements in 100, a 76% cost reduction using our approach in this case. On the other
hand, for the LKS TurnOff case, there are a total number of zero elements marked for revision and
28 elements marked for recheck. Therefore, the automated CIA cost (Cost_CIA) is computed to
equal 28, while the cost of performing a manual impact assessment (Cost_MIA) on a total of 100
elements in 100, a 72% cost reduction using our approach in this case. The safety engineer may
consider this, along with the impact of each change described above, when exploring system design
changes.

10.5 Chapter Summary

The goal of this chapter was to conduct a case study on an automotive subsystem in order to de-
termine whether our assurance case impact assessment approach improves efficiency. We associate
efficiency with the reduction of the cost of performing an assurance case impact assessment given
system design changes. We have considered the Lane Management System (LMS) from the auto-
motive domain, which is comprised of a total of nine system design models. We performed a high
level hazard analysis to identify hazards, associate them with safety goals, and assign them ASIL
levels. We used the result of the hazard analysis to construct a safety case for the system which is
comprised of 100 elements.

To assess our approach, we considered three different types of scenarios: direct system change,
indirect system change, and design space exploration.

In the direct system change scenario, a deletion of an element in the system directly linked to the
safety case caused a total of 14 elements (14% of the assurance case) to be affected by this change.
The automated CIA cost is 18, compared to a manual impact assessment cost of 100, an 82% cost
reduction using our approach.

In the indirect system change scenario, a modification to an element in the system indirectly
linked to the safety case caused a total of 20 elements (20% of the assurance case) to be affected by
this change. Interestingly, this is greater than the number of elements affected by a direct system
change, which demonstrates that some indirect system changes could have a larger impact on the
assurance case than direct system changes. The automated CIA cost is 20, compared to a manual
impact assessment cost of 100, an 80% cost reduction using our approach.

Finally, in the design space exploration scenario, we looked at how a change in the same function
in different subsystems can have different effects on the safety case. This type of analysis could be
used by the safety engineer when communicating back to the system design engineers to make design

148

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

decisions. For example, a change in the TurnOff method in one subsystem caused a total of 24 (24%
of the assurance case) to be affected, while a change in the same method for a different subsystem
affected a total of 28 elements (28% of the assurance case). The automated CIA cost is 24 and 28 in
each of these cases, compared to a manual impact assessment cost of 100, a 72-76% cost reduction
using our approach.

Observations. In all three scenarios, we have observed that the number of elements that the
safety engineer needs to inspect using our approach is significantly reduced compared to a manual
approach. Although we over-approximate the cost of a manual impact assessment approach, there
is still a clear reduction in the cost associated with the effort required to perform the safety case
change impact assessment, an indicator that this approach may have significant impact in practice.
In the future, we plan to better understand how a manual impact assessment cost can be computed,
and to consider additional usage scenarios.

We are aware that the level of traceability (among system models and between system models and
the safety case) affects the results of the CIA, namely, traceability precision and CIA precision are
correlated. However, since traceability is often expensive (creating, discovering and/or maintaining
trace links is difficult in practice), there is a tradeoff to be considered.

Another aspect we have observed while conducting this case study is that this approach can be
useful in the case of more than one assurance case for the same system. Because of the way different
assurance cases are structured, some may be more robust against change than others. In the future,
it would be interesting to define a metric for assessing robustness of an assurance case, and use our
approach to identify it.

149

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.1
:
LM

S
sy
st
em

m
eg
am

od
el

in
M
M
IN

T
.

150

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 10.2: LMS Hazard Analysis

Figure 10.3: ASIL determination table from [ISO(2011)]

151

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.4
:
LM

S
Sa

fe
ty

C
as
e
in

M
M
IN

T
-A

152

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.5
:
LM

S
Sa

fe
ty

C
as
e
in

A
st
ah

G
SN

153

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.6
:
LM

S
Sa

fe
ty

C
as
e
to

LM
S
C
D

T
ra
ce
ab

ili
ty

M
at
ri
x

154

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.7
:
LM

S
A
nn

ot
at
ed

Sa
fe
ty

C
as
e
af
te
r
C
ha

ng
e
Sc
en
ar
io

1

155

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 10.8: Statistics report for Scenario 1

Figure 10.9: Backward traceability report for Scenario 1

Figure 10.10: Cost analysis for Scenario 1

156

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.1
1:

LM
S
A
nn

ot
at
ed

Sa
fe
ty

C
as
e
af
te
r
C
ha

ng
e
Sc
en
ar
io

2

157

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 10.12: Statistics report for Scenario 2

Figure 10.13: Backward traceability report for Scenario 2

Figure 10.14: Cost analysis for Scenario 2

158

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.1
5:

LM
S
A
nn

ot
at
ed

Sa
fe
ty

C
as
e
af
te
r
C
ha

ng
e
Sc
en
ar
io

3
-
LC

S
T
ur
nO

ff(
)

159

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

F
ig
ur
e
10
.1
6:

LM
S
A
nn

ot
at
ed

Sa
fe
ty

C
as
e
af
te
r
C
ha

ng
e
Sc
en
ar
io

3
-
LK

S
T
ur
nO

ff(
)

160

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 10.17: Statistics report for Scenario 3 - LCS TurnOff()

Figure 10.18: Statistics report for Scenario 3 - LKS TurnOff()

161

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 10.19: Traceability report for Scenario 3 - LCS TurnOff()

162

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure 10.20: Traceability report for Scenario 3 - LKS TurnOff()

Figure 10.21: Cost analysis for Scenario 3 - LCS TurnOff()

Figure 10.22: Cost analysis for Scenario 3 - LKS TurnOff()

163

Part V

Conclusions & Future Work

164

Chapter 11

Conclusion

This chapter concludes the thesis. Section 11.1 recaps the contributions of the thesis, and Section 11.2
provides an overview of future research directions that will both extend this research work and
address limitations of this thesis.

11.1 Summary of Contributions

In many domains, including the automotive domain, where assurance cases are used as a means to
argue about critical qualities (e.g., safety) of systems, including the software that runs on them,
it is a manual and costly activity to maintain assurance cases as systems evolve. In this thesis,
we have presented an approach, based on model management, to address the problem of managing
assurance cases in model based software systems. The approach aids the safety engineer in creating
an evolved assurance case for the evolved system, by providing guidance as to which parts of the
original assurance case can be reused, and which ones need to be rechecked or revised. This is done
by constructing a workflow of model management operators to achieve this task. The technique
presented in this thesis can be further used to construct other workflows to address other assurance
case management scenarios. The rest of this section discusses the technical contributions in this
thesis.

In Part I of this thesis (Chapter 1), we first introduce our ideas for using model management as a
way to capture various compliance related scenarios. Specifically, we set out a research agenda that
includes using model management as a level of abstraction to structure and manage the complexity
of the compliance problem, using model relationships to express traceability between artifacts used
for compliance checking, and using model management operators to (semi-)automate compliance
management activities such as assurance case evolution due to system design changes.

Part II of this thesis is about megamodel management; the foundation for the assurance case

165

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

management work in Part III. After presenting a running example and relevant background ma-
terial on modeling and model management in Chapter 2, we presented our tool, MMINT , which
allows interactive model management in Chapter 3. We then presented preliminaries in Chapter 4,
which are required to understand how we formalize collections of models and relationships between
them as megamodels, and our basic megamodel management operators and techniques to address
heterogeneity, which are used in the rest of the thesis. In Chapter 5, we presented an approach for
slicing heterogenous megamodels, which is used as a basis for the assurance case impact assessment
approach described in Chapter 7.

Part III of this thesis is about assurance case management. After presenting relevant background
material on standards and assurance cases in Chapter 6, we presented a model management approach
for assurance case reuse due to system evolution in Chapter 7. First, we defined a generic model
management framework for addressing this problem. Then, we identified and specified the model
management operators needed for a semi-automated solution for the problem and presented an
algorithm for it. Next, we evaluated the generic framework and proposed solution by instantiating
it for ISO 26262 vehicle safety cases with the KAOS goal modeling language used for expressing
assurance cases. Finally, we applied this instantiation to the power sliding door automotive system
for validation.

In Chapter 8, we built on our work in the previous chapter, which applies to assurance cases in
general and ensures soundness, i.e., it does not miss any elements that are impacted. Yet, because
the approach is conservative, it can flag elements as impacted when they are not, resulting in “false
positives”. We proposed to use knowledge about the system models, the safety case language and the
standard under consideration, to improve the precision of our approach, thus reducing unnecessary
effort by the safety engineer. Specifically, the main contributions of this chapter are a model-based
approach for impact assessment on GSN safety cases used with ISO 26262, as well as six techniques
for improving the precision of the impact assessment approach.

Part IV of this thesis is about tool support and validation. In Chapter 9, we presented our
tool MMINT-A that can, in the context of model-driven development, assess the impact of system
changes on their assurance cases. To achieve this, MMINT-A implements an impact assessment
algorithm from Chapters 7 and 8 and incorporates a graphical assurance case editor, an annotation
mechanism, and two summary tables for the assessment results. For validation, we demonstrated
the usage and advantages of our approach and tool, MMINT-A, on a Lane Management System
case study from the automotive domain in Chapter 10. The case study suggests that the approach
may have significant impact in practice. We intend to validate this claim further on a larger scale
system and with the input of an assurance engineer from industry.

166

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

11.2 Future Work

In Chapter 1 we set out a research agenda that includes the following:
1. Using model management as a level of abstraction to structure and manage the complexity of
the compliance problem.
2. Using model relationships to express traceability between artifacts used for compliance checking.
3. Using model management operators to (semi-)automate compliance management activities such
as standard and artifact evolution or extracting relevant portions of standards.

Specifically, we identified a set of compliance-related research problems that model management
can be used to solve. We summarize them in Table 11.1 for reference.

Problem Description

P1
Creating a general model of compliance that defines explicit relationships between
the compliance artifacts.

P2 Reusing evidence and other assurance artifacts due to standard or product evolution.
P3 Extracting relevant parts of a standard or a system for checking compliance.
P4 Effort reduction of compliance to multiple standards.
P5 Lifting compliance from a single product to a product line.
P6 Identifying relationships between standards.

Table 11.1: Summary of compliance management problems from Chapter 1.

In this thesis, we have proposed solutions to each of P1 and P2. We have also proposed heteroge-
nous megamodeling operators, such as map, filter and reduce, which can be used in a workflow
to address P3. P4 and P6 can also be addressed with our proposed model management operators
and tool, if standards are described in a model-based fashion, and explicit traceability between them
is defined. P5, however, requires a careful treatment of variability in order to make use of our
proposed approaches for product lines. We leave these problems as future work, some of which we
have already started addressing.

In the rest of this section, we discuss some limitations of our work, how it can be further improved
and how it can feed into future directions of research.

11.2.1 Limitations and Improvements

Relaxing Assumptions. The assurance case change impact analysis approach relies on a set of
assumptions, that we aim to relax. For example, we assume that a complete and correct traceability
relationship is always given between the system models and the assurance case. This is not always
the case in practice, and we plan to study approaches that enable automated trace link discovery
[Guo et al.(2017)] to help address this. We also assume that we are always given a valid assurance
case (GSN-like artifact) that is correct (e.g., w.r.t. goal decomposition), and complete (e.g., well-
formedness rules hold such as each leaf goal being grounded in evidence). We plan to incorporate

167

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

approaches that can deal with incomplete assurance cases, and that can assess validity of the input
assurance case. Finally, we assume that the change in the system is known to us (via modified,
deleted and added elements). If this is not explicitly known, we plan to use approaches such as
model differencing techniques to help explicate this delta.

A Human-in-the-loop Approach. The assurance case change impact assessment approach we
offer is meant as a starting point for assessing the impact of a change on the assurance case. The
annotated assurance case that the techniques and tool produce is meant to be given to the safety
engineer for further processing. The safety engineer should consider the elements marked for revision
and revise them, making new changes either to the system models or to the assurance case, and
possibly triggering another change impact assessment. We therefore see this as an incremental
human-in-the-loop approach. Furthermore, we envision a set of guidelines that can be used to
support the safety engineer in making the revisions. These could, for example, consider prioritizing
revision order (e.g., based on ASIL level, semantics of the assurance case (e.g., context is inherited
by lower nodes), or by considering imposing an order on the assurance case). Other heuristics could
also be derived based on experience in working with assurance cases by the engineers themselves.

