
EASYFLOW : Keep Ethereum Away From Overflow
Jianbo Gao

School of EECS
Peking University

Beijing, China
gaojianbo@pku.edu.cn

Han Liu
School of Software
Tsinghua University

Beijing, China
liuhan2017@tsinghua.edu.cn

Chao Liu
School of EECS

Peking University
Beijing, China

liuchao_cs@pku.edu.cn

Qingshan Li
School of EECS

Peking University
Beijing, China

liqs@pku.edu.cn

Zhi Guan �
National Engineering Research Center for Software Engineering

Peking University
Beijing, China

guan@pku.edu.cn

Zhong Chen
School of EECS

Peking University
Beijing, China

zhongchen@pku.edu.cn

Abstract—While Ethereum smart contracts enabled a wide
range of blockchain applications, they are extremely vulnerable
to different forms of security attacks. Due to the fact that
transactions to smart contracts commonly involve cryptocurrency
transfer, any successful attacks can lead to money loss or even
financial disorder. In this paper, we focus on the overflow attacks
in Ethereum , mainly because they widely rooted in many smart
contracts and comparatively easy to exploit. We have developed
EASYFLOW , an overflow detector at Ethereum Virtual Machine
level. The key insight behind EASYFLOW is a taint analysis based
tracking technique to analyze the propagation of involved taints.
Specifically, EASYFLOW can not only divide smart contracts
into safe contracts, manifested overflows, well-protected over-
flows and potential overflows, but also automatically generate
transactions to trigger potential overflows. In our preliminary
evaluation, EASYFLOW managed to find potentially vulnerable
Ethereum contracts with little runtime overhead. A demo video
of EASYFLOW is at https://youtu.be/QbUJkQI0L6o.

Keywords-Ethereum, Overflow Vulnerability, Taint Analysis,
Smart Contract

I. INTRODUCTION

Blockchain and smart contracts have been widely applied
and adopted since the decentralized cryptocurrency Bitcoin
was first introduced by Nakamoto [1]. Ethereum provides
a quasi-Turing-complete virtual machine [2] and allows de-
velopers to program smart contracts to implement complex
functions. Developers can even issue a new cryptocurrency
based on Ethereum with only several hundred lines of source
code under an ERC Token Standard. However, smart contracts
are vulnerable and hackers are intensely attracted as they are
closely related to money. Overflow vulnerabilities of smart
contracts are especially easy to be exploited compared to
different forms of security attacks.

In April 2018, BecToken was attacked by integer overflow
on multiplication, causing an extremely large amount of to-
kens transferred to malicious accounts and the price of BEC
cleared. The vulnerable function is located in batchTransfer
and the code is shown in Fig. 1. As indicated in line 4, the

This paper has been published in Proceedings of ICSE 2019 ©IEEE

second parameter _value can be any 256-bit integer and the
result of multiplying _value by cnt may overflow. In this
particular transaction, _value was set to 0x8000...000 (63 0s)
and _receivers were two different addresses, thus the result
overflowed and amount was calculated to be 0. Each of these
two receivers received about 5.79E58 BECs but 0 BEC was
deducted from the sender’s account.

1 function batchTransfer(address[] _receivers, uint256
2 _value) public whenNotPaused returns (bool) {
3 uint cnt = _receivers.length;
4 uint256 amount = uint256(cnt) * _value;
5 require(cnt > 0 && cnt <= 20);
6 require(_value>0 && balances[msg.sender]>=amount);
7 ...
8 return true;
9 }

Fig. 1: A vulnerable function of BEC

Although overflow has become one of the most devastating
vulnerabilities, there are few effective detection schemes and
tools. From the practical perspective, the main challenges of
detecting overflow vulnerabilities are as follows.

Challenge 1: Infer and Trigger Potential Overflows.
Overflow only occurs in certain transactions with special input
data and message value. Traditional testing techniques are in-
sufficient to infer and trigger potential overflow vulnerabilities
in attack-free transactions and have difficulty generating test
cases because StateDB must be considered in the Ethereum
setting, which consists of account addresses, balances, global
variable values.

Challenge 2: Identify Protection Patterns. Experienced
developers may implement effective protection schemes such
as SafeMath library and assertions to protect their contracts
from overflow, which may lead to a significant increase in
false positive in the detection tools.

Our Insight. To address the challenges, we developed

ar
X

iv
:1

81
1.

