N

N
N

HAL

open science

Visual Debugging of Behavioural Models

Gianluca Barbon, Vincent Leroy, Gwen Salaiin, Emmanuel Yah

» To cite this version:

Gianluca Barbon, Vincent Leroy, Gwen Salaiin, Emmanuel Yah. Visual Debugging of Behavioural
Models. ICSE 2019 - IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings, May 2019, Montreal, Canada. pp.107-110, 10.1109/ICSE-Companion.2019.00050 . hal-
02145535

HAL Id: hal-02145535
https://inria.hal.science/hal-02145535
Submitted on 3 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-02145535
https://hal.archives-ouvertes.fr

Visual Debugging of Behavioural Models

Gianluca Barbon*, Vincent LeroyT, Gwen Salaiin*, and Emmanuel Yah'
*Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France
tUniv. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Abstract—In this paper, we present the CLEAR visualizer tool,
which supports the debugging task of behavioural models being
analyzed using model checking techniques. The tool provides
visualization techniques for simplifying the comprehension of
counterexamples by highlighting some specific states in the model
where a choice is possible between executing a correct behaviour
or falling into an erroneous part of the model. Our tool was
applied successfully to many case studies and allowed us to
visually identify several kinds of typical bugs.

Video URL: https://youtu.be/nJLOnRaPelA

I. INTRODUCTION

Designing and developing distributed software has always
been a tedious and error-prone task, and the ever increasing
software complexity is making matters even worse. Model
checking [1]] is an established technique for automatically
verifying that a model, e.g., a Labelled Transition System
(LTS), satisfies a given temporal property, e.g., the absence of
deadlocks. When the model violates the property, the model
checker returns a counterexample, which is a sequence of
actions leading to a state where the property is not satisfied.
Understanding this counterexample for debugging the specifi-
cation is a complicated task for several reasons: (i) the coun-
terexample can contain hundreds (even thousands) of actions,
(ii) the debugging task is mostly achieved manually, (iii) the
counterexample does not explicitly highlight the source of the
bug that is hidden in the model, and (iv) the counterexample
describes only one occurrence of the bug and does not give a
global view of the problem with all its occurrences.

The CLEAR visualizer aims at simplifying the debugging
of concurrent systems whose specification compiles into a
behavioural model. To do so, the tool first detects some specific
states in the counterexample that are of prime importance
because from those states the specification can reach a correct
part of the model or an incorrect one. These states correspond
to decisions or choices that are particularly interesting because
they usually provide an explanation of the source of the
bug. Once all these specific states have been identified, the
tool proposes several visualization techniques in order to
graphically observe the whole model and see how those states
are distributed over that model.

More precisely, the CLEAR visualizer takes as input a
behavioural model (LTS) describing all possible executions
of a system. This LTS can be obtained by compilation from
a higher-level textual specification language such as process
algebra. Given such an LTS and a temporal property, in a first
step, the tool first extracts all the counterexamples from the
original model containing all the executions. This procedure

is able to collect these counterexamples in a new LTS, called
counterexample LTS, maintaining a correspondence with the
original model. Second, an algorithm is applied for comparing
the counterexample LTS with the original LTS and then
identifying specific states where counterexamples and correct
behaviours, that share a common prefix, split in different paths.
Actions at those states are relevant since they are responsible
for the choice between a correct and incorrect behaviour.

In a subsequent step, the tool relies on 3D visualization
techniques to have a global view of the model where correc-
t/incorrect transitions and the states where those transitions
take place are highlighted using different colors. The CLEAR
visualizer provides several functionalities to facilitate the
manipulation of those models (forward/backward step-by-step
animation, counterexample visualization, zoom in/out, etc.).
The tool was applied on several case studies for evaluation
purposes and these experiments allowed us to identify several
interesting visualization patterns that correspond to typical
cases of bugs. As a result, our techniques can be used for
visual debugging in order to identify the source of the bug by
looking at the graphical representation of the model extended
with the aforementioned information.

In the rest of the paper, we do not present pre-processing
steps for computing counterexamples and for analyzing them
in order to identify correct/incorrect transitions and states
where there are choices between those transitions, see [2]
for details. We prefer to focus on the visualization techniques
provided by our tool that we present in Section [lI} Section
illustrates these visualization techniques on three case studies.
Section [IV]| concludes this paper.