Design Space Exploration and Project Planning. We have demonstrated an approach for
safety case impact assessment due to system changes, primarily with the aim of reducing effort
(increasing reuse) in performing CIA. However, we believe that our approach can be used for impact
assessment in general, and not just for safety case co-evolution. One application for this is in design
space exploration, to enable answering what-if questions about the impact of changes on assurance
cases, with the ultimate goal of understanding how to develop software so that frequent changes
do not significantly affect assurance cases (or such changes are contained). For example, one might
want to understand the effect of replacing a component with another on the safety case. Here we
can use the reporting provided by our tool on percentages of elements marked for revision vs. those
reusable, to understand the extent of impact of a particular change verses another on the safety
case. The question may not always be just “what if?”, but also “why’?’. For example, given that an
element is affected by a change, why was it marked for revision. Here, understanding which slicing
rules were fired, and over which parts of the model, to affect this element, are of interest. We have an
implementation of this analysis, but it might be useful to express it purely as a rule-based question.

We have also been thinking about using the approach for project planning. In this case, knowing
which teams are responsible for implementing parts of the systems (via some organizational structure
models for example), we can use this information (with the backward traceability feature in our tool)
to identify which teams need to be contacted to address changes causing impact on the assurance
case.

Addressing Additions. Currently, our impact assessment approach addresses the effect of adding
components in the system on the existing parts of the safety case. However, it currently cannot

168

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

address how adding components can potentially require additions to the safety case. In this con-
text, two types of additions, namely, known and unknown additions, should be considered. Known
additions can come from a 150% representation of the system, known design decisions that can be se-
lected from, known variations (turning features on/off) in product lines, and known variation/design
spaces. Unknown additions are harder to tackle, as their traceability to the original system is often
unknown and techniques for trace link discovery [Guo et al.(2017)] will need to be used. We also
need to distinguish between ad-hoc additions vs. composition. The former relates to incrementally
adding new parts to the system, and therefore needing to incrementally asses the safety case, while
the latter deals with adding a well-defined module, which could have its own safety case, and need-
ing to compose safety cases. We plan to study these kinds of additions further, their connection to
emergent behaviour, and propose approaches for addressing them in the future.

Exploiting System Design Patterns. We would like to understand whether our approach can
detect certain changes in the system design which change not only the system functionality but its
level of integrity. For example, consider the “redundancy pattern”, where a component such as the
redundant switch in our PSD example is added. We would like to study if it is possible to identify
this case as a redundancy change by witnessing two paths to the actuator (one via the VS ECU and
one via the redundant switch), and how this can be exploited for impact assessment.

Change Assurance Cases. Our impact assessment approach can guide the creation of a Change
Assurance Case: an argument for the changes made to the original safety case, providing evidence
for such an argument. For example, our approach can support a revise marking in a safety case
by linking the element to the appropriate counterparts in the system megamodel that caused this
marking to be computed. We would like to explore what such a Change Assurance Case looks
like. Specifically, for particular changes (e.g., feature addition or integrity addition, etc.) we might
be able to give a change assurance case skeleton. In the example of increasing system integrity,
we could provide a change assurance case that needs to show at least two sub-claims: 1. A claim
that no functionality is affected (i.e., the behaviour of the system before and after the change is
equivalent), which could be done via regression testing to show that w.r.t. the same test suite, we
obtain the same set of behaviour. 2. A claim that the likelihood of the identified hazards occurring
has decreased (due to adding integrity) and that other hazards have not been introduced. We see
our impact analysis approach as being one piece of evidence for this change argument.

Confidence Modeling. We would like to augment our approach to handle a confidence model on
top of safety cases. That is, we would like to assess the impact of changes not just on the safety case
elements themselves but on the confidence level we assign them (e.g., based on expert opinion) and
on the safety case as a whole.

Generalization. There are a few areas we can address to generalize the approach further. First,
broadening from UML models to other design models, such as Simulink, as well as to non-design

169

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

models and artifacts (e.g., code, test cases, hazard-analysis, FMEA, FTA). Second, considering not
only the product level claims, but the process level claims. This can be done by making use of
a process model as a source of knowledge, which may also include an “organizational structural
model” which could link to an “escalation path” to identify the right persons/teams to contact for
certain changes. Third, the approach can be generalized from the product-level to be used at the
product-line level. Here, and specifically in delta product lines, the impact assessment approach
could be used iteratively, taking the appropriate deltas into account, to understand the impact of
changes on the product-line level. Finally, an interesting direction would be in understanding how
more general changes (e.g., refactoring) that can be thought of as transformations with intent on
the system models, and how certain transformations affect the safety cases in certain ways, with the
goal of identifying change patterns related to these transformations.

An Improved Cost Metric. We use a cost metric to asses how much we managed to reduce the
effort of change impact assessment using our approach. The cost analysis can be smarter than our
current cost function, by considering lower level nodes vs. higher level nodes (e.g., it is more costly
to revise something at a lower level in the assurance case argument as it has more impact on things
above it in the tree). We can also associate cost assessment with the different evidence types, where
depending on the type of evidence, reuse may be more valuable.

Tool support, Validation and Verification We are still actively working on extending and
improving our tool MMINT-A. We plan to incorporate the improvement techniques discussed in this
thesis and validate their effectiveness. We also aim to add support for OMG’s Structured Assurance
Case Metamodel (SACM [OMG(2015)]) and conduct a usability study with our industrial partner
to identify specific barriers in adopting MMINT-A. These may include integration with other tools
(e.g., for compliance checking) as well as support for assuring product lines.

We intend to evaluate our framework on a real world case study, ideally using input from an
actual Assurance Engineer. We expect such a study to be done with our industrial partner. We also
plan to study the reuse of assurance case components under scenarios other than system evolution.
For example, the evolution of standards such as ISO 26262 will impact the assurance case constructed
to show compliance of the system to the original standard. Also, safety goal change due to the use of
a different hazard analysis technique could occur and will also impact the assurance case. Another
scenario is the reuse of assurance case components between similar systems or within a product line
of systems. We would also like to study a case where emergent behaviour occurs due to adding new
elements to the system [Johnson(2006), Fiadeiro(1996)].

Although the algorithms presented in this thesis have been analysed with respect to various
properties, we aim to add confidence in our approaches by using theorem provers to check properties
such as soundness, termination, minimality, etc. This is particularly important to support their
usage in a safety critical context.

170

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

11.2.2 Future Research Directions

Advanced Model-Based Techniques to support Rigour, Automation and Reuse in In-
dustry. Industry has started paying attention to MDE as an approach that can bring many advan-
tages to traditional software development, but there is much room for improvement. Some longer
term goals are to discover new areas where MDE can offer advantages, and to help in “bridging
the gap” between research and practice to realize such advantages. As demonstrated in this thesis,
model-based workflows can be constructed to address issues such as impact assessment, evolution
and reuse. This work has developed a workflow for one scenario, but many others can be considered
as described in Chapter 1. The goal would be to enrich MDE with techniques from other areas,
increasing its applicability and impact in the real world. One direction is the use of AI with MDE.
Specifically, using Natural Language Processing (NLP) to discover and improve traceability among
the many artifacts in a software ecosystem, including requirements, design models, tests results, etc.
Some work has been done in this area [Guo et al.(2017)], but it has not been connected with MDE
and has not been yet used in critical software systems which require an additional artifact, namely
an assurance case. This direction of research will lead to rigorous automated approaches resulting
in huge cost savings at companies where currently much of the trace link discovery and maintenance
effort is done in an ad-hoc and manual fashion. Another goal would be to study how to scale some
of the model-based approaches developed in this thesis from individual products to product lines,
which typically reflect the state of practice in industry.

The research done in the requirements engineering community, specifically, on goal modelling,
and studying the relationship with assurance cases is a direction worth considering. In this con-
text, the work on requirements evolution over time [Grubb and Chechik(2016)], and how some
of these techniques can be applied to assurance cases as (safety) goals change over time would
be interesting to pursue. A final direction in this area is considering uncertainty at design time
[Famelis and Chechik(2017)], and how this can be handled in critical systems with respect to rea-
soning about their assurance in an incremental manner until the uncertainty is eventually resolved.

Software Compliance and Certification for Complex Software Intensive Systems. In
practice, software and system manufacturers lack a consistent and effective set of guidelines as to
what constitutes acceptable evidence of software quality, and how to achieve it. Typically, critical
software-intensive systems are certified on the basis of the process used to develop them. While a
a good process is indeed necessary for producing dependable software, it is not sufficient. Software
certification should also be based on evidence obtained from the product. A goal of this work would
be to study what kind of evidence is sufficient for software certification, and how different kinds of
evidence may be combined into a correct and complete assurance argument. While this work has
begun to address this from a system safety perspective, the intention is to generalize findings beyond
safety to areas such as privacy and security. This work has also been focused on the automotive
domain and the ISO 26262 standard for functional safety of road vehicles. It is worth generalizing
to other domains such as aerospace and medical devices. Here, the objectives would be to study the

171

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

software development lifecycles and the regulations and standards that govern software development
in these domains, and to develop techniques to check compliance and aid in software certification,
incremental certification as features and components are added, and recertification as systems and
regulations change and evolve. The interplay between software qualities, such as between safety
and security, is an interesting yet understudied area, which would be interesting to explore. The
goal would be to develop sound ways to model this interplay and reason about it as systems evolve.
Software certification is further complicated by the use of AI techniques in critical software systems.
Also, with the advent of Smart Systems, the Internet of Things (IoT), and Agile methodologies, it
is crucial that software certification advances to cover these issues and help ensure high quality of
software systems.

172

Bibliography

[A. Kitchenham(2007)] A. Kitchenham, B. (2007). Guidelines for Performing Systematic Literature
Reviews in Software Engineering. Technical Report EBSE-2007-01, EBSE.

[Abdullah et al.(2010)] Abdullah, N. S., Sadiq, S., and Indulska, M. (2010). Emerging Challenges
in Information Systems Research for Regulatory Compliance Management. In International Con-
ference on Advanced Information Systems Engineering, pages 251–265. Springer.

[Adelard(2018)] Adelard (2018). Claims, Arguments and Evidence (CAE). https://www.adelard.
com/asce/choosing-asce/cae.html.

[Aiello et al.(2014)] Aiello, M. A., Hocking, A. B., Knight, J. C., and Rowanhill, J. C. (2014). SCT:
A Safety Case Toolkit. In IEEE International Symposium on Software Reliability Engineering
Workshops, pages 216–219.

[Aizenbud-Reshef et al.(2006)] Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., and Shaham-Gafni,
Y. (2006). Model traceability. IBM Systems Journal, 45(3), 515–526.

[Allan et al.(1998)] Allan, J., Williams, J., Gander-Miller, G., Turner, M., Ballantyne, T., and
Harvey, J. (1998). Safety Case Production. WIT Transactions on The Built Environment, 37.

[Althammer et al.(2009)] Althammer, E., Schoitsch, E., Eriksson, H., and Vinter, J. (2009). The
DECOS Concept of Generic Safety Cases - A Step towards Modular Certification. In 35th Eu-
romicro Conference on Software Engineering and Advanced Applications, pages 537–545.

[Ankrum and Kromholz(2005)] Ankrum, T. S. and Kromholz, A. H. (2005). Structured Assurance
Cases: Three Common Standards (Presentation). In Ninth IEEE International Symposium on
High-Assurance Systems Engineering, pages 99–108.

[Arendt et al.(2010)] Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G. (2010).
Henshin: Advanced Concepts and Tools for In-place EMF Model Transformations. In Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages 121–135.

[AssureNote(2018)] AssureNote (2018). AssureNote. https://github.com/AssureNote/

AssureNote.

173

https://www.adelard.com/asce/choosing-asce/cae.html
https://www.adelard.com/asce/choosing-asce/cae.html
https://github.com/AssureNote/AssureNote
https://github.com/AssureNote/AssureNote

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Attwood et al.(2011)] Attwood, K., Chinneck, P., Clarke, M., and et. al (2011). GSN Community
Standard Version 1. Technical report, Origin Consulting (York) Limited.