03
81

4v
2 

 [
cs

.S
E

] 
 1

1 
Ju

n 
20

19

https://youtu.be/QbUJkQI0L6o


EASYFLOW for detecting overflow vulnerabilities in smart
contracts. The key insight behind EASYFLOW is a taint
analysis based tracking technique to analyze the propagation
of involved taints. In the detection, EASYFLOW monitors
the transaction process, captures manifested overflows, iden-
tifies well-protected overflows, and automatically generates
transactions to trigger potential overflows. We have applied
EASYFLOW to detect real transactions on Ethereum Mainnet,
and found it efficient to discover vulnerable contracts even
from attack-free transactions.

II. OVERVIEW

The general work flow of EASYFLOW is shown in Fig. 2.
Specifically, EASYFLOW consists of four components in high-
level design. It takes transactions as input, and StateDB is
accessible which includes key-value pairs in storage, balances
of accounts and codes of smart contracts.

Taint Analysis

Identify Protection 
Patterns

Trigger Potential 
Overflows

Transactions

Report 
Generation

Overflow

Potential Overflow

Safe

Manifested Overflow

Analysis Report

Transactions

StateDB

Protected Overflow

Fig. 2: The high-level framework of EASYFLOW .

Taint Analysis component tracks taints inside the EVM
interpreter to monitor the transaction process. The transactions
are first analyzed by Taint Analysis component and the smart
contracts are divided into three categories: safe, overflow and
potential overflow. Report Generation will output analysis
reports for safe contracts directly. EASYFLOW will try to
identify protection patterns in overflows, and refine them into
manifested overflows and protected overflows. When potential
overflows are inferred, EASYFLOW will generate a series of
transactions in order to trigger the potential overflows via re-
execution. As long as any one of the generated transactions is
manifested overflow, it means the original potential overflow
has been triggered.

A. Taint Analysis at EVM Level

EASYFLOW extends the EVM interpreter by tracking the
propagation of taints during transactions execution. Taking the
batchTransfer function in Fig. 1 as an example again, the
taints are introduced when the parameters _receivers and
_value are loaded. When EASYFLOW executes instructions
corresponding to the source code in line 4, the values and taint
marks of cnt and _value are moved to the top of stack and
MUL is then executed to calculate the value of amount. As MUL

is a susceptible integer arithmetic instruction, EASYFLOW will
check both the marks and values involved in this instruction.
This instruction is safe if the two multipliers are not taints
and the protection patterns will be further analyzed when the

multiplication result overflows. If more than one multipliers
is tainted but the multiplication result does not overflow,
EASYFLOW infers that it is a potential overflow and try to
trigger it later.

B. Identify Protection Patterns

Experienced developers have proposed some schemes to
protect their smart contracts from overflow attacks, leading
to high false positives in detection tools. The most commonly
used library for protection is named SafeMath1 which provides
several functions for developers to replace ordinary arith-
metic operations in contracts. The protection scheme behind
SafeMath is using require or assert function to check the
result after calculation and the contract will throw when an
overflow occurs. Some variant libraries and protection codes
are also widely adopted and have similar logics and patterns
to SafeMath. Therefore, it is not difficult to enumerate all the
patterns of protection schemes.

C. Trigger Potential Overflows

An Ethereum transaction takes input data and message value
as external data and all the internal data is stored in StateDB.
Input data is the payload that the sender sends in a transaction
to call a specific function in a smart contract and passes in
parameters, and message value indicates how many ETHs are
sent. The format of input data is a 32-bit function signature and
several 256-bit integers, each of which represents a parameter,
the position of an array or the length of an array.

To trigger an inferred potential overflow, we implement a
straight-forward algorithm in EASYFLOW . The first generated
transaction has the same input data as the original transaction
but MAX_UINT256 as message value. Then the 256-bit inte-
gers in input data are split and each is assigned to 0 and
MAX_UINT256. EASYFLOW takes all the possible combinations
of these integers as input data and the original message value
to generate transactions for re-execution.

III. USING EASYFLOW

As Fig. 3 illustrates, EASYFLOW can be divided into four
parts in implementation, extended go-ethereum, log analyzer,
transaction constructor and report generator. Ethereum run-
time bytecode and transaction input data can be passed into
EASYFLOW , and Solidity source code of smart contracts
will be compiled using a built-in official solc in advance.
The default StateDB is empty, and state information can be
passed in via a JSON-format file before detection, or a running
Ethereum node can be connected via remote procedure call
(RPC) to provide the real-time StateDB.