II. VISUAL DEBUGGING TECHNIQUES

This section presents the CLEAR visualization techniques.
The goal is to provide a support for visualizing the erroneous
part of the LTS (a.k.a. tagged LTS) and for emphasizing all
the states (a.k.a. neighbourhoods) where a choice is taken
and makes the specification either lead to correct or incorrect
behaviour. This visualization is very useful to have a global
point of view during the debugging process and not only to
focus on a specific erroneous trace (that is, a single counterex-
ample). Section [[Tl| will show several examples with unsatisfied
properties and how our approach allows one in practice to
visually identify bugs. The tool is available online [3]] with all
the examples presented in this paper.

Figure [I] gives an overview of our tool support. We rely on
the LNT process algebra [4] as input specification language
and MCL [5] for describing temporal properties. Note that

https://youtu.be/nJLOnRaPe1A

these are the only two inputs given by the developer. The
rest of the approach and all generated models are computed
automatically. Given those inputs, we rely on the CADP
toolbox [6] to generate first the corresponding LTS model
and second to compute the counterexample LTS. Finally, the
tagged LTS is computed (using a Java program we imple-
mented) by detecting first correct/incorrect transitions and then
neighbourhoods.

LNT
specificatio

user
input

CLEAR

S e visualizer
\s I'
N " A
) CIN
makes el - Tagged LTS +
changes neighbourhoods
user input

MCL CADP Counterexample Tagged LTS
property, tools TS jcomputation (CLEAR)

Fig. 1. Overview of the CLEAR tool.

CADP
compilers

We now present with more details the CLEAR visual-
izer, which supports the visualization of tagged LTSs with
neighbourhoods. These techniques have been developed us-
ing Javascript, the Angular]S framework, the bootstrap CSS
framework, and the 3D force graph library. These 3D vi-
sualization techniques make use of different colors to dis-
tinguish correct (green), incorrect (red) and neutra (black)

transitions on the one hand, and all kinds of neighbourhoodsﬂ

(represented with different shades of yellow) on the other
hand. The tool also provides several functionalities in order
to explore tagged LTSs for debugging purposes, the main
one being the step-by-step animation starting from the initial
state or from any chosen state in the LTS. This animation
keeps track of the already traversed states/transitions and it is
possible to move backward in that trace. Beyond visualizing
the whole erroneous LTS, another functionality allows one to
visualize one specific counterexample as well and rely on
the animation features introduced beforehand for exploring
the details of that counterexample (correct/incorrect transitions
and neighbourhoods).

As far as usability is concerned, here is what we advo-
cate for using our tool from a methodological perspective.
First, the developer can use CLEAR for taking a global
look at the erroneous part of the LTS and possibly notice
interesting structures in that LTS that may guide him/her
to specific kinds of bug (see Section for more details).
Second, the developer can dive into the LTS by focusing on
some special states/neighbourhoods and use the step-by-step

INeutral transitions can lead to both correct and incorrect behaviour.

2There are four kinds of neighbourhoods: (i) with at least one correct
transition (and no incorrect transition), (ii) with at least one incorrect transition
(and no correct transition), (iii) with at least one correct transition and one
incorrect transition, but no neutral transition, (iv) with at least one correct
transition, one incorrect transition and one neutral transition.

animation features for that exploration. Finally, (s)he can load
and visualize some specific counterexample in order to focus
on a particular trace of interest (the shortest counterexample
for instance) and use the CLEAR visualization functionalities
to better understand the transitions and neighbourhoods on
that specific trace. At any step, the developer can use the
CLEAR tool outputs in order to make changes on the input
LNT specification as depicted in Figure

Figure [2] gives a screenshot of the CLEAR visualizer. One
can see the different colors used in the LTS visualization with
the legend on the left hand side. All functionalities appear in
the bottom part. When the LTS is loaded, there is also the
option to load a counterexample. On the right hand side, there
is the name of the file and the list of states/transitions of the
current animation. Note that transitions labels are not shown,
they are only displayed through mouseover. This choice allows
the tool to provide a clearer view of the LTS.

& Path
T

32 Another il state

ALTS il state 2 Load Another LTS

Fig. 2. Screenshot of the CLEAR visualizer tool.

III. VISUAL DEBUGGING IN ACTION

In this section, we present several examples of erroneous
LNT specifications. Each specification is accompanied with a
temporal property characterizing a requirement that is sup-
posed to be satisfied by the specification. Model checking
techniques are used and confirm that each property is violated
by the corresponding specification. For each example, we
show how our techniques can be helpful for visual debugging.
In this section, we chose LNT specifications (see [4] for
an introduction to LNT) exhibiting typical bugs inherent to
concurrent systems.