[Bandur and McDermid(2015)] Bandur, V. and McDermid, J. (2015). Informing Assurance Case
Review Through a Formal Interpretation of GSN Core Logic. In International Conference on
Computer Safety, Reliability, and Security, pages 3–14.

[Barry(2011)] Barry, M. R. (2011). CertWare: A Workbench for Safety Case Production and Anal-
ysis. In IEEE Aerospace Conference, pages 1–10.

[Bernstein(2003)] Bernstein, P. A. (2003). Applying Model Management to Classical Meta Data
Problems. In Conference on Innovative Data Systems Research, volume 2003, pages 209–220.

[Beydeda et al.(2005)] Beydeda, S., Book, M., Gruhn, V., et al. (2005). Model-driven software
development, volume 15. Springer.

[Bézivin et al.(2004)] Bézivin, J., Jouault, F., and Valduriez, P. (2004). On the Need for Megamod-
els. In Proc. of OOPSLA/GPCE Workshops.

[Bézivin et al.(2005a)] Bézivin, J., Jouault, F., and Touzet, D. (2005a). An Introduction to the
Atlas Model Management Architecture. Technical Report 05.01.

[Bézivin et al.(2005b)] Bézivin, J., Jouault, F., Rosenthal, P., and Valduriez, P. (2005b). Modeling
in the large and modeling in the small. In Model Driven Architecture, pages 33–46. Springer.

[Bjornander et al.(2012)] Bjornander, S., Land, R., Graydon, P., Lundqvist, K., and Conmy, P.
(2012). A Method to Formally Evaluate Safety Case Arguments Against a System Architecture
Model. In International Symposium on Software Reliability Engineering Workshops, pages 337 –
342.

[Blazy et al.(2014)] Blazy, B., DeLine, A., Frey, B., and Miller, M. (2014). Software Requirements
Specification (SRS): Lane Management System.

[Bloomfield and Bishop(2010)] Bloomfield, R. and Bishop, P. (2010). Safety and Assurance Cases:
Past, Present and Possible Future – an Adelard Perspective. In Safety-Critical Systems: Problems,
Process and Practice, pages 51–67. Springer.

[Blouin et al.(2011)] Blouin, A., Combemale, B., Baudry, B., and Beaudoux, O. (2011). Modeling
Model Slicers. In International Conference on Model Driven Engineering Languages and Systems,
pages 62–76. Springer.

[Blouin et al.(2015)] Blouin, A., Combemale, B., Baudry, B., and Beaudoux, O. (2015). Kompren:
Modeling and Generating Model Slicers. Journal of Software and Systems Modeling, 14(1), 321–
337.

174

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Borg et al.(2016)] Borg, M., de la Vara, J. L., and Wnuk, K. (2016). Practitioners’ Perspectives on
Change Impact Analysis for Safety-Critical Software – A Preliminary Analysis. In International
Conference on Computer Safety, Reliability, and Security, pages 346–358. Springer.

[Brambilla et al.(2012)] Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-Driven Software
Engineering in Practice. Morgan & Claypool.

[Brunel and Cazin(2012)] Brunel, J. and Cazin, J. (2012). Formal Verification of a Safety Argumen-
tation and Application to a Complex UAV System. In Formal Verification of a Safety Argumen-
tation and Application to a Complex UAV System, pages 307–318. Springer.

[Brunet et al.(2006)] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., and Sabetzadeh,
M. (2006). A Manifesto for Model Merging. In International Workshop on Global Integrated Model
Management, pages 5–12. ACM.

[Calder et al.(2003)] Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec, S. (2003). Feature
Interaction: a Critical Review and Considered Forecast. Computer Networks, 41(1), 115–141.

[Calinescu et al.(2017)] Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M. U., Habli, I., and
Kelly, T. (2017). Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases.
IEEE Transactions on Software Engineering, pages 1–30.

[Cârlan et al.(2017)] Cârlan, C., Barner, S., Diewald, A., Tsalidis, A., and Voss, S. (2017). Ex-
plicitCase: Integrated Model-based Development of System and Safety Cases. In International
Conference on Computer Safety, Reliability, and Security, volume 10489 LNCS, pages 52 – 63.

[Cassano et al.(2016)] Cassano, V., Singh, N., Grigorova, S., Patcas, L., Kokaly, S., Lawford, M.,
Maibaum, T., and Wassyng, A. (2016). Making Sense of ISO 26262: Some Structured Views.
Submitted to Reliability Engineering and System Safety journal.

[Cheng et al.(2018)] Cheng, J., Goodrum, M., Metoyer, R., and Cleland-Huang, J. (2018). How
do practitioners perceive assurance cases in safety-critical software systems? arXiv preprint
arXiv:1803.08097.

[Chowdhury et al.(2017)] Chowdhury, T., Lin, C.-W., Kim, B., Lawford, M., Shiraishi, S., and
Wassyng, A. (2017). Principles for systematic development of an assurance case template from
iso 26262. In Software Reliability Engineering Workshops, 2017 IEEE International Symposium
on, pages 69–72. IEEE.

[Cimatti et al.(2015)] Cimatti, A., De Long, R., Marcantonio, D., and Tonetta, S. (2015). Com-
bining MILS with Contract-Based Design for Safety and Security Requirements. In International
Conference on Computer Safety, Reliability, and Security, volume 9338 of LNCS, pages 264 – 276.

[Clark(2011)] Clark, T. (2011). A General Model-Based Slicing Framework. In Proceedings of
Workshop on Composition and Evolution of Model Transformations.

175

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Conrad et al.(2012)] Conrad, M. et al. (2012). Artifact-centric compliance demonstration for iso
26262 projects using model-based design. In GI-Jahrestagung, pages 807–816. Citeseer.

[Cruanes et al.(2013)] Cruanes, S., Hamon, G., Owre, S., and Shankar, N. (2013). Tool Integration
with the Evidential Tool Bus. In International Workshop on Verification, Model Checking, and
Abstract Interpretation, volume 7737, pages 275–294.

[Dardenne et al.(1993)] Dardenne, A., Van Lamsweerde, A., and Fickas, S. (1993). Goal-directed
requirements acquisition. Science of Computer Programming, 20(1), 3–50.

[de la Vara(2014)] de la Vara, J. L. (2014). Current and Necessary Insights into SACM: An Analysis
Based on Past Publications. In IEEE International Workshop on Requirements Engineering and
Law (RELAW), pages 10–13. IEEE.

[de la Vara and Panesar-Walawege(2013)] de la Vara, J. L. and Panesar-Walawege, R. K. (2013).
Safetymet: A Metamodel for Safety Standards. In International Conference on Model Driven
Engineering Languages and Systems, pages 69–86. Springer.

[de la Vara et al.(2016a)] de la Vara, J. L., Borg, M., Wnuk, K., and Moonen, L. (2016a). An
Industrial Survey of Safety Evidence Change Impact Analysis Practice. IEEE Transactions on
Software Engineering, 42(12), 1095–1117.

[de la Vara et al.(2016b)] de la Vara, J. L., Ruiz, A., Attwood, K., Espinoza, H., Panesar-Walawege,
R. K., López, Á., del Río, I., and Kelly, T. (2016b). Model-based specification of safety compliance
needs for critical systems: A holistic generic metamodel. Information and Software Technology,
72, 16–30.

[Dean and Ghemawat(2008)] Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM, 51(1), 107–113.

[Denney and Pai(2017)] Denney, E. and Pai, G. (2017). Tool Support for Assurance Case Develop-
ment. Automated Software Engineering, pages 1 – 65.

[Di Sandro et al.(2015)] Di Sandro, A., Salay, R., Famelis, M., Kokaly, S., and Chechik, M. (2015).
MMINT: A Graphical Tool for Interactive Model Management. In International Conference on
Model Driven Engineering Languages and Systems(demo track).

[Diskin et al.(2010)] Diskin, Z., Xiong, Y., and Czarnecki, K. (2010). From state-to delta-based
bidirectional model transformations. In Theory and Practice of Model Transformations, pages
61–76. Springer.

[Diskin et al.(2013)] Diskin, Z., Kokaly, S., and Maibaum, T. (2013). Mapping-Aware Megamodel-
ing: Design Patterns and Laws. In International Conference on Software Language Engineering,
pages 322–343.

176

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Diskin et al.(2014)] Diskin, Z., Wider, A., Gholizadeh, H., and Czarnecki, K. (2014). Towards a Ra-
tional Taxonomy for Increasingly Symmetric Model Synchronization. In International Conference
on Theory and Practice of Model Transformations, pages 57–73. Springer.

[Eclipse(2018a)] Eclipse (2018a). Eclipse Modeling Framework(EMF). https://www.eclipse.org/
modeling/emf/.

[Eclipse(2018b)] Eclipse (2018b). Sirius. https://www.eclipse.org/sirius/.

[Emmet and Cleland(2002)] Emmet, L. and Cleland, G. (2002). Graphical Notations, Narratives
and Persuasion: A Pliant Systems Approach to Hypertext Tool Design. In Proceedings of the
thirteenth ACM conference on Hypertext and hypermedia, pages 55–64. ACM.

[Erwig(1997)] Erwig, M. (1997). Functional Programming with Graphs. ACM SIGPLAN Notices,
32(8), 52–65.

[Fahrenberg et al.(2014)] Fahrenberg, U., Acher, M., Legay, A., and Wąsowski, A. (2014). Sound
Merging and Differencing for Class Diagrams. In International Conference on Fundamental Ap-
proaches to Software Engineering, pages 63–78. Springer.

[Falessi et al.(2011)] Falessi, D., Nejati, S., Sabetzadeh, M., Briand, L., and Messina, A. (2011).
SafeSlice: A Model Slicing and Design Safety Inspection Tool for SysML. In European Conference
on Foundations of Software Engineering, pages 460–463. ACM.

[Famelis and Chechik(2017)] Famelis, M. and Chechik, M. (2017). Managing design-time uncer-
tainty. Journal of Software and Systems Modeling, pages 1–36.

[Favre et al.(2012)] Favre, J.-M., Lämmel, R., and Varanovich, A. (2012). Modeling the Linguistic
Architecture of Software Products. Springer.

[Fenn et al.(2007)] Fenn, J. L., Hawkins, R. D., Williams, P., Kelly, T. P., Banner, M. G., and
Oakshott, Y. (2007). The Who, Where, How, Why and When of Modular and Incremental
Certification. In 2nd IET International Conference on System Safety, pages 135–140. IET.

[Fiadeiro(1996)] Fiadeiro, J. L. (1996). On the Emergence of Properties in Component-Based Sys-
tems. In International Conference on Algebraic Methodology and Software Technology, pages
421–443. Springer.

[Fujita et al.(2012)] Fujita, H., Matsuno, Y., Hanawa, T., Sato, M., Kato, S., and Ishikawa, Y.
(2012). DS-Bench Toolset: Tools for Dependability Benchmarking with Simulation and Assurance.
In International Conference on Dependable Systems and Networks, pages 1–8.

[Fung et al.(2018)] Fung, N. L., Kokaly, S., Di Sandro, A., Salay, R., and Chechik, M. (2018).
Mmint-a: A tool for automated change impact assessment on assurance cases. In International
Conference on Computer Safety, Reliability, and Security, pages 60–70. Springer.

177

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/sirius/

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Gacek et al.(2014)] Gacek, A., Backes, J., Cofer, D., Slind, K., and Whalen, M. (2014). Resolute:
An Assurance Case Language for Architecture Models. In ACM SIGAda Ada Letters, pages 19–28.

[Gallina(2014)] Gallina, B. (2014). A Model-Driven Safety Certification Method for Process Com-
pliance. In International Symposium on Software Reliability Engineering, pages 204–209. IEEE.

[Ghanavati et al.(2011)] Ghanavati, S., Amyot, D., and Peyton, L. (2011). A Systematic Review of
Goal-Oriented Requirements Management Frameworks for Business Process Compliance. In IEEE
International Workshop on Requirements Engineering and Law (RELAW), pages 25–34. IEEE.

[Ghanavati et al.(2014)] Ghanavati, S., Rifaut, A., Dubois, E., and Amyot, D. (2014). Goal-Oriented
Compliance with Multiple Regulations. In Requirements Engineering Conference, pages 73–82.
IEEE.

