
Configuration-dependent Fault Localization
Son Nguyen

The University of Texas at Dallas
800 W. Campbell, Richardson, TX 75080, USA

sonnguyen@utdallas.edu

Abstract—In a buggy configurable system, configuration-
dependent bugs cause the failures in only certain configurations
due to unexpected interactions among features. Manually localiz-
ing configuration-dependent faults in configurable systems could
be highly time-consuming due to their complexity. However, the
cause of configuration-dependent bugs is not considered by exist-
ing automated fault localization techniques, which are designed
to localize bugs in non-configurable code. Thus, their capacity
for efficient configuration-dependent localization is limited. In
this work, we propose COFL, a novel approach to localize
configuration-dependent bugs by identifying and analyzing sus-
picious feature interactions that potentially cause the failures
in buggy configurable systems. We evaluated the efficiency of
COFL in fault localization of artificial configuration-dependent
faults in a highly-configurable system. We found that COFL
significantly improves the baseline spectrum-based approaches.
With COFL, on average, the correctness in ranking the buggy
statements increases more than 7 times, and the search space is
significantly narrowed down, about 15 times.

I. PROBLEM STATEMENT AND BACKGROUND

Configurable system supports the diversification of software
products by providing configuration options that are used to
control different features. However, this induces challenges in
program analyses and quality assurance [13], [4], [14].

In quality assurance for configurable system, configuration-
dependent faults, which cause the failures in only certain con-
figurations because of unexpected interactions among several
features, are not rare [7], [8], [11], [17]. Manually localizing
configuration-dependent faults in configurable systems could
be highly costly due to their complexity [12], [14].

Meanwhile, existing automated fault localization tech-
niques [16] are designed to localize the faults in non-
configurable code. Specifically, for configurable code, they
do not consider the cause of configuration-dependent bug(s),
which is the unexpected feature interactions. Thus, many
parts of the buggy system, which are not related to those
unexpected interactions, are inappropriately considered as
suspicious. Indeed, for example, despite that one can adapt
spectrum-based techniques [10], [2], [16] for configurable
code by considering static conditional statements (e.g., #if) on
configuration options as if-statements, the adapted techniques
still access and rank all executed statements including the ones
that might not affect the fault-inducing interactions, even not
the program’s states. For slice-based methods [15], [3], the
suspicious domain is reduced to all slices that are related
to failed test execution information, which might include
the slices irrelevant to the unexpected feature interactions.

Therefore, the capacity of the traditional techniques [16] for
efficient configuration-dependent fault localization is limited.

II. MOTIVATION AND OBSERVATION

Let us start with a real configuration-dependent bug in Linux
kernel to motivate our approach (Fig. 1). In this example, the
maximum value of KMALLOC_SHIFT_HIGH is 25 (lines 9–10).
This indicates that kmalloc_caches contains a maximum of
26 elements (line 13). When PPC_256K_PAGES is enabled and
PPC_16K_PAGES is disabled, the maximum index used to access
kmalloc_caches is defined as (PAGE_SHIFT + MAX_ORDER-1)

(line 18), which is 28. This leads to an exception that array
kmalloc_caches is accessed out of its bounds. However,
this bug is not revealed by any configuration, except the
configurations in which PPC_256K_PAGES, SLAB, LOCKDEP, and
SLOB are enabled, and PPC_16K_PAGES is disabled.

Observations. From the example shown in Fig. 1, we have
the following observations:

O1. In a configurable system containing configuration-
dependent bug, there are certain features that are (ir)relevant
to the visibility of the bug. For example, in Fig. 1, feature
NUMA (line 27) does not involve in the bug because when
PPC_256K_PAGES, SLAB, LOCKDEP, and SLOB are enabled and
PPC_16K_PAGES is disabled, the system still fails regardless of
whether NUMA is enabled or disabled. Meanwhile, for some
configurations, enabling/disabling certain features might make
the test results (passing all tests or not) of the resulting
configurations change. In Fig. 1, the all-enabled configuration
behaves as expected, while if PPC_16K_PAGES is disabled and
all other options enabled, the resulting configuration fails.