Interleaving bug. The LNT specification given in Figure [3|
consists of three parts in sequence. The initial part (INITi
actions) and the final part (CLOSEi actions) are used, respec-
tively, for initialisation and closing purposes. The central part
consists of a parallel composition where several EXECi ac-
tions are executed in parallel with another branch where there
is a ’select’ construct, which allows one to choose between
two branches with several SENDI actions. The property states
that a SEND2 action should never be followed by a SEND1
action (see [5] for an introduction to MCL): ([true* . 'SEND2’
. true* .’SEND1’ . true*] false).

The erroneous LTS is given in Figure @ The red state
on the left hand part corresponds to the initial state. Then,

process Main [EXEC1, EXEC2, EXEC3, EXEC4, EXEC5, LOSS: none,
INIT1, INIT2, INIT3: none,
CLOSE1, CLOSE2, CLOSE3, CLOSE4: none,
SEND1, SEND2, SEND3, SEND4: none] is
par (+ initialisation part =)
INIT1 || INIT3; INIT1 || INIT1; INIT2
end par;
par (= central part =)
EXEC1; EXEC2; EXEC3; EXEC4; EXECS

I
select
par
SEND2; SEND3 || LOSS
end par;
SEND1; SEND4
SEND1;
par
SEND2 || SEND2; SEND3 || LOSS
end par;
SEND4
end select
end par;

select (+ closing part =)

par
CLOSE3; CLOSE2 || CLOSE4; CLOSE1 || CLOSE2 || CLOSEt
end par

CLOSE1; CLOSE2
end select

end process

Fig. 3. LNT code for the interleaving bug.

we can clearly distinguish the initial part (left) with black
transitions because all these transitions can lead to a possibly
erroneous part of the system. Likewise, we can see on the right
hand part of this figure the closing part of the specification
where all transitions are incorrect (red) and where the bug
cannot be avoided. These two parts (entirely black or entirely
red) can be viewed as noise or actions that are not helpful
from a debugging perspective. In contrast the central part of
the figure is highly interesting. There are six neighbourhood
states in that part of the LTS corresponding to a choice
between executing a correct part of the specification (avoiding
the sequence with a SEND2 action followed by a SEND1
action) leading to the white state (sink state) that abstracts
the correct part of the LTS, or executing an incorrect part of
the specification. There are six choices because this choice is
in parallel with the sequence of EXECi actions and can then
appear at different states (interleaving). This is typical of a
bug which is interleaved with other actions, looking in that
case like a spider web due to the attraction of the sink state
in the visualization.

o‘ D_’ {
o X AL
LS
. i
. v .
.2 =
o L]
s
&

Fig. 4. Counterexample LTS visualization of the interleaving bug.

Iteration bug. This LNT specification (Fig. [5) exhibits a
looping process with a nondeterministic choice executed at

each iteration of that loop. In one of the two branches of the
choice, there is a parallel construct that allows one to obtain a
LOSS action followed by a REC action, which is the sequence
of actions that must not happen according to the following
MCL property: ([true* . ’LOSS’ . ’'REC’ . true*] false).

process Main [WAIT, INIT, REC, EXEC1, EXEC2, LOSS, STORE: none] is

0;

for 1:=0 while I<K by I:=1+1 loop
IT;

select

par
EXEC1; STORE || LOSS
end par
ar
REC; EXEC2 || LOSS
end par;
1:=10
end select
end loop
end var
end process

Fig. 5. LNT code for the iteration bug.

The visualization of the erroneous part of the LTS corre-
sponding to this LNT specification looks like a flower and is
given in Figure [6] Each petal corresponds to an iteration of
the loop. There is a neighbourhood present at the beginning
of each iteration, which represents a choice between reaching
the incorrect behaviour, going to the sink state (both at the
center of the picture), or continuing to the next petal. All
the petals consist of neutral (black) transitions because the
bug can still be avoided. There is a part of the LTS with
red transitions, which is reached after executing an incorrect
transition in one of the aforementioned neighbourhoods. After
nine iterations, executing at each iteration the first branch of
the select construct, a final correct transition leads to the sink
state and makes the whole specification definitely avoid the
incorrect part of the behaviour.

Fig. 6. Counterexample LTS visualization of the iteration bug.