[Gorski et al.(2012)] Gorski, J., Jarzebowicz, A., Miler, J., Witkowicz, M., Czyznikiewicz, J., and
Jar, P. (2012). Supporting Assurance by Evidence-Based Argument Services. In International
Conference on Computer Safety, Reliability, and Security, volume 7613 of LNCS, pages 417–426.

[Gotel and Finkelstein(1995)] Gotel, O. and Finkelstein, A. (1995). Contribution structures. In
Requirements Engineering, 1995., Proceedings of the Second IEEE International Symposium on,
pages 100–107. IEEE.

[Groza and Marc(2014)] Groza, A. and Marc, N. (2014). Consistency Checking of Safety Argu-
ments in the Goal Structuring Notation Standard. In Intelligent Computer Communication and
Processing, pages 59–66.

[Grubb and Chechik(2016)] Grubb, A. M. and Chechik, M. (2016). Looking into the crystal ball:
Requirements evolution over time. In Requirements Engineering Conference (RE), 2016 IEEE
24th International, pages 86–95. IEEE.

[GSN(2011)] GSN (2011). Goal Structuring Notation Working Group, “GSN Community Standard
Version 1”. http://www.goalstructuringnotation.info/.

[Guo et al.(2017)] Guo, J., Cheng, J., and Cleland-Huang, J. (2017). Semantically enhanced soft-
ware traceability using deep learning techniques. In Proceedings of the 39th International Con-
ference on Software Engineering, pages 3–14. IEEE Press.

[Habli and Kelly(2008)] Habli, I. and Kelly, T. (2008). A Model-Driven Approach to Assuring
Process Reliability. In International Symposium on Software Reliability Engineering, pages 7–16.
IEEE.

[Habli et al.(2010)] Habli, I., Ibarra, I., Rivett, R. S., and Kelly, T. (2010). Model-Based Assurance
for Justifying Automotive Functional Safety. Technical report, SAE.

178

http://www.goalstructuringnotation.info/

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Hamou-Lhadj and Hamou-Lhadj(2007)] Hamou-Lhadj, A. and Hamou-Lhadj, A. (2007). Towards
a Compliance Support Framework for Global Software Companies. In Software Engineering Con-
ference, pages 182–192.

[Hawkins et al.(2015)] Hawkins, R., Habli, I., Kolovos, D., Paige, R., and Kelly, T. (2015). Weaving
an Assurance Case from Design: A Model-Based Approach. In High-Assurance Systems Engi-
neering, pages 110–117. IEEE.

[Heidenreich et al.(2011)] Heidenreich, F., Kopcsek, J., and Aßmann, U. (2011). Safe Composition
of Transformations. Journal of Object Technology, 7(10).

[Huhn and Zechner(2009)] Huhn, M. and Zechner, A. (2009). Analysing Dependability Case Argu-
ments Using Quality Models. In International Conference on Computer Safety, Reliability, and
Security, volume 5775 of LNCS, pages 118 – 131.

[ISO(2011)] ISO (2011). ISO 26262: Road Vehicles – Functional Safety. International Organization
for Standardization. 1st version.

[Jaradat and Bate(2016)] Jaradat, O. and Bate, I. (2016). Systematic Maintenance of Safety Cases
to Reduce Risk. In International Conference on Computer Safety, Reliability, and Security, pages
17–29. Springer.

[Johnson(2006)] Johnson, C. W. (2006). What Are Emergent Properties and How Do They Affect
the Engineering of Complex Systems? J. Reliability Engineering & System Safety, 91(12), 1475–
1481.

[Kagdi et al.(2005)] Kagdi, H., Maletic, J. I., and Sutton, A. (2005). Context-Free Slicing of UML
Class Models. In International Conference on Software Maintenance, pages 635–638. IEEE.

[Kawakami et al.(2016)] Kawakami, H., Ott, D., Wong, H. C., Dahab, R., and Gallo, R. (2016).
ACBuilder: A Tool for Hardware Architecture Security Evaluation. In Hardware Oriented Security
and Trust, pages 97–102.

[Kelly(1997)] Kelly, T. (1997). A Six-Step Method for the Development of Goal Structures. York
Software Engineering, Flixborough, UK.

[Kelly and McDermid(2001a)] Kelly, T. and McDermid, J. (2001a). A Systematic Approach to
Safety Case Maintenance. Reliability Engineering & System Safety, 1(3), 271 – 284.

[Kelly and Weaver(2004)] Kelly, T. and Weaver, R. (2004). The Goal Structuring Notation – A
Safety Argument Notation. In Proceedings of the dependable systems and networks workshop on
assurance cases.

[Kelly(1998)] Kelly, T. P. (1998). Arguing Safety: A Systematic Approach to Managing Safety Cases.
Ph.D. thesis, Univ. of York, UK.

179

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Kelly and McDermid(1997)] Kelly, T. P. and McDermid, J. A. (1997). Safety Case Construction
and Reuse Using Patterns. In International Conference on Computer Safety, Reliability, and
Security, pages 55–69. Springer.

[Kelly and McDermid(2001b)] Kelly, T. P. and McDermid, J. A. (2001b). A Systematic Approach
to Safety Case Maintenance. Reliability Engineering & System Safety, 71(3), 271–284.

[Khalil and Dingel(2013)] Khalil, A. and Dingel, J. (2013). Supporting the Evolution of UMLModels
in Model Driven Software Development: a Survey. Technical Report 602, School of Computing,
Queen’s University, Ontario, Canada.

[Kling et al.(2012)] Kling, W., Jouault, F., Wagelaar, D., Brambilla, M., and Cabot, J. (2012).
MoScript: A DSL for Querying and Manipulating Model Repositories. In International Conference
on Software Language Engineering, pages 180–200. Springer.

[Kokaly(2017)] Kokaly, S. (2017). Managing assurance cases in model based software systems. In
Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017 - Companion Volume, pages 453–456.

[Kokaly et al.(2016a)] Kokaly, S., Salay, R., Cassano, V., Maibaum, T., and Chechik, M. (2016a). A
Model Management Approach for Assurance Case Reuse due to System Evolution. In International
Conference on Model Driven Engineering Languages and Systems, pages 196–206.

[Kokaly et al.(2016b)] Kokaly, S., Salay, R., Sabetzadeh, M., Chechik, M., and Maibaum, T.
(2016b). Model Management for Regulatory Compliance: a Position Paper. In Modeling in
Software Engineering workshop at International Conference on Software Engineering.

[Kokaly et al.(2017)] Kokaly, S., Salay, R., Chechik, M., Lawford, M., and Maibaum, T. (2017).
Safety Case Impact Assessment in Automotive Software Systems: An Improved Model-Based
Approach. In International Conference on Computer Safety, Reliability, and Security, pages 69–
85. Springer.

[Kolovos et al.(2015)] Kolovos, D. S., Rose, L. M., Garcia-Dominguez, A., and Paige, R. F. (2015).
The Epsilon Book. Eclipse.

[Korel et al.(2003)] Korel, B., Singh, I., Tahat, L., and Vaysburg, B. (2003). Slicing of State-Based
Models. In International Conference on Software Maintenance, pages 34–43. IEEE.

[Laibinis et al.(2015)] Laibinis, L., Troubitsyna, E., Prokhorova, Y., Iliasov, A., and Romanovsky,
A. (2015). From Requirements Engineering to Safety Assurance: Refinement Approach. In
International Symposium on Dependable Software Engineering: Theories, Tools, and Applications,
volume 9409 of LNCS, pages 201–216.

180

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Lallchandani and Mall(2011)] Lallchandani, J. T. and Mall, R. (2011). A Dynamic Slicing Tech-
nique for UML Architectural Models. IEEE Transactions on Software Engineering, 37(6), 737–
771.

[Lämmel(2008)] Lämmel, R. (2008). Google’s MapReduce Programming Model – Revisited. Science
of Computer Programming, 70(1), 1–30.

[Lano and Rahimi(2010)] Lano, K. and Rahimi, S. K. (2010). Slicing of UML Models. In Interna-
tional Conference on Software Technologies, pages 259–262.

[Larrucea(2016)] Larrucea, X. (2016). Modelling and Certifying Safety for Cyber-Physical Systems:
An Educational Experiment. In Software Engineering and Advanced Applications, pages 198–205.

[Larrucea et al.(2017)] Larrucea, X., Walker, A., and Colomo-Palacios, R. (2017). Supporting the
Management of Reusable Automotive Software. IEEE Software Journal, 34(3), 40–47.

[Lautieri et al.(2004)] Lautieri, S., Cooper, D., Jackson, D., and Cockram, T. (2004). Assurance
Cases: How Assured Are You? In International Conference on Dependable Systems and Networks.

[Leveson(2011)] Leveson, N. (2011). Engineering a safer world: Systems thinking applied to safety.
MIT press.

[Leveson(1995)] Leveson, N. G. (1995). Safety as a system property. Communications of the ACM,
38(11), 146.

[Lewis(2009)] Lewis, R. (2009). Safety Case Development as an Information Modelling Problem. In
Safety-Critical Systems: Problems, Process and Practice, pages 183–193.

[Li et al.(2013)] Li, B., Sun, X., Leung, H., and Zhang, S. (2013). A Survey of Code-Based Change
Impact Analysis Techniques. Journal of Software Testing, Verification and Reliability, 23(8),
613–646.

[Li(2016)] Li, Z. (2016). A Systematic Approach and Tool Support for Assessing GSN-Based Safety
Case. Master’s thesis, Technische Universiteit Eindhoven.

[Lucrédio et al.(2008)] Lucrédio, D., Fortes, R. P. d. M., and Whittle, J. (2008). MOOGLE: A
Model Search Engine. In International Conference on Model Driven Engineering Languages and
Systems, pages 296–310. Springer.

[Ludewig(2004)] Ludewig, J. (2004). Models in software engineering - an introduction. Inform.,
Forsch. Entwickl., 18(3-4), 105–112.

[Luo et al.(2013)] Luo, Y., van den Brand, M., Engelen, L., Favaro, J., Klabbers, M., and Sartori,
G. (2013). Extracting Models from ISO 26262 for Reusable Safety Assurance. In International
Conference on Software Reuse, pages 192–207. Springer.

181

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Luo et al.(2014)] Luo, Y., van den Brand, M., Engelen, L., and Klabbers, M. (2014). From con-
ceptual models to safety assurance. In International Conference on Conceptual Modeling, pages
195–208. Springer.

[Luo et al.(2015a)] Luo, Y., van den Brand, M., Engelen, L., and Klabbers, M. (2015a). A Model-
ing Approach to Support Safety Assurance in the Automotive Domain. In Progress in Systems
Engineering, pages 339–345.

[Luo et al.(2015b)] Luo, Y., van den Brand, M., and Kiburse, A. (2015b). Safety Case Development
with SBVR-Based Controlled Language. In International Conference on Model-Driven Engineer-
ing and Software Development, volume 580, pages 3–17.

[Luo et al.(2016)] Luo, Y., Li, Z., and van den Brand, M. (2016). A categorization of gsn-based safety
cases and patterns. In Model-Driven Engineering and Software Development (MODELSWARD),
2016 4th International Conference on, pages 509–516. IEEE.

[Luo et al.(2017)] Luo, Y., van den Brand, M., Li, Z., and Saberi, A. (2017). A Systematic Approach
and Tool Support for GSN-Based Safety Case Assessment. Journal of Systems Architecture,
76(pp), 1 – 16.

[Maksimov et al.(2018)] Maksimov, M., Fung, N. L. S., Kokaly, S., and Chechik, M. (2018). Two
Decades of Assurance Case Tools: A Survey. In International Conference on Computer Safety,
Reliability, and Security. Springer. accepted for publication.

[Matsuno(2017)] Matsuno, Y. (2017). D-Case Communicator: A Web Based GSN Editor for Mul-
tiple Stakeholders. In International Conference on Computer Safety, Reliability, and Security,
volume 10489 of LNCS, pages 64 – 69.

[Matsuno et al.(2010)] Matsuno, Y., Takamura, H., and Ishikawa, Y. (2010). A Dependability Case
Editor with Pattern Library. In High-Assurance Systems Engineering, pages 170–171.

