
Using Formal Concept Analysis to Construct and Visualise Hierarchies of
Socio-Technical Relations

Michel Wermelinger1, Yijun Yu1 and Markus Strohmaier2
1 Department of Computing and Centre for Research in Computing, The Open University, UK

2 Knowledge Management Institute, Graz University of Technology, and Know-Center Graz, Austria

Abstract

Interest in the human aspects of software engineering
has grown in the past years. For example, based on activity
logs in software artefact repositories, researchers are rec-
ommending who should fix a bug for a certain component.
However, existing work largely follows ad-hoc approaches
to relate software artefacts to developers and rarely makes
those socio-technical relations explicit in a single structure.
In this paper we propose a novel application of formal con-
cept analysis, in order to overcome those deficiencies. As a
case study, we construct and visualise different views of the
developers who fix and discuss bugs in the Eclipse project.

1 Motivation

Software engineering is inherently a socio-technical en-
deavour, as Conway [4] and others pointed out. The rise of
global software development and the research opportunities
provided by the rich open source repositories have led to an
increased interest in the social side of development, as the
ICSE workshops on socio-technical congruence and human
aspects of software engineering testify.

Although much work exists on exploring the informa-
tion about developers and other contributors contained in
software repositories, there is actually not much work on
showing the overall socio-technical relations between peo-
ple and software artefacts in an explicit way. Sometimes,
the relations are implicit and given to users one at a time
(e.g. based on the file the user is editing). Other times, the
socio-technical relations are just an intermediate step to ob-
tain further relations between only artefacts or only people
(e.g. who collaborates with whom), and only those relations
are shown. In the few cases where socio-technical relations
are explicitly shown, they are usually drawn as graphs and,
depending on the layout algorithm, it may not be easy for
analysts to visually recognise any relevant connections, e.g.
which developers worked on most source code files. One of

the underlying reasons for this state of affairs is that socio-
technical relation graphs do not scale well due to the large
amount of artefacts and people involved in most projects.

We therefore asked ourselves if socio-technical relations
could be presented in a different way, that would be explicit,
compact, and yet intuitive. To avoid reinventing the wheel,
we looked for existing and well-established network tech-
niques and tools that could help reduce the learning curve
for those wishing to analyse such relations. We decided to
try applying formal concept analysis in order to automati-
cally construct and visualise social structures in a more hi-
erarchical way, which would immediately lead the user to
the most important developers, namely those appearing at
the top of the hierarchy. To put our idea to the test, we did
an exploratory study of the ‘social hierarchy’ of those devel-
opers that discuss and fix bugs in Eclipse. We constructed
various hierarchies, both over the same and different Eclipse
releases, in order to obtain, on one hand, different views of
the same social reality and, on the other hand, the same view
over an evolving social reality.

2 Related work

There has been much work on mining social networks
of developers from source code [5, 6], e-mail archives [3],
and bug reports [1]. However, all these works have different
aims from ours. Whereas we are interested in obtaining a
general approach to explicitly construct and visualise socio-
technical relations that will enable different questions to be
answered, the cited researchers build custom graphs for the
particular research question at hand and those graphs are
either implicit (i.e. not shown to the user) or only have one
type of nodes (either artefacts or people).

Nevertheless, we have taken an important lesson from
the cited works: obtaining social structures from source
code or configuration management systems (like CVS) may
leave many contributors out of the picture as they do not
have commit rights on the repository or do not contribute
by writing code, but e.g. by discussing on e-mail lists.



Formal Concept Analysis (FCA) is a graph-theoretic ap-
proach to categorization based on mathematical order and
lattice theory [9]. Given a set of objects O, a set of at-
tributes A, and a matrix stating which attributes each ob-
ject has, FCA will first construct all concepts, i.e. all pairs
〈o, a〉 such that o ⊆ O is the set of objects that share the
attributes a ⊆ A. The objects o are the extent of the con-
cept, whereas the attributes a are the intent of the concept.
The concepts will then be organised into a lattice, follow-
ing the intuition that general concepts have larger extents.
Formally, 〈o, a〉 ≤ 〈o′, a′〉 if o ⊆ o′. Since objects o′ share
attributes a′, the subset o will obviously share the same at-
tributes and possibly more. Hence, if 〈o, a〉 ≤ 〈o′, a′〉 then
a ⊇ a′. In other words, as we move upwards in the lattice,
the extent increases and the intent decreases.