O2. In the features fEs that must be enabled to make the
bug visible, only the statements that implement the interaction
between them are more likely to be buggy than others. In
LOCKDEP, the buggy statement is at line 18, which is one of the
statements realizing the interaction between fEs. In contrast,
if the bug is caused by the statements not related to the inter-
action between fEs, the visibility of the bug would not depend
on all of those fEs. In Fig. 1, the enabled features fEs include
PPC_256K_PAGES,SLAB, LOCKDEP, SLOB, and PPC_16K_PAGES.
The bug is not related to the statement at line 21 in LOCKDEP,
which is not used to realize the interaction of fEs.

O3. In the features fDs that must be disabled to make the
bug visible, the statements that implement the interactions with
fEs also provide useful indication to help us find suspicious
statements in fEs. In Fig. 1, PPC_16K_PAGES is a disabled
feature fD. Although line 6 in PPC_16K_PAGES (being disabled)

ar
X

iv
:1

91
1.

07
90

6v
1 

 [
cs

.S
E

] 
 1

8 
N

ov
 2

01
9



Figure 1. A Configuration-dependent Bug in Linux Kernel

is not considered as faulty, however analyzing the impact
of the statement at this line (defining PAGE_SHIFT) on the
statements in LOCKDEP and SLAB can provide the suggestion
to identify the statement need to be fixed (i < PAGE_SHIFT +

MAX_ORDER). The intuition of this phenomenon is that despite
that the statements in fDs are not faulty, fDs have the impact
of “hiding”/“masking” the bug when they are enabled. Thus,
we need to consider the interactions of other features with fDs
in localizing configuration-dependent bugs.

O4. Because certain statements in the enabled features to
make the bug visible are considered as suspicious, the state-
ments in the same/different features having impacts on the sus-
picious statements via program dependencies [5], [6] should
also be considered as suspicious. For example, although line 1
does not belong to any fE , that statement is also suspicious
since it has an impact on the statements at lines 9, 10, and 18.

III. APPROACH

We propose, COFL, a novel approach for configuration-
dependent fault localization. For a buggy configurable code,
to reduce the suspicious domain, we analyze the test results
of the executed configurations, the code, and the test
execution information to identify the executed statements
related to the interactions among the features whose
enabling/disabling affect the visibility of the bugs which
potentially cause the failures. These statements are ranked by
their suspiciousness levels assigned by existing techniques [16]
based on their test execution information.

In particular, COFL first determines minimal sets of feature
candidates whose enabling/disabling (feature selection) make

the bugs visible (based on O1). Let us call such a set of
feature selections the suspicious partial configuration (SPC).
For example, {SLAB=T, PPC_16K_PAGES=F, PPC_256K_PAGES=T,
LOCKDEP=T, SLOB=T} is considered as the SPC of the bug in
Fig.1. The selection of NUMA does not belong to the SPC of
the bug because they do not have any impact on its visibility.

Next, COFL aims to detect the suspicious statements that
are responsible for the feature interactions and potentially
cause the faults. To do that, it analyzes the features in SPC
to detect the interactions between them that are potentially
cause/disguise the configuration-dependent bugs. Then, COFL
detects the statements that realize those interactions (based
on O2 and O3). The interactions are detected via the shared
program entities including variables and functions controlled
by different features and the operations including define and
use performed on them. For example, PPC_256K_PAGES define
PAGE_SHIFT which is used by SLAB and LOCKDEP. In the
example, the statements realizing the interactions among the
fEs in the SPC are at lines 3, 9, 10, 13, 18, and 20 (S1).
Meanwhile, the statements in fEs for interactions between the
fEs and the fDs in the SPC are at lines 9 and 18 (S2).