[Mellor et al.(2004)] Mellor, S. J., Kendall, S., Uhl, A., and Weise, D. (2004). MDA Distilled.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

[Melnik et al.(2003)] Melnik, S., Rahm, E., and Bernstein, P. A. (2003). Rondo: A programming
platform for generic model management. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 193–204. ACM.

[Millett et al.(2007)] Millett, L. I., Thomas, M., Jackson, D., et al. (2007). Software for Dependable
Systems:: Sufficient Evidence? National Academies Press.

[Nair et al.(2015a)] Nair, S., Walkinshaw, N., Kelly, T., and de la Vara, J. L. (2015a). An Evidential
Reasoning Approach for Assessing Confidence in Safety Evidence. In International Symposium
on Software Reliability Engineering, pages 541–552.

182

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Nair et al.(2015b)] Nair, S., de la Vara, J. L., Sabetzadeh, M., and Falessi, D. (2015b). Evidence
Management for Compliance of Critical Systems with Safety Standards: A Survey on the State
of Practice. Information and Software Technology, 60, 1–15.

[Nejati et al.(2012)] Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., and Coq, T. (2012). A
SysML-based Approach to Traceability Management and Design Slicing in Support of Safety
Certification: Framework, Tool Support, and Case Studies. Information and Software Technology,
54(6), 569–590.

[Netkachova et al.(2015)] Netkachova, K., Netkachov, O., and Bloomfield, R. (2015). Tool Support
for Assurance Case Building Blocks. In International Conference on Computer Safety, Reliability,
and Security, volume 9338 of LNCS, pages 62–71.

[Newton and Vickers(2007)] Newton, A. and Vickers, A. (2007). The Benefits of Electronic Safety
Cases. In Safety-Critical Systems: Problems, Process and Practice, pages 69–82.

[Noda et al.(2009)] Noda, K., Kobayashi, T., Agusa, K., and Yamamoto, S. (2009). Sequence Dia-
gram Slicing. In Asia-Pacific Software Engineering Conference, pages 291–298. IEEE.

[Object Management Group(2014)] Object Management Group (2014). Model Driven Architecture
(MDA) MDA Guide rev. 2.0.

[Object Management Group(2015a)] Object Management Group (2015a). OMG Unified Modeling
Language TM (OMG UML) Version 2.5.

[Object Management Group(2015b)] Object Management Group (2015b). XML Metadata Inter-
change (XMI) Specification, Version 2.5.1.

[OMG(2015)] OMG (2015). OMG’s MetaObject Facility. http://www.omg.org/mof/.

[OMG(2015)] OMG (2015). Structured Assurance Case Metamodel (SACM). http://www.omg.

org/spec/SACM/.

[OMG(2016)] OMG (2016). Meta Object Facility (MOF) 2.0 Core Specification. http://www.omg.
org/cgi-bin/doc?ptc/03-10-04.

[Paige et al.(2016)] Paige, R. F., Matragkas, N., and Rose, L. M. (2016). Evolving Models in Model-
Driven Engineering: State-of-the-art and Future Challenges. Journal of Systems and Software,
111, 272–280.

[Palin et al.(2011)] Palin, R., Ward, D., Habli, I., and Rivett, R. (2011). ISO 26262 Safety Cases:
Compliance and Assurance.

[Panesar-Walawege et al.(2013)] Panesar-Walawege, R. K., Sabetzadeh, M., and Briand, L. (2013).
Supporting the verification of compliance to safety standards via model-driven engineering: Ap-
proach, tool-support and empirical validation. Information and Software Technology, 55(5), 836–
864.

183

http://www.omg.org/mof/
http://www.omg.org/spec/SACM/
http://www.omg.org/spec/SACM/
 http://www.omg.org/cgi-bin/doc?ptc/03-10-04
 http://www.omg.org/cgi-bin/doc?ptc/03-10-04

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[PREEVision(2018)] PREEVision (2018). PREEVision. https://vector.com/vi_

preevision-iso26262_en.html.

[Pro(2018)] Pro, S. (2018). SMS Pro. https://www.asms-pro.com/Modules/SafetyAssurance/

SafetyCaseStudy.aspx.

[Ratiu et al.(2015)] Ratiu, D., Zeller, M., and Killian, L. (2015). Safety.Lab: Model-Based Domain
Specific Tooling for Safety Argumentation. In International Conference on Computer Safety,
Reliability, and Security, volume 9338 of LNCS, pages 72–82.

[Retouniotis et al.(2017)] Retouniotis, A., Papadopoulos, Y., Sorokos, I., Parker, D., Matragkas, N.,
and Sharvia, S. (2017). Model-Connected Safety Cases. In International Symposium on Model-
Based Safety and Assessment, volume 10437 of LNCS, pages 50–63.

[Sabetzadeh et al.(2013)] Sabetzadeh, M., Falessi, D., Briand, L., and Di Alesio, S. (2013). A Goal-
Based Approach for Qualification of New Technologies: Foundations, Tool Support, and Industrial
Validation. Reliability Engineering & System Safety, 119(C), 52 – 66.

[Salay et al.(2007)] Salay, R., Chechik, M., Easterbrook, S., Diskin, Z., McCormick, P., Nejati,
S., Sabetzadeh, M., and Viriyakattiyaporn, P. (2007). An Eclipse-Based Tool Framework for
Software Model Management. In Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, pages 55–59.

[Salay et al.(2009)] Salay, R., Mylopoulos, J., and Easterbrook, S. (2009). Using Macromodels to
Manage Collections of Related Models. In International Conference on Advanced Information
Systems Engineering, pages 141–155. Springer.

[Salay et al.(2014)] Salay, R., Famelis, M., Rubin, J., Di Sandro, A., and Chechik, M. (2014). Lifting
Model Transformations to Product Lines. In Proceedings of the 36th International Conference on
Software Engineering, pages 117–128. ACM.

[Salay et al.(2015)] Salay, R., Kokaly, S., Di Sandro, A., and Chechik, M. (2015). Enriching Meg-
amodel Management with Collection-Based Operators. In International Conference on Model
Driven Engineering Languages and Systems, pages 236–245. IEEE.

[Salay et al.(2016)] Salay, R., Kokaly, S., Chechik, M., and Maibaum, T. (2016). Heterogeneous
Megamodel Slicing for Model Evolution. In Models and Evolution Workshop at Model Driven
Engineering Languages and Systems (MODELS), pages 50–59.

[Shida et al.(2013)] Shida, S., Uchida, A., Ishii, M., Ide, M., and Kuramitsu, K. (2013). Assure-It:
A Runtime Synchronization Tool of Assurance Cases. In International Conference on Computer
Safety, Reliability, and Security.

[Stahl et al.(2006)] Stahl, T., Voelter, M., and Czarnecki, K. (2006). Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons.

184

https://vector.com/vi_preevision-iso26262_en.html
https://vector.com/vi_preevision-iso26262_en.html
https://www.asms-pro.com/Modules/SafetyAssurance/SafetyCaseStudy.aspx
https://www.asms-pro.com/Modules/SafetyAssurance/SafetyCaseStudy.aspx

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

[Steinberg et al.(2008)] Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. (2008). EMF:
Eclipse Modeling Framework. Pearson Education.

[Stürmer et al.(2012)] Stürmer, I., Salecker, E., and Pohlheim, H. (2012). Reviewing software models
in compliance with iso 26262. In International Conference on Computer Safety, Reliability, and
Security, pages 258–267. Springer.

[The GSN Working Group(2015)] The GSN Working Group (2015). SACM 2.0 Argumenta-
tion Example. http://www.goalstructuringnotation.info/wp-content/uploads/2015/11/

SACM-2-examples.pdf.

[TurboAC(2018)] TurboAC (2018). TurboAC. http://www.gessnet.com/products.

[Ujhelyi et al.(2011)] Ujhelyi, Z., Horváth, Á., and Varró, D. (2011). Towards dynamic backward
slicing of model transformations. In 26th IEEE/ACM International Conference on Automated
Software Engineering, pages 404–407. IEEE.

[Ujhelyi et al.(2015)] Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szat-
mári, Z., and Varró, D. (2015). EMF-IncQuery: An Integrated Development Environment for
Live Model Queries. Science of Computer Programming, 98, 80–99.

[University of York(2015)] University of York (2015). D4.2 Compositional Assurance Cases and
Arguments for Distributed MILS.

[University of York(2018)] University of York (2018). Impact case study - University of York. https:
//impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=43445.

[Vanhooff et al.(2007)] Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., and Berbers, Y. (2007).
Uniti: A Unified Transformation Infrastructure. In International Conference on Model Driven
Engineering Languages and Systems, pages 31–45. Springer.

[Vignaga et al.(2013)] Vignaga, A., Jouault, F., Bastarrica, M. C., and Brunelière, H. (2013). Typ-
ing Artifacts in Megamodeling. Journal of Software and Systems Modeling, 12(1), 105–119.

[Weiser(1981)] Weiser, M. (1981). Program Slicing. In Proceedings of the 5th international conference
on Software engineering, pages 439–449. IEEE Press.

[Widl et al.(2012)] Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M.,
and Tompits, H. (2012). Guided Merging of Sequence Diagrams. In International Conference on
Software Language Engineering, pages 164–183. Springer.

[Zhang et al.(2011)] Zhang, H., Babar, M. A., and Tell, P. (2011). Identifying Relevant Studies in
Software Engineering. Journal of Information and Software Technology, 53(6), 625–637.

185

 http://www.goalstructuringnotation.info/wp-content/uploads/2015/11/SACM-2-examples.pdf
 http://www.goalstructuringnotation.info/wp-content/uploads/2015/11/SACM-2-examples.pdf
http://www.gessnet.com/products
https://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=43445
https://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=43445

Appendix A

Power Sliding Door Models

This appendix presents all the Power Sliding Door (PSD) system design models encoded in MMINT .

A.1 PSD Class Diagram

Figure A.1 displays a class diagram for the PSD encoded in our tool MMINT . This class diagram
describes the objects involved in the PSD and their relationships with one another.

Figure A.1: Power Sliding Door (PSD) Class Diagram

186

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

A.2 PSD Sequence Diagram

Figure A.2 displays a sequence diagram for the PSD encoded in our toolMMINT . Sequence diagrams
are used to emphasize the interactions between objects within a system. Sequence diagrams have
a series of boxes at the top of the image that depicts objects. From these boxes are dashed lines.
Between the dashed lines are synchronous messages and responses that occur between the objects.

Figure A.2: Power Sliding Door (PSD) Sequence Diagram

187

Appendix B

Lane Management System Models

This appendix presents all the Lane Management System (LMS) design models encoded in MMINT
and traceability relationships between them.

B.1 LMS Class Diagram

Figure B.3 displays a class diagram for the LMS taken from [Blazy et al.(2014)] and encoded in our
tool MMINT . This class diagram describes the objects involved in the LMS and their relationships
with one another. The class diagram consists of boxes that depict classes, which hold relative
attributes and operations within them. In addition, associations (relationships) between the classes
are depicted with a line, as well as a description and arrow. Within Figure B.3, there are also special
associations called aggregations depicted via a diamond. An aggregation is used for showing when
a class is a part of another class. For more information on the system, including a data dictionary,
please refer to [Blazy et al.(2014)].

B.2 LMS Sequence Diagrams

Below are the representative scenarios of the LMS encoded using sequence diagrams for each scenario
taken from [Blazy et al.(2014)] and encoded in MMINT . Sequence diagrams are used to emphasize
the interactions between objects within a system. Sequence diagrams have a series of boxes at the
top of the image that depicts objects. From these boxes are dashed lines. Between the dashed lines
are synchronous messages and responses that occur between the objects.

B.2.1 LMS DrivingStraight Sequence Diagram

Figure B.4 depicts the DrivingStraight Scenario. This scenario depicts how the system handles
driving straight. For example, with this scenario it is assumed that the vehicle will be traveling in a

188

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

straight line with zero road curvature, valid and conforming sequence of images from the subsystems
and vehicle speed is uniform.

B.2.2 LMS FailureState Sequence Diagram

Figure B.5 depicts the FailureState Scenario. This scenario depicts how the system handles failure.
For example, lane information may be missing or a subsystem may have failed.

B.2.3 LMS LeftCurve Sequence Diagram

Figure B.6 depicts the LeftCurve Scenario. This scenario depicts how the system handles non-zero
curvature.