FCA has been used in software engineering mainly to
complement traditional static code analysis in order to ob-
tain more relationships between code artefacts [7], e.g. to
classify them into cross-cutting features (concepts).

3 Proposed Approach

The novel approach we propose is to view software arte-
facts as objects and people as attributes. In that way, the
concepts computed by FCA will be clusters of artefacts that
are associated to the same people. Moreover, the lattice will
implicitly correspond to a hierarchy, in which those people
associated to more artefacts will appear in the top levels of
the lattice, thus indicating their importance in the project.
In other words, FCA will give us for free the clustering of
artefacts and people, an ordering of those clusters, and an
intuitive view of such ordering. Moreover, computing the
lattice over different releases of the system will allow us to
see how the clusters and their ordering evolves. All this, put
together, can then be used for various purposes.

For example, consider that the objects are the source
code files, the attributes are the developers, and the ma-
trix states which developers worked on which files for a
given period of analysis. Hence, each concept will group
all files that, over that period analysed, were changed by the
same group of developers. The top level concepts will show
who are the developers working on most files and hence are
likely to have the widest knowledge about the system. In-
versely, the low level concepts will show those developers
that specialise only on a few files and hence may have more
in depth knowledge for those parts of the source code.

Furthermore, concepts with small intents (i.e. few de-
velopers) point to parts of the system that may be at
risk of becoming legacy, if those developers leave the
project. However, due to the way the concepts are or-
dered by FCA, a manager can quickly see which devel-
opers are likely to be the best replacement for those leav-
ing, simply by looking at the intents of the immediate

children of the critical concept. To see the reason, con-
sider a concept c = 〈{fileA, fileB, fileC}, {John}〉.
If John leaves the project, who can quickly replace him?
All the immediate children ci ≤ c in the lattice have
an extent that most closely matches the extent of c,
e.g. c1 = 〈fileA, fileB}, {John, Mary} and c2 =
〈{fileA, fileC}, {John, Peter}. Hence, the intent of
each ci includes those developers (besides John) who will
have to become acquainted with the least number of files in
order to match John’s current expertise. They are thus the
potentially best candidates to replace John in the project.

4 Exploratory Study

To explore the application of FCA to uncover hierarchi-
cal socio-technical relations, we chose to use bug reports to
avoid the limitation mentioned in Section 2. We selected
Eclipse as case study because: we had mined it before [8];
a Bugzilla database is available1 for a sufficiently long his-
tory for social changes to become apparent; the lead of IBM
allows some social continuity to be traced.

Using only the Bugzilla dataset, we extracted, for each of
the 101966 bug reports (including enhancement requests),
its unique id, the current Eclipse component believed to
contain the bug, and the people associated to the bug: the re-
porter, the current assignee (i.e. the person fixing the bug),
and the (zero or more) past discussants of the bug. Each dif-
ferent role can be understood to cover a different aspect of
communication in software development. All these stake-
holders are given as email addresses in the database. We
have not yet filtered e-mail aliases, as this is just a prelim-
inary exploration of the data set. However, as a rough esti-
mate we computed how many e-mails shared the user name
but had a different domain name (e.g. user@ibm.com
and user@gmail.com) and found this to be the case for
7% of reporters and discussants, and for 3% of assignees.

With this information we constructed a graph consisting
of three types of nodes: people P , bugs B and software
components C. There is a directed arc from person p to
bug b, if p reported, worked on, or discussed b. There is a
directed arc from b to c if bug b was reported for component
c. Next we created a bipartite graph PC: an arc from person
p to component c will be weighted with the number of bugs
of c that p is associated with, in other words, the number of
paths from p to c in the original PBC network.