Causality bug. The last example is a producer-consumer
system. The LNT specification consists of about 100 lines of
code and is available online [3|]. The specification is composed
of three main processes: a producer process, a consumer pro-
cess and a process that can either be a consumer or a producer.
This last process is given in Figure [7} Each process can loop
infinitely or break the loop and terminate the execution. A

deployer process is also part of the specification in order to
initiate the three other processes. The provided property states
that a process cannot consume if something has not been
produced before. This is written in MCL as follows: [(not
PRODUCE)* . CONSUME . true*] false. The specification
violates this property when the PRODCONS process (Fig.
acts as a consumer, because it can consume without ensuring
that PRODUCE has been performed beforehand.

process PRODCONS [CONNECT, READY, SYNC, WAIT : none,

DEPLOY, START, IAMPRODUCER, IAMCONSUMER :
CONSUME, PRODUCE : none
] is
var whoami : bool in
DEPLOY(1 of nat);
START(1 of nat);

WHOAML_C,

CONNECT;
select

whoami := true; IAMPRODUCER(1 of nat)
[l

whoami := false; IAMCONSUMER(1 of nat)
end select;
WAIT;

READY;
if (whoami) then
loop L in
select
NULL [] break L
end select;
par
WAIT || PRODUCE; SYNC
end par
end loop
else
loop L in
select
NULL [] SYNC [] break L
end select;
par
WAIT || CONSUME
end par
end loop
end if
end var
end process

Fig. 7. LNT code for the causality bug.

The erroneous LTS with colored transitions and neighbour-
hoods is given in Figure [§] The LTS is divided into three
parts. The initial part (right) represents the portion of code in
which every process performs the deployment and this part
of the model has no impact on the bug (no neighbourhoods
and all neutral transitions). Then, a set of neighbourhoods of
the same type is present between the first part of the LTS
(right) and the second (central) one. These neighbourhoods
have all a correct and a neutral transition, and represent the
first choice that contributes to the cause of the bug (when
the PRODCONS process decides to be a consumer). Those
neighbourhoods can be viewed as a frontier between the initial
and central part of the LTS. All the correct transitions are
directed to the sink state. A second frontier is present between
the central part of the LTS and the third part (left, with all
red transitions). This frontier is composed of neighbourhoods
that represent the second cause of the bug, that happens when
a CONSUME action has been performed without an initial
PRODUCE action. The figure with the two frontiers helps
in understanding that there is causality between both kinds of
neighbourhoods.

For the sake of space, we have only presented three typical
examples of bugs and their visualization, but there are other
interesting ones, e.g., a model where the whole LTS is false
(only red transitions), or a specification where the bug can
be reached from a single neighbourhood, which represents a

Fig. 8. Counterexample LTS visualization of the causality bug.

mandatory and unique choice to obtain the bug (as depicted in
Figure 2). Those systems as well as other interesting examples
are available online [3]]. It is also worth noting that our
visualization techniques are not always helpful because, in
some cases, nothing can be deduced from the visual model
or because the model is too large in terms of number of
states/transitions. In those situations, the designer can use the
step-by-step animation techniques presented in Section

IV. CONCLUDING REMARKS

In this paper, we have presented tool support for simplifying
the comprehension of erroneous behavioural specifications
under validation using model checking techniques. To do so,
we focus on the choices in the model (neighbourhood) that
may lead to a correct or incorrect behaviour. By looking more
carefully at those states, we can better understand the source
of the bug. The CLEAR visualizer provides visualization
techniques of behavioural models (LTSs) that take into account
this notion of correct/incorrect transitions as well as neigh-
bourhood states. The tool support we implemented does not
only provide visualization techniques of the whole erroneous
part of the model but also animation techniques that help the
developer to navigate in the model for better understanding
what is going on and hopefully detect the source of the bug.
Last but not least, we have presented several examples of
typical bugs where the visualizations exhibit specific structures
that characterize the bug and are helpful for supporting the
developer during his/her debugging tasks.

REFERENCES

[1] C. Baier and J. Katoen, Principles of Model Checking. MIT Press, 2008.

[2] G. Barbon, V. Leroy, and G. Salaiin, “Debugging of Concurrent Systems
Using Counterexample Analysis,” in Proc. of FSEN’17, ser. LNCS, vol.
10522. Springer, 2017, pp. 20-34.

[3] “CLEAR Debugging Tool.” https://github.com/gbarbon/clear/.

[4] D. Champelovier et al., “Reference Manual of the LNT to LOTOS
Translator (Version 6.7),” 2018, INRIA/CONVECS, 153 pages.

[5] R. Mateescu and D. Thivolle, “A Model Checking Language for Concur-
rent Value-Passing Systems,” in Proc. of FM’08, ser. LNCS, vol. 5014.
Springer, 2008.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: A
Toolbox for the Construction and Analysis of Distributed Processes,”
STTT, vol. 15, no. 2, pp. 89-107, 2013.

	Introduction
	Visual Debugging Techniques
	Visual Debugging in Action
	Concluding Remarks
	References