B.2.4 LMS SystemOn Sequence Diagram

Figure B.7 depicts the SystemOn Scenario. This scenario depicts how the system handles being on,
with no communication between the system and the driver or the system and the systems subsystems.

B.3 LMS State Diagrams

This section contains depictions of the respective state diagrams for the LMS and its subsystems. A
state diagram portrays the behavior of a system. It is made up of states (circles) and events (lines
between states). Figures B.8, B.9, B.10 and B.11 depict the overall LMS state diagram, the LKS
state diagram, the LCS state diagram and the LDWS state diagram, respectively.

B.4 Traceability between LMS models

Figures B.12 to B.19 show in a table format the traceability relations between the various LMS
system models.

189

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.3: Lane Management System (LMS) Class Diagram

190

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.4: Lane Management System (LMS) Sequence Diagram - DrivingStraight

Figure B.5: Lane Management System (LMS) Sequence Diagram - FailureState

191

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.6: Lane Management System (LMS) Sequence Diagram - LeftCurve

Figure B.7: Lane Management System (LMS) Sequence Diagram - SystemOn

192

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.8: LMS State Diagram

Figure B.9: LKS State Diagram

193

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.10: LCS State Diagram

Figure B.11: LDWS State Diagram

194

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.12: Traceability between LMS CD and LMS State Diagram

Figure B.13: Traceability between LMS CD and LKS State Diagram

195

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.14: Traceability between LMS CD and LDWS State Diagram

Figure B.15: Traceability between LMS CD and LCS State Diagram

Figure B.16: Traceability between LMS CD and LMS SystemOn Sequence Diagram

196

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

Figure B.17: Traceability between LMS CD and LMS LeftCurve Sequence Diagram

Figure B.18: Traceability between LMS CD and LMS FailureState Sequence Diagram

Figure B.19: Traceability between LMS CD and LMS DrivingStraight Sequence Diagram

197

Appendix C

MMINT-A User Manual

This appendix contains a user manual for MMINT and MMINT-A, which can also be found online
at: https://github.com/nlsfung/MMINT/wiki.

198

Welcome to the MMINT wiki, which contains instructions on how to use MMINT and MMINT-A. In particular, this wiki
is written based on personal experience of what works and, where appropriate, what doesn't. As a consequence, the
user may find that there are undocumented but equally valid alternatives for completing each task, especially if he or
she is already familiar with Eclipse, EMF and Sirius. Furthermore, familiarity with terms and concepts related to
model management, MMINT and MMINT-A are assumed; background information on MMINT can be found on this
wiki (https://github.com/adisandro/MMINT/wiki).

As shown in the sidebar, this wiki comprises four chapters:

Installing MMINT contains instructions for installing MMINT and Eclipse.1.

Using MMINT documents the features of MMINT and how to use them.2.

Using MMINT-A contains instructions on setting up and using MMINT-A, which is a set of extensions on top of
MMINT for performaing change impact assessment on assurance cases.

3.

Extending MMINT documents how to incorporate personal extensions into MMINT, such as new metamodels
and new model operators.

4.

Both Using MMINT-A and Extending MMINT assume some familiarity with using MMINT and thereby depend on
the chapter Using MMINT (which in turn assume successful installation of MMINT). However, these two chapters
are independent of each other despite the chronological order, thus users who only wish to work with assurance
cases need not be familiar with Extending MMINT. Similarly, those who wish to extend MMINT for other
applications need not learn about Using MMINT-A.

Below is a list of the prerequisites for running MMINT. Optional software are indicated as such with an explanation of
the circumstances under which they are required or recommended.

Java 10 JDK

Git (Optional. For keeping MMINT up-to-date.)

Eclipse Modeling Tools, Photon Release w/ the following extra add-ons (see the following section for
instructions):

MMINT/MMINT-A User Manual

Home

1 Installing MMINT

Software Requirements

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

199

Acceleo

ATL SDK (Required for class diagrams)

m2e - Maven Integration for Eclipse (Optional. For build automation.)

Papyrus for UML

Sirius Properties Views - Specifier Support (Optional. For using Sirius.)

Sirius Specifier Environment

Tycho Project Configurators (Optional. For build automation.)

The following instructions assume that Eclipse Modeling Tools (and the extra add-ons) are to be installed from
scratch. If a version of Eclipse Photon already exists, then the instructions may need to be modified accordingly
depending on which add-ons are missing.

Download installer for Eclipse Photon (http://www.eclipse.org/photon/ (http://www.eclipse.org/photon/))1.

Execute installer and choose to install Eclipse Modeling Tools.2.

Open Eclipse. For now, any directory can serve as the workspace.3.

Ensure that Eclipse is using the Java 10.
Select Window > Preferences > Java > Installed JREs at the menu bar.1.

Make sure Java 10 is listed and seleted. If not, then do so.2.

4.

Install the additional components in Eclipse.
Select Help > Install New Software1.

Choose to work with "Photon - http://download.eclipse.org/releases/photon (http://download.eclipse.org
/releases/photon)"

2.

Search for, select and install the components listed above except Tycho Project Configurators, which is
located in a different repository (see Fig. 1.1).

3.

Do not restart Eclipse. Instead repeat steps a-c again but:
Add and use the following respository: http://repo1.maven.org/maven2/.m2e/connectors/m2eclipse-
tycho/0.8.1/N/0.8.1.201704211436/ (http://repo1.maven.org/maven2/.m2e/connectors/m2eclipse-
tycho/0.8.1/N/0.8.1.201704211436/)

1.

Select and install Tycho Project Configurators2.

4.

Close or restart Eclipse to complete the installation process.5.

5.

Installing Eclipse

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

200

Fig. 1.1 A screenshot of the screen for installing new software in Eclipse. In this case, the target software is
Acceleo, and it has been installed already.

The following instructions describe how to install MMINT and MMINT-A from source and assume familiarity with the
use of Git (https://git-scm.com/) for version control. If the latest updates of MMINT-A are not required, then it is also
possible to install MMINT and MMINT-A from binary packages, the instructions for which can be found at here
(https://github.com/adisandro/MMINT/wiki/Install#binary-packages).

Go to a directory to contain the source files for MMINT (e.g. ~/Documents).1.

Clone one of the following Git repositories for MMINT
https://github.com/adisandro/MMINT.git (https://github.com/adisandro/MMINT.git) is the official repository

https://github.com/nlsfung/MMINT.git (https://github.com/nlsfung/MMINT.git) contains the most recent
updates for MMINT-A.

2.

Check out the "develop" branch of MMINT3.

Open Eclipse. Optionally, set the cloned MMINT directory to be the workspace.
Select File > Workspace > Other... and look for the MMINT directory1.

4.

Open the Java perspective.
Select Window > Perspective in the menu bar, and look for Java1.

5.

Import the projects for MMINT into Eclipse.6.

Setting Up MMINT

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

201

Select File > Import, then General > Existing Projects into Workspace1.

Choose the cloned MMINT directory as the root directory.2.

Under "Options", check "Search for nested projects".3.

Select all projects starting with "edu.toronto.cs.se" to import, except (see Fig. 1.2):

edu.toronto.cs.se.modelepedia.z3.operator

edu.toronto.cs.se.modelepedia.classdiagram_mavo.operator

edu.toronto.cs.se.modelepedia.icse14

4.

After refreshing, Eclipse will report 10 errors that "plugin execution [is] not covered by lifecycle configuration". These
errors do not have clear, observable impact on MMINT and can therefore be ignored.

Fig. 1.2 A screenshot showing the projects to be imported.

Starting Up

Configuring MMINT

2 Using MMINT

Contents

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

202

Inspecting the Type MID

Creating a New Project

Creating a Megamodel

Using the MID Editor

Using the ModelRel Editor

Creating a Workflow

Using the Workflow Editor

Registering New Workflows

Run Eclipse. If necessary, switch to the workspace containing the MMINT source files.1.

Right-click on any MMINT project (e.g. the first one, edu.toronto.cs.se.mavo)2.

Select Debug As > Eclipse Application (see Fig. 2.1). If this option is not available, try another project.3.

Once these steps are completed, MMINT will launch as a new instance of Eclipse. By default, the workspace for
MMINT is named "runtime-EclipseApplication" and is located under the same parent directory as the original
workspace.

Fig. 2.1 A screenshot showing the final step in starting a new Eclipse application.

Starting Up

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

203

The following configuration options are available in MMINT and can be enabled or disabled by opening up the
MMINT menu in the menu bar and selecting or deselecting them (see Fig. 2.2).

Show icons on links Effects to be confirmed.

Show labels on ModelRel links Enables labels on newly-created binary links in a model relationship (see
ModelRel Editor)

Show labels on ModelRel endpoints Enables labels on the endpoints of newly-created n-ary relationships in
a MID (see MID Editor) or in a ModelRel (see ModelRel Editor)

Show labels on Operator endpoints Effects to be confirmed

Trace Operator execution Keeps track of any operators used to create models in the MID. It is recommended
that this option be enabled as it is required for some operators (e.g. workflows).

Open editors when Operators create Models Effects to be confirmed

Delete Models from file system Enables automatic deletion of models from the file system whenever they are
deleted from a megamodel (i.e. an instance MID). Since this deletion is irreversible, it is recommendeded that
this option be disabled.

Enable Runtime Typing (Under Polymorphism sub-menu) Effects to be confirmed

Enable Multiple Dispatch (Under Polymorphism sub-menu) Effects to be confirmed

Configuring MMINT
Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

204

Fig. 2.2 A screenshot showing the menu for configuring MMINT.

The Type MID is a mega-metamodel showing all the model types, relation types and operators that have been
incorporated into and can be used in MMINT. To inspect it, select MMINT > Open Type MID from the menu bar (see
Fig. 2.3).

Fig. 2.3 A screenshot showing the Type MID and the menu item for opening it.

Select File > New > Project > Sirius > Modeling Project (see Fig. 2.4).1.

Give the project a name (e.g. HelloWorld) and choose a location for the project if desired.2.

Inspecting the Type MID

Creating a New Project

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

205

Fig. 2.4 A screenshot showing the type of projects to create for MMINT.

The following instructions describe how to create megamodels in MMINT. Note that megamodels are also referred to
as instance MIDs (Model Interconnection Diagrams) in MMINT, but to clearly distinguish between instance MIDs for
megamodels and workflow MIDs for workflows, this manual will mainly use the terms "megamodel" (and "workflow")
instead.

Right-click on a project (e.g. HelloWorld).1.

Select New > Other, and search for Instance MID (see Fig. 2.5).2.

Choose the appropriate parent directory and file name for the MID diagram (e.g. HelloMegamodel.middiag).
Click "Next" to continue.

3.

Choose the appropriate parent directory and file name for the MID domain model underlying the MID diagram
(e.g. HelloMegamodel.mid). Click "Finish" to create new, empty megamodel.

4.

Use the MID Editor to populate the megamodel.5.

Creating a Megamodel

A

B

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

206

Fig. 2.5 A screenshot showing the creation of an instance MID (i.e. a megamodel).

To create a new model using the MID editor:

Select "New Model" on the palette and click on an empty space in the MID.1.

Search for the desired model and editor (e.g. ClassDiagram representation).2.

Follow the instructions specific to the selected model and editor. E.g. for Sirius:
Give the model an appropriate name (e.g. HelloClassDiagram).1.

Choose the root of the meta-model (e.g. Class Diagram) as the model object.2.

3.

To import an existing model into a MID:

Select "Import Model" on the palette and click on an empty space in the MID.1.

Search for and select the desired model to import.2.

To create a reference to a model in a different MID:

Right-click the MID and select "Create Shortcut…"1.

Search for and select the model to reference to.2.

To create a new binary model relation inside a MID:

Using the MID Editor

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

207

Select "New Binary Rel" on the palette.1.

Click and hold on the source model of the relation.2.

Drag a connection to the target model of the relation.3.

Use the ModelRel editor to edit which specific model elements are related.4.

To create a new n-ary model relation inside a MID:

Select "New Nary Rel" on the palette and click on the MID.1.

Choose "ModelRel" as the model relationship type, and give it a name.2.

Select "Connect Model".3.

Click on the model relation and drag to (one of) the model or model references to be related.4.