We repeated the construction of the PBC and PC net-
works for several releases of Eclipse, selecting for each re-
lease all bugs reported up to the release’s date. The cumu-
lative effect over releases allows us to see which developers
become more involved (i.e. are associated to more compo-
nents) and which ones remain at the same level.

1http://msr.uwaterloo.ca/msr2008/challenge



To make a meaningful analysis, it is necessary to avoid
‘noise’ due to people that had only a very small interven-
tion in the project. We therefore introduced a threshold k:
arcs with a weight less than k are removed from the PC
network, and so are any nodes that become detached.

We used awk and the relational calculator Crocopat [2]
to write scripts that, given a subset of the three roles, a re-
lease number, and a value for k, will output a comma sep-
arated value representation of the node adjacency matrix of
PC(k) for those people that fulfil the given roles. This out-
put file is fed into the FCA tool ConExp2 (short for Concept
Explorer) to generate the concept lattice.

For example, the lattice for PC(10) at release 1.0, and
only taking assignees into account, is represented in Fig-
ure 1. ConExp uses reduced labelling to avoid cluttering
the diagram, i.e. it only shows for each concept the objects
(resp. attributes) the concept has in addition to its descen-
dants (resp. ancestors). For example, the intent of the con-
cept labelled with object jdt:ui is {Kai-Uwe Maetzel,
André Weinand, akiezun, . . . , Dirk Baeumer}, the union
of its ancestors’ attributes and its own. All nodes show-
ing objects in the reduced labelling have a black half-circle,
all nodes showing attributes have a blue half-circle, but the
half-circles may be hard to see for the small nodes.

We point out that a static screenshot does not do justice
to ConExp, which is an interactive tool that allows users to
properly explore the lattice. For example, pop-up windows
can show the complete extent of any node, without users
having to do the unions in their head. It is also possible to
hide the object or attribute labels or drag them to the side,
to make the lattice less cluttered.

Returning to Figure 1, we can see that there is actually
no proper hierarchy, the lattice being rather flat: most de-
velopers were assigned to a single component. The excep-
tions are Kues, Radloff, Maetzel, Weinand, and Klicnik,
each one having worked on two components. Some com-
ponents have only one single developer assigned (to at least
10 bugs), while others have six or more. This might be just
an indication that some components require many more bug
fixes than others, but it might also be cause for concern if
those single developers with expertise for a given compo-
nent leave the project. The use of FCA to cluster developers
around artefacts can quickly point out potential problematic
hotspots with too many or too few developers, but whether
there is actual cause for concern can only be established
by consulting other information sources. Last but not least,
Figure 1 clearly shows some geographic clustering: all IBM
Switzerland developers handle bugs in jdt:ui and IBM
France only handles bugs in jdt:core.

If we now fast forward to release 3.0, and increase the
threshold to 100 bug reports in order to take the accumu-
lation of bugs into account, but keep looking at the same

2http://sourceforge.net/projects/conexp

role (assignees), we obtain a lattice (omitted for space con-
straints) that, interestingly, has not changed much in certain
respects. For example, the geographical division of labour
is largely kept, and most developers still specialise on a
single component, but Daniel Megert has ‘climbed up the
social ladder’ and moved to the top level of the hierarchy,
contributing to at least 100 bug fixes for each of three com-
ponents. We also noted that the three top bug handlers for
platform:debug also deal with platform:ant and
jdt:debug, which may point to dependencies or common
characteristics of those components.

Finally, keeping the threshold and release but switching
to the discussant role, we get a completely different lattice
that has fewer objects and attributes than the assignee hi-
erarchy. Moreover, a quick browsing confirms that the ac-
tive discussants are largely a subset of the active develop-
ers. Together, these facts imply that a developer does not
discuss all bugs they are assigned to. Hence, only few peo-
ple discuss more than 100 bugs for a single component and
therefore less people and components appear in this lattice.
For example, Kai-Uwe Maetzel, who heavily contributed to
two components, does not appear in the discussant hierar-
chy. It is also interesting to note that most developers do
not just discuss the bugs of the components they specialise
in. For example, John Arthorne and Erich Gamma heavily
discuss platform:ui bug reports, besides those for the
components they fix. This may point to tight dependencies
between those pairs of components.