After that, the suspicious statements are used to detect other
suspicious statements that are executed and have dependencies
on the statements in both S1 and S2 in the failed configurations
(based on O3 and O4). The output for the running example is
the set of statements at lines 3, 9, 10, 18, and 1. Finally, these
statements are ranked by their suspiciousness scores computed
by existing techniques [16] such as spectrum-based methods
based on their test execution information.

IV. EMPIRICAL EVALUATION

We evaluate COFL’s efficiency in localizing configuration-
dependent bugs over 2 spectrum-based techniques, Taran-
tula [10] and Ochiai [2]. We randomly seeded the set of 32
artifical configuration-dependent bugs into the subject system
BusyBox [1]. For each bug, the output rank are evaluated via
EXAM [9] and the suspicious domain size (SDS). The lower
EXAM and smaller SDS the more efficient the technique.

Table I
COMPARISON RESULTS

EXAM SDS
Tarantula 37.50 147.17
COFL with Tarantula 5.12 10.58
Ochiai 36.54 147.17
COFL with Ochiai 4.97 10.58

Table I shows the average EXAM and average SDS of
Tarantula, Ochiai and COFL with their formula. As seen, on
average, the correctness in ranking the buggy statements in-
creases more than 7 times, and the search space is significantly
narrowed down, about 15 times.

Conclusion. The novel idea of COFL, our configuration-
dependent fault localization method for configurable code, is to
leverage the test results and code analysis to detect interactions
between features that potentially cause the bugs and use these
interactions to reduce the suspicious domain.



REFERENCES

[1] Busybox: The swiss army knife of embedded linux, 2018.
[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation

of similarity coefficients for software fault localization. In Proceedings
of the 12th Pacific Rim International Symposium on Dependable Com-
puting, PRDC ’06, pages 39–46, Washington, DC, USA, 2006. IEEE
Computer Society.

[3] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, PLDI ’90, pages 246–256, New
York, NY, USA, 1990. ACM.

[4] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. Feature-
Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated, 1st edition, 2016.

[5] Robert S. Arnold. Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1996.

[6] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, July 1987.

[7] Brady J. Garvin and Myra B. Cohen. Feature interaction faults
revisited: An exploratory study. In Proceedings of the 2011 IEEE 22Nd
International Symposium on Software Reliability Engineering, ISSRE
’11, pages 90–99, Washington, DC, USA, 2011. IEEE Computer Society.

[8] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Test
confessions: A study of testing practices for plug-in systems. In Pro-
ceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 244–254, Piscataway, NJ, USA, 2012. IEEE Press.

[9] James A. Jones and Mary Jean Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique. In Proceedings of
the 20th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’05, pages 273–282, New York, NY, USA, 2005.
ACM.

[10] James A Jones, Mary Jean Harrold, and John Stasko. Visualization of
test information to assist fault localization. In Software Engineering,
2002. ICSE 2002. Proceedings of the 24rd International Conference on,
pages 467–477. IEEE, 2002.

[11] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr. Software fault
interactions and implications for software testing. IEEE Trans. Softw.
Eng., 30(6):418–421, June 2004.

[12] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and
Gunter Saake. On essential configuration complexity: Measuring in-
teractions in highly-configurable systems. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2016, pages 483–494, New York, NY, USA, 2016. ACM.

[13] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, Berlin, Heidelberg, 2005.

[14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. A classification and survey of analysis strategies for software
product lines. ACM Comput. Surv., 47(1):6:1–6:45, June 2014.

[15] Mark David Weiser. Program Slices: Formal, Psychological, and
Practical Investigations of an Automatic Program Abstraction Method.
PhD thesis, Ann Arbor, MI, USA, 1979. AAI8007856.

[16] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineering,
42(8):707–740, Aug 2016.

[17] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. An empirical study on con-
figuration errors in commercial and open source systems. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 159–172, New York, NY, USA, 2011. ACM.


	I Problem Statement and Background
	II Motivation and Observation
	III Approach
	IV Empirical Evaluation
	References