Repeat until all appropriate models and references are connected by the model relation.5.

Use the ModelRel editor to edit which specific model elements are related.6.

To operate on a collection of models inside a MID:

Select all models and relations required as inputs to the operator (using Ctrl-Click). 1.

Right-click and select the desired operator under MMINT > Run Operator (see Fig. 2.6). For higher-order
operators, further operators must be selected as input.

2.

C

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

208

Fig. 2.6 A screenshot showing a megamodel and a list of actions that can be performed on the selected
"powerSD_GSN" safety case model.

The ModelRel editor shows which model elements are related to each other in a model relation. In a newly created
model relation, no elements are related to each other, thus the editor would display a collection of empty yellow
boxes, one for each model connected by the relation. The following instructions describe how these boxes can be
populated with model elements that can then be related together (see Fig. 2.7).

Double-click on a model relation to open the editor.1.

Open the "Outline" view in Eclipse if not open already.
Select on the menu bar Window > Show View > Other...1.

Look for and select the Outline view.2.

2.

Add model elements to the relation.
Find the desired model element in the Outline view.1.

Click and drag the desired model element from the Outline view onto the appropriate yellow box.2.

3.

Connect the model elements together as appropriate.
For a binary mapping between model elements:

Select "New Binary Mapping" in the palette.1.

Drag from one model element to the other. 2.

For an n-ary mapping:
Select "New Nary Mapping" in the palette and click on an empty space.1.

Give the mapping an optional name.2.

Select "Connect Model Element" in the palette.3.

Drag from the mapping to the appropriate model element.4.

Repeat the previous two steps as appropriate.5.

4.

Using the ModelRel Editor

D

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

209

Fig. 2.7 A screenshot showing the ModelRel editor. The bottom left shows the Outline view which can be used to
populate the yellow boxes with model elements. In this case, all model elements are related to each other by binary
mappings.

Right-click on a project (e.g. HelloWorld).1.

Select New > Other, and search for the Workflow MID (see Fig. 2.8).2.

Choose the appropriate parent directory and file name for the MID diagram (e.g. sayHello.middiag). Click "Next"
to continue.

3.

Choose the appropriate parent directory and file name for the MID domain model underlying the MID diagram
(e.g. sayHello.mid). Click "Finish" to create new, empty workflow.

4.

Use the Workflow Editor to populate the workflow.5.

Creating a Workflow

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

210

Fig. 2.8 A screenshot showing the wizard for creating a workflow MID (as opposed to an instance MID).

Workflows are visualised in the same manner as megamodels, but the models in workflows represent the types of
input, output and intermediary models that are instantiated when the workflow is executed. To create a new
workflow:

Add a new input model to the workflow.
Click on "New Model" on the palette and then on an empty area of the workflow.1.

Select the desired model type.2.

1.

Repeat the first step until all input models are added. The order the input models are added to the workflow
determines the order in which the models must be selected to be operated on.

2.

Follow the steps of operating on megamodels (see Using the MID Editor) to add the appropriate operators to
the worklow (see Fig. 2.9). Repeating this process creates a series of operator applications starting with the
input models and ending with the output models.

3.

Using the Workflow Editor

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

211

Fig. 2.9 A screenshot showing the workflow editor. In this case, the workflow accepts two MIDs and two MIDRels as
inputs, and a new model operator is being added to w3.

Before they can be used like other operators, newly created workflows must be registered in MMINT by following the
instructions below:

Open the Type MID.1.

Click on "New Operator Type" in the palette and select an empty spot in the Type MID.2.

Look for and select the workflow to add to the MID (see Fig. 2.10).3.

Change the name of the workflow if desired.4.

Registering New Workflows

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

212

Fig. 2.10 A screenshot showing the window for adding new workflow operators to the Type MID.

A: The MID diagram is the graphical visualisation of a megamodel, which is built on top of the Graphical Modeling
Framework (GMF) (http://www.eclipse.org/modeling/gmp) in Eclipse.

B: The MID domain model is the actual instance of a megamodel, which is built on top of the Eclipse Modeling
Framework (EMF) (http://www.eclipse.org/modeling/emf).

C: The order in which the models and relations are selected must be the same as the order specified for the
operator.

D: Binary mappings are directional in MMINT.

MMINT-A comprises a set of extensions to MMINT, viz.:

A safety case metamodel (and accompanying editor)

Safety case slicers for propagating change impact

A workflow for performing change impact assessment on the system models

3 Using MMINT-A

Setting Up MMINT-A

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

213

The complete safety case change impact assessment workflow

The metamodel and slicers are automatically incorporated into MMINT, and thus do not require further action from
the user. However, the workflows must still be incorporated into MMINT, the instructions for which are as follows:

Go to https://github.com/nlsfung/MMINT_Examples/tree/assure18 (https://github.com/nlsfung
/MMINT_Examples/tree/assure18)

1.

Download the MMINTA directory into MMINT's runtime Eclipse directory.2.

Start up MMINT (https://github.com/nlsfung/MMINT/wiki/02-Using-MMINT#starting-up).3.

Import the MMINTA project.4.

Add to the Type MID (https://github.com/nlsfung/MMINT/wiki/02-Using-MMINT#registering-new-workflows) the
workflows (see Fig. 3.1):

SliceStep_MMINTA.mid

Slice_MMINTA.mid

SafetyCaseImpact.mid.

5.

Fig. 3.1 A screenshot showing the Type MID with the workflows for MMINT-A added.

To apply the safety case change impact assessment workflow (SafetyCaseImpact.mid), the following inputs are

Preparing the Assessment

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

214

required (see Fig. 3.2):

The system models, which can include any of the following:
Class Diagram

Sequence Diagram

State Machine

The system safety case

The system megamodel, which comprises:
The system models

2-ary relations between pairs of models expressing the dependencies between them

The modified elements megamodel, which identify the system elements to be modified and is created as
follows using the MID editor (https://github.com/nlsfung/MMINT/wiki/02-Using-MMINT#using-the-mid-editor):

Create references to the system models to be modified.1.

Add a unary relation to each model.2.

Use the ModelRel editor (https://github.com/nlsfung/MMINT/wiki/02-Using-MMINT#using-the-modelrel-
editor) to populate each unary relation with the modified model elements.

3.

The deleted elements megamodel, which identify the system elements to be deleted and is created as follows
using the MID editor (https://github.com/nlsfung/MMINT/wiki/02-Using-MMINT#using-the-mid-editor):

Create references to the system models to be modified.1.

Add a unary relation to each model.2.

Use the ModelRel editor (https://github.com/nlsfung/MMINT/wiki/02-Using-MMINT#using-the-modelrel-
editor) to populate each unary relation with the deleted model elements.

3.

The megamodel for the safety case containing:
The safety case

A reference to each system model

A 2-ary relation connecting each system model with the safety case

The megamodel containing the four megamodels above

A

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

215

Fig. 3.2 A screenshot showing some of the megamodels required for performing safety case change impact
assessment using MMINT-A. From left to right, top to bottom, the megamodels shown are: the overall megamodel,
the system megamodel, the modified elements megamodel and the safety case megamodel.

Open the megamodel containing the four megamodels.1.

Use Ctrl-Click to select, in order:
The system megamodel

The megamodel of system elements to be modified

The megamodel of system elements to be deleted

The megamodel for the safety case

2.

Right-click the selection.3.

Select MMINT > Run Operator > [workflow] SafetyCaseImpact (see top of Fig. 3.3).4.

Double-click the output to open the annotated safety case (see bottom of Fig. 3.3).5.

Performing the Assessment

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

216

Fig. 3.3 A screenshot showing, at the top, the safety case change impact assessment workflow being selected for
execution and, at the bottom, the resulting annotated safety case.

Apart from the standard graphical view of safety cases, MMINT-A can also generate tables summarising (see Fig.
3.4):

The amount of impact the given change has on the safety case.

The source of each annotation on the safety case.

The following instructions describe how these tables can be created:

Go to the Model Explorer in Eclipse, and expand the annotated safety case.1.

Right-click on "Safety Case".2.

Select the appropriate representation to create in "New Representation".
"new SafetyCaseRepresentation" creates another graphical view of the safety case.

"new SafetyCaseStatistics" creates a table summarising the number of different annotations.

"new SafetyCaseImpactTrace" creates a table listing the annotations and their source.

3.

Analysing the Results

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

217

Fig. 3.4 A screenshot showing, from top to bottom, left to right, the overall megamodel for performing safety case
change impact assessment, a table summarising the number of different annotations, the annotated safety case,
and a table summarising the source of each annotation.

https://github.com/nlsfung/MMINT_Examples/tree/assure18 (https://github.com/nlsfung/MMINT_Examples
/tree/assure18) contains some sample projects for executing the safety case change impact assessment workflow.
These projects, and their main models and megamodels, are as follows:

PowerSlidingDoor (PSD)

powerSD.classdiagram The class diagram for the PSD system

powerSD.safetycase The safety case for the PSD system

powerSD.sequencediagram The sequence diagram for the PSD system

PowerSDMega.mid(diag) The PSD system megamodel

PowerSDSafety.mid(diag) The PSD safety case megamodel

powerSDWorkspace.mid(diag) The megamodel for running the workflow

SliceDeleted.mid(diag) The megamodel of deletions

SliceModified.mid(diag) The megamodel of modifications

Sample Projects

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

218

LaneManagementSystem (LMS)

lms_cd.classdiagram The LMS class diagram

lms_cia.mid(diag) The megamodel for running the workflow

lms_deleted.mid(diag) The megamodel of deletions

lms_mega.mid(diag) The LMS megamodel

lms_modified.mid(diag) The megamodel of modifications

lms_safety.mid(diag) The LMS safety case megamodel

lms_sc.safetycase The LMS safety case

*.sequencediagram The sequence diagrams for four different LMS sub-systems

*.statemachine The state machines for four different LMS sub-systems

A: MMINT-A only supports binary relations that are created as n-ary relations with two connections.

The following instructions describe how new metamodels (and their default editors) in Eclipse can be plugged into
MMINT. These metamodels are created using EMF (https://www.eclipse.org/modeling/emf/) and comprise three
projects, e.g.:

edu.toronto.cs.se.modelepedia.classdiagram

edu.toronto.cs.se.modelepedia.classdiagram.edit

edu.toronto.cs.se.modelepedia.classdiagram.editor

The first project is the main one containing the Ecore specification of the model as well as the generated code. The
other two projects (*.edit and *.editor) create an Eclipse plug-in for the metamodel, allowing it to be instantiated.

The *.edit project need not be modified for MMINT, but to register the metamodel (the main project) with MMINT
(see Fig. 4.1):

Open the plugin.xml file for the project.1.

Select the "Dependencies" tab2.

Add "edu.toronto.cs.se.mmint" as a dependency (required plug-in)3.

(Optional) Select the plugin and remove the version number from its properties4.

4 Extending MMINT

Adding a New Metamodel (and Basic Editor)

A

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

219

Select the "Extensions" tab5.

Add "edu.toronto.cs.se.mmint.models" as an extension6.

Select the added extension and expand it two levels down. (e.g. edu.toronto.cs.se.mmint.models > (modelType)
> edu.toronto.cs.se.modelepedia.classdiagram.type1)

7.

Select the result (edu.toronto.cs.se.modelepedia.classdiagram.type1) to inspect its extension element details.8.

Change the name of the model type as appropriate (e.g. ClassDiagram).9.

Set the URI to be the same as that of the metamodel, which can be found by:
Expand the extension "org.eclipse.emf.ecore.generated_package"1.

Select the result (e.g. ClassDiagramPackage).2.

Inspect its extension element details for its URI. (e.g. http://se.cs.toronto.edu/modelepedia/ClassDiagram
(http://se.cs.toronto.edu/modelepedia/ClassDiagram))

3.

10.

Fig. 4.1 A screenshot showing the extension element details for registering a class diagram metamodel with MMINT.

To register the *.editor project with MMINT:

Open the plugin.xml file for the project.1.

Select the "Dependencies" tab2.

Add "edu.toronto.cs.se.mmint" as a dependency (required plug-in)3.

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

220

(Optional) Select the plugin and remove the version number from its properties4.

Select the "Extensions" tab5.