Extended go-ethereum. Extended go-ethereum was de-
veloped based on official golang implementation of the
Ethereum protocol, aiming at tracing the propagation of taint
data. Tainted stack and tainted memory followed Ethereum
stack and memory in implementation, but recoding taint marks
instead of specific values while EVM running. Taint detector

1https://openzeppelin.org/api/docs/math_SafeMath.html

https://openzeppelin.org/api/docs/math_SafeMath.html


can mark input data as a taint via inspecting instructions and
analyzing their intents, Overflow detector will check both taint
marks and values when EVM executes susceptible integer
arithmetic instructions, such as ADD, SUB, MUL and EXP. To
reduce false positive, in case of smart contract developers
using SafeMath library or conditional statements to protect
contracts from overflow, pattern recognizer will try to confirm
whether it is a manifested overflow or a protected overflow
by matching bytecode to protection patterns. Extended go-
ethereum will output trace logs in JSON format as soon as
finishing dynamic bytecode execution.

Log Analyzer. Log Analyzer analyzes logs generated by
extended go-ethereum, and distributes tasks to corresponding
components. Log parser first extracts the overflow detection
result from logs. Safe, manifested overflow, protected overflow
and re-executed potential overflow transactions will be sent to
report generator. Transaction constructor will receive potential
overflow transactions to conduct further analysis.

Transaction Constructor. Transaction Constructor is
implemented for re-executing potential overflow transactions
with constructed input data. As indicated in II-C, Transaction
Constructor splits input data, combines new values of input
data and message value, and constructs new transactions. After
construction, the transactions will be re-executed by extended
go-ethereum to discover whether the potential overflow vul-
nerability can be triggered.

Report Generator. Report generator gathers every re-
ceived result, and extracts key information into a brief analysis
report. All the log files are also attached, and can be accessed
through links in report.

Smart Contract Name
& Solidity Source Code

Official solc

Ethereum
Runtime Bytecode

Transaction Input Data
Official

go-ethereum

Tainted Stack

Tainted Memory

Taint Detector

Overflow Detector

Extended go-ethereum

Trace Log

Log Analyzer Report Generator

Prestate Constructor

Input Data Constructor

Transaction Constructor

Constructed Transaction

Analysis
Report

Protection Pattern Recognizer

StateDB
Empty/State File/RPC

Fig. 3: The architecture of EASYFLOW in implementation

We have deployed EASYFLOW as a web service2, and a
command-line tool having the same functions can be used
offline on Linux as well. Fig. 4 shows a screenshot of the
web page of EASYFLOW . EASYFLOW provided ten smart
contract examples containing contract name, Solidity source
code, runtime bytecode and input data. By clicking the but-
ton below, EASYFLOW will automatically analyze overflow
vulnerabilities of the selected smart contract, and generate a
succinct analysis report at the bottom. Users can also modify
contents of the examples or type brand new contract code and

2http://easyflow.cc/

input data into the web page, and get the specific analysis
report with "one-click".

Fig. 4: EASYFLOW Screenshot

The report shown in Fig. 4 consists of analysis result and
analysis log. A sentence of conclusion is used as the analysis
result, and input data and result of all the executed transactions
are included in the analysis report. Users can also download
full trace logs of each transaction via the link on the right of
the transaction number. All the log files is in JSON format
and can be easily read by machine for further processing.

Fig. 5: EASYFLOW Analysis Report

IV. PRELIMINARY EVALUATION

We have preliminarily evaluated EASYFLOW on Ethereum
Mainnet and the detection results in TABLE I show that
EASYFLOW is effective in detecting overflow vulnerabilities
in smart contracts and can successfully identify protection
patterns and trigger potential overflows.

TABLE I: Detection results

Detection Result Number of Txs
Manifested Overflow 465

Protected Overflow 6
Potential Overflow Triggered 3871

Potential Overflow Not Triggered 42580
Safe 19914

All the experiments were conducted on Amazon Web
Services Cloud (AWS). The virtual machine that deploys

http://easyflow.cc/


EASYFLOW has 1 vCPU, 512MB RAM, and Ubuntu Server
16.04 LTS - Xenial (HVM) as the OS. An Ethereum full
node provides StateDB via RPC and it is running on a virtual
machine having 4 vCPUs, 32GB RAM, SSD, and the same
OS. For most of the smart contracts, EASYFLOW finished
analysis in 300ms in command-line mode, and the execution
time increases linearly compared to official go-ethereum.

TABLE II: Analysis results on example smart contracts. MO:
manifested overflow. PO: protected overflow. POT: potential
overflow but triggered. PONT: potential overlow not triggered.
S: safe.