5 Concluding remarks

This paper makes two contributions: a new idea, namely
a novel application of formal concept analysis (FCA) to
compute and visualise the hierarchical ordering of socio-
technical relations, and some emergent results about the
Eclipse project. The results so far are promising about the
kinds of information and relationships that are easily ap-
parent from looking at the various lattices we constructed,
showing different views of the same release or comparable
views of different releases. General socio-technical evolu-
tion patterns can’t be formulated about Eclipse’s overall de-
velopment at this point of our preliminary exploration, but
we will continue our study.

Using FCA has several fundamental advantages over the
bipartite or nested graphs commonly used, which usually
have one node for each artefact and person. First, by clus-
tering multiple artefacts and people into the same node, lat-
tices are much more compact and scalable than the corre-
sponding graphs. Second, by merging artefacts and their
associated people into the same concept, the socio-technical
relations become much clearer than in a bipartite graph that
requires lots of arcs to depict the same relations. Third, lat-
tices have a systematic layout that intuitively maps the verti-



Figure 1. Hierarchy of assignees at release 1.0 with k = 10

cal dimension to our mental expectations about hierarchies,
thereby reducing the learning curve necessary to meaning-
fully explore the lattices. By contrast, understanding a bi-
partite graph (e.g. finding the most important people) may
be difficult due to the layout algorithm used. Fourth, the
approach is general and not dependent on the artefacts con-
sidered and how they are associated to people. By contrast,
in existing approaches the graphs, especially the arcs, have
different semantics and are visualised differently depending
on the artefacts and socio-technical relations analysed.

Due to these advantages, those mentioned in Section 3,
the use of a special-purpose interactive tool, and the prelim-
inary results of the case study, we believe the approach has
some potential to compute and visualise socio-technical re-
lations in a compact, explicit and intuitive way and thereby
help resolve practical problems (e.g. who has the most sim-
ilar knowledge to someone leaving the project?) and tackle
more open-ended research questions (e.g., what is the social
dynamics of a development team over time?).

We do not claim that lattices should replace the more
common ‘flat’ social networks seen in existing work, be-
cause it does not always make sense to organise data in a hi-
erarchical way. Nevertheless, FCA might help to infer latent
hierarchical relations from the supposedly flat and loose or-
ganization of open source software projects. Such inferred
hierarchies could augment the coordination among devel-
opers participating in web-mediated software development,
where hierarchical relations are hard to identify.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proc. 28th Int’l Conf. on Software Engineering, pages
361–370, 2006.

[2] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational
calculation for software analysis. IEEE Trans. Software Eng.,
31(2):137–149, 2005.

[3] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu.
Chapels in the bazaar? Latent social structure in OSS. Pre-
sented at the 1st Workshop on Socio-Technical Congruence,
Leipzig, Germany, 2008.

[4] M. Conway. How do committees invent. Datamation,
14(4):28–31, 1968.

[5] C. de Souza, J. Froehlich, and P. Dourish. Seeking the
source: software source code as a social and technical arti-
fact. In Proc. Int’l ACM SIGGROUP Conf. on Supporting
group work, pages 197–206. ACM, 2005.

[6] J. D. Herbsleb and R. E. Grinter. Splitting the organization
and integrating the code: Conway’s law revisited. In Proc.
21st Int’l Conf. on Software Engineering, pages 85–95. IEEE,
1999.

[7] P. Tonella. Formal concept analysis in software engineering.
In Proc. 26th Int’l Conf. on Software Engineering, pages 743–
744. IEEE Computer Society, 2004.

[8] M. Wermelinger, Y. Yu, and A. Lozano. Design principles in
architectural evolution: a case study. In Proc. 24th IEEE Int’l
Conf. on Software Maintenance, pages 396–405, 2008.

[9] R. Wille. Formal concept analysis as mathematical theory of
concepts and concept hierarchies. In Formal Concept Anal-
ysis, volume 3626 of LNCS, pages 1–33. Springer-Verlag,
2005.