Add "edu.toronto.cs.se.mmint.editors" as an extension6.

Select the added extension and expand it one level down. (e.g. edu.toronto.cs.se.mmint.editors >
edu.toronto.cs.se.modelepedia.classdiagram.editor.editorType1 (editorType))

7.

Select the result (edu.toronto.cs.se.modelepedia.classdiagram.editor.editorType1) to inspect the extension
element details of the editor type.

8.

Set the modelTypeUri to be the same as the metamodel URI. (e.g. http://se.cs.toronto.edu/modelepedia
/ClassDiagram (http://se.cs.toronto.edu/modelepedia/ClassDiagram))

9.

Set the id to be the same as the editor ID, which can be found by:
Expand the extension "org.eclipse.ui.editors".1.

Select the result (e.g. ClassDiagram Model Editor)2.

Inspect its extension element details for its id (e.g.
edu.toronto.cs.se.modelepedia.classdiagram.presentation.ClassDiagramEditorID)

3.

10.

Set the wizardId to be the same as the wizard ID of the editor, which can be found by:
Expand the extension "org.eclipse.ui.newWizards".1.

Select the second result (e.g. ClassDiagram Model (wizard))2.

Inspect its extension element details for its id (e.g.
edu.toronto.cs.se.modelepedia.classdiagram.presentation.ClassDiagramModelWizardID)

3.

11.

Expand the added extension ("edu.toronto.cs.se.mmint.editors") one further level down. (e.g. to
edu.toronto.cs.se.modelepedia.classdiagram.editor.type1)

12.

Select the result to inpect the extension element details of the editor.13.

Give the editor an arbitrary name (e.g. ClassDiagram tree)14.

Give the editor a unique URI (e.g. http://se.cs.toronto.edu/modelepedia/Tree_ClassDiagram
(http://se.cs.toronto.edu/modelepedia/Tree_ClassDiagram))

15.

The following instructions describe how new editors created using Sirius (https://www.eclipse.org/sirius/) can be
plugged into MMINT. Each of these editors typically comprise a single project, e.g.:

edu.toronto.cs.se.modelepedia.classdiagram.design

To register the .design project with MMINT:

Open the plugin.xml file for the project.1.

Adding a New Sirius Editor
B

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

221

Select the "Dependencies" tab2.

Add "edu.toronto.cs.se.mmint" as a dependency (required plug-in)3.

(Optional) Select the plugin and remove the version number from its properties4.

Select the "Extensions" tab5.

Add "edu.toronto.cs.se.mmint.editors" as an extension6.

Select the added extension and expand it one level down. (e.g. edu.toronto.cs.se.mmint.editors >
edu.toronto.cs.se.modelepedia.classdiagram.editor.editorType1 (editorType))

7.

Select the result (edu.toronto.cs.se.modelepedia.classdiagram.editor.editorType1) to inspect the extension
element details of the editor type (see top of Fig. 4.2).

8.

Set the modelTypeUri to be the same as the metamodel URI. (e.g. http://se.cs.toronto.edu/modelepedia
/ClassDiagram (http://se.cs.toronto.edu/modelepedia/ClassDiagram))

9.

Give the editor type an arbitrary ID (e.g. edu.toronto.cs.se.modelepedia.classdiagram.design)10.

Set isDiagram to true.11.

Set the wizardId to be the same as the wizard ID of the default editor, which can be found by:
Expand the extension "org.eclipse.ui.newWizards".1.

Select the second result (e.g. ClassDiagram Model (wizard))2.

Inspect its extension element details for its id (e.g.
edu.toronto.cs.se.modelepedia.classdiagram.presentation.ClassDiagramModelWizardID)

3.

12.

Expand the added extension ("edu.toronto.cs.se.mmint.editors") one further level down. (e.g. to
edu.toronto.cs.se.modelepedia.classdiagram.editor.type1)

13.

Select the result to inpect the extension element details of the editor (see bottom of Fig. 4.2).14.

Give the editor an arbitrary name (e.g. ClassDiagram representation)15.

Give the editor a unique URI (e.g. http://se.cs.toronto.edu/modelepedia/Representation_ClassDiagram
(http://se.cs.toronto.edu/modelepedia/Representation_ClassDiagram))

16.

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

222

Fig. 4.2 A screenshot showing the extension element details for registering a Sirius editor (for class diagrams) with
MMINT.

The following instructions describe how to register a new model operator with MMINT.

Open the plugin.xml file for the operator's project (e.g. edu.toronto.cs.se.modelepedia.classdiagram.operator).1.

Select the "Dependencies" tab2.

Make sure "edu.toronto.cs.se.mmint" is added as a dependency (required plug-in)3.

Make sure "edu.toronto.cs.se.mmint.operator" is added as a dependency (required plug-in)4.

Select the "Extensions" tab5.

Add "edu.toronto.cs.se.mmint.operators" as an extension6.

Select the added extension and expand it two levels down. (e.g. edu.toronto.cs.se.mmint.operators >
(operatorType) > edu.toronto.cs.se.modelepedia.classdiagram.operator.type1 (type))

7.

Select the result to inspect the extension element details of the editor type (see Fig. 4.3).8.

Give the operator type an arbitrary name. (e.g. Slice)9.

Give the operator type a unique uri. (e.g. http://se.cs.toronto.edu/modelepedia/Operator_CDSlice
(http://se.cs.toronto.edu/modelepedia/Operator_CDSlice))

10.

Adding a New Operator
C

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

223

Search for and specify the class implementing the operator (e.g.
edu.toronto.cs.se.modelepedia.classdiagram.operator.CDSlice)

11.

Specify the supertype of the operator (if any) by:
Right-click the extension element (edu.toronto.cs.se.modelepedia.classdiagram.operator.type1)1.

Select New > superType.2.

Set its URI to be the same as the URI of the supertype's URI (e.g. http://se.cs.toronto.edu/mmint
/Operator_Slice (http://se.cs.toronto.edu/mmint/Operator_Slice))

3.

12.

Right-click on "(operatorType)" and select New > inputs.13.

Register each input to the operator (in order) by:
Right-click on "(inputs)" and select New > parameter1.

Expand "(parameter)" one level down.2.

Inspect the extension element details of the parameter type (e.g.
edu.toronto.cs.se.modelepedia.classdiagram.operator.type1)

3.

Give the parameter type an arbitrary name (e.g. criterion)4.

Give the parameter type a unique URI (e.g. http://se.cs.toronto.edu/modelepedia/Operator_CDSlice-
CDRel/criterion (http://se.cs.toronto.edu/modelepedia/Operator_CDSlice-CDRel/criterion))

5.

Specify the supertype of the parameter type (if any) by following analogous instructions as before.6.

Inspect the extension element details of the parameter type end point (e.g.
edu.toronto.cs.se.modelepedia.classdiagram.operator.typeEndpoint1)

7.

Set its targetTypeUri to be the URI of the target type of the parameter (e.g. http://se.cs.toronto.edu
/modelepedia/CDRel (http://se.cs.toronto.edu/modelepedia/CDRel))

8.

14.

Register each output from the operator (in order) by following analogous instructions for the previous step.15.

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

224

Fig. 4.3 A screenshot showing the addition of a "Slice" operation in MMINT.

A: A tutorial on using EMF can be found on vogella.com (http://www.vogella.com/tutorials/EclipseEMF/article.html).
However, note that it is not up-to-date as the visual editor for creating EMF models are now based on Sirius instead
of GMF.

B: A tutorial on using Sirius can be found on eclipse.org (http://www.eclipse.org/sirius/getstarted.html).

C: The details of the MMINT API for implementing model operators are beyond the scope of this manual.

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

225

Ph.D. Thesis - Sahar Kokaly McMaster - Software Engineering

.

226

	Abstract
	Acknowledgements
	I Motivation & Related Work
	Introduction
	Motivation
	The SafeCar Example
	Related Work
	Model Management
	Compliance Management Frameworks
	Languages, Algorithms and Operators for Compliance
	Modeling Standards, Assurance Cases and Compliance

	Gaps Identified In This Thesis
	Our Proposal: Model Management for Compliance
	Research Questions
	Thesis Contributions
	Thesis Organization

	II Megamodel Management
	Background: Model Management
	Running Example: Power Sliding Door System
	Modeling and Model Management
	Modeling
	MDA, MOF, EMF and Ecore
	Model Management
	Definitions

	Model Slicing
	Model Evolution
	Chapter Summary

	Background: MMINT
	Using MMINT for Model Management
	MMINT Architecture
	Chapter Summary

	Megamodel Management with Collection-Based Operators
	Traditional Megamodeling Operators
	Megamodel Collection Operators
	Operator map
	Operator reduce
	Operator filter

	Application Scenarios
	Experiment Driver
	Mass Refactoring
	Megamodel Transformation
	Scenario from the Motivating Example

	Analysis
	Tool Support
	Using MMINT
	Implementation of Collection Operators
	Experiments

	Related Work
	Chapter Summary

	Heterogeneous Megamodel Slicing
	Motivating Example
	Megamodel Slicing
	Slicing algorithm
	Analysis
	Discussion

	Megamodel Slicing with Collection-Based Operators
	PSD Example
	Megamodels of class and sequence diagrams
	Slicing of PSD megamodel
	Post-processing

	Related Work
	Chapter Summary

	III Assurance Case Management
	Background: Assurance
	Software Development in the Automotive Domain
	The ISO 26262 Standard
	ASIL Allocation and Propagation
	ASIL Decomposition
	Goal Refinement in ISO 26262

	Assurance Cases
	Modeling Assurance Cases
	The Goal Structuring Notation (GSN)
	Claims, Arguments and Evidence (CAE)
	Structured Assurance Case Metamodel (SACM)

	A Survey of Assurance Case Tools
	Methodology
	Results
	Evaluation of the Tools and Discussion
	Threats to Validity
	Summary

	Chapter Summary

	An Approach for Assurance Case Reuse due to System Evolution
	Introduction
	A generic assurance framework for model evolution
	Objective of Reuse
	The Framework
	Additional Model Management Operators

	Algorithm Analysis
	Soundness
	Relative Efficiency
	Emergent Properties

	Demonstration: PSD example
	Instantiating the Framework
	Application to PSD System
	Evolution of PSD System

	Related Work
	Chapter Summary

	Instantiating the Approach for Safety, Automotive and GSN
	Introduction
	GSN Safety Case Impact Assessment
	GSN and Annotation Models
	GSN-IA: GSN Impact Assessment Algorithm
	Illustration: PSD Example

	A More Precise Impact Assessment
	T1: Increasing the Granularity of Traceability between the System and the Safety Case
	T2: Identifying Sensitivity of Safety Case to System Changes
	T3: Understanding Semantics of Strategies
	T4: Decoupling Revision from Rechecking
	T5: Strengthened Solutions do not Impact Associated Goals
	T6: Exploiting Knowledge about ASIL Work-Product Dependencies and ASIL Propagation and Decomposition Rules
	PSD Example Cost Comparison with T1

	Related Work
	Chapter Summary

	IV Tool Support & Validation
	Tool Support: MMINT-A
	Introduction
	MMINT-A Requirements
	Extensions for MMINT-A
	Assurance Case Metamodel
	Assurance Case Editor
	Assurance Case Slicers
	Change Impact Assessment Algorithm

	Power Sliding Door Example
	Related Work
	Chapter Summary

	Case Study: Lane Management System
	Introduction
	The Lane Management System (LMS)
	LMS Safety Case
	LMS Change Impact Assessment Scenarios
	Change Scenario 1: Direct System Change
	Change Scenario 2: Indirect System Change
	Change Scenario 3: Design Space Exploration

	Chapter Summary

	V Conclusions & Future Work
	Conclusion
	Summary of Contributions
	Future Work
	Limitations and Improvements
	Future Research Directions

	Bibliography
	Appendices
	Power Sliding Door Models
	PSD Class Diagram
	PSD Sequence Diagram

	Lane Management System Models
	LMS Class Diagram
	LMS Sequence Diagrams
	LMS DrivingStraight Sequence Diagram
	LMS FailureState Sequence Diagram
	LMS LeftCurve Sequence Diagram
	LMS SystemOn Sequence Diagram

	LMS State Diagrams
	Traceability between LMS models

	MMINT-A User Manual