Contract MO PO POT PONT S Overhead
BecToken X 104.35%

SMT X 98.15%
Lizun X 100.00%

darx X 103.45%
Gift_Card X 496.15%

RedEnvelope X 294.34%
SimpleLotto X 750.00%

HBToken X 631.03%
Rating X 92.31%

Danksignals X 110.71%

The analysis results of some example smart contracts are
shown in TABLE II and the addresses of the smart contracts
and transactions can be accessed on Github3. BecToken is
the most famous contract having an overflow vulnerability,
and was exploited because of unprotected multiplication. SMT
has the similar vulnerability because of unprotected addition.
Lizun and darx are protected from overflow vulnerability using
SafeMath Library and assertions. GIFT_CARD is a simple
addition overflow, and EASYFLOW successfully triggered the
vulnerability by automatically constructing input data based on
the real-world transaction. The triggered overflow vulnerability
of RedEnvelope is caused by message value. It cannot be
exploited in the real world at this time as the amount of
ETH is limited, but may be exploitable with the increase
of ETH. SimpleLotto actually has an overflow vulnerability,
but the contract had committed suicide and all the state of
this contract was cleared so that the vulnerability cannot be
triggered without manually constructing state information. The
potential subtraction overflow in HBToken is protected by
conditional statements, and can never be triggered by any input
data. There are not susceptible instructions in the transactions
of Rating and DANKSIGNALS, and they are both considered
to be safe.

V. RELATED WORK

Research on integer overflow has been in progress for
decades and many effective detection schemes were proposed.
RICH [3], BRICK [4], SmartFuzz [5] and AIR [6] were
developed to detect integer overflows. Dietz et al. [7] focused
on the integer overflows in C and C++ code. Sun et al. [8]
showed that not all the integer overflows were malicious and it
could be checked using equivalence checking across multiple
precisions.

3https://github.com/Jianbo-Gao/EasyFlow/tree/master/taint-realworld

As blockchain becomes popular in both academia and indus-
try, the smart contract bug detection are noted by researchers.
Oyente [9] is a symbolic execution tool built to find potential
security bugs of Ethereum contracts. ZEUS [10] presents
a formal verification framework that can build and verify
correctness and fairness policies. Some other schemes and
tools [11] [12] are also presented to analyze smart contracts for
vulnerabilities. In contrast, EASYFLOW focus more on integer
overflow vulnerabilities, and it is capable of detecting various
types of overflows in real-world contracts via dynamic taint
analysis, pattern matching and transaction construction.

VI. CONCLUSION

In this demo paper, we present EASYFLOW , a vir-
tual machine level detector for overflow vulnerabilities in
Ethereum. The key insight behind EASYFLOW is a taint
analysis based tracking technique to monitor real transactions.
Particularly, EASYFLOW captures manifested overflows, flags
well-protected overflows, infers and triggers potential over-
flows as well. We managed to leverage EASYFLOW to find real
overflows in deployed smart contracts. In the future, we plan to
generalize the technique to diverse settings and applications.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China under the grant No.: 61672060, 61802223
and China Postdoctoral Science Foundation under Grant No.:
2017M620785.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] V. Buterin et al., “Ethereum white paper,” GitHub repository, 2013.
[3] D. Brumley, T.-c. Chiueh, R. Johnson, H. Lin, and D. Song, “Rich: Au-

tomatically protecting against integer-based vulnerabilities,” Department
of Electrical and Computing Engineering, p. 28, 2007.

[4] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “Brick: A binary
tool for run-time detecting and locating integer-based vulnerability,”
in Availability, Reliability and Security, 2009. ARES’09. International
Conference on. IEEE, 2009, pp. 208–215.

[5] D. Molnar, X. C. Li, and D. Wagner, “Dynamic test generation to
find integer bugs in x86 binary linux programs.” in USENIX Security
Symposium, vol. 9, 2009, pp. 67–82.

[6] R. B. Dannenberg, W. Dormann, D. Keaton, R. C. Seacord, D. Svoboda,
A. Volkovitsky, T. Wilson, and T. Plum, “As-if infinitely ranged integer
model,” in Software Reliability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on. IEEE, 2010, pp. 91–100.

[7] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer overflow
in c/c++,” in Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 2012, pp. 760–770.

[8] H. Sun, X. Zhang, Y. Zheng, and Q. Zeng, “Inteq: recognizing benign
integer overflows via equivalence checking across multiple precisions,”
in Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on. IEEE, 2016, pp. 1051–1062.

[9] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[10] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” NDSS, 2018.

[11] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 65–68.

[12] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 2018, pp. 814–819.

https://github.com/Jianbo-Gao/EasyFlow/tree/master/taint-realworld

	I Introduction
	II Overview
	II-A Taint Analysis at EVM Level
	II-B Identify Protection Patterns
	II-C Trigger Potential Overflows

	III Using EasyFlow 
	IV Preliminary Evaluation
	V Related Work
	VI Conclusion
	References

