arXiv:1902.02538v1 [cs.CR] 7 Feb 2019

Optimizing seed inputs 1n fuzzing with machine
learning

Liang Cheng*, Yang Zhang*, Yi Zhang!, Chen Wu!, Zhangtan Li*, Yu Fu* and Haisheng Li}
*TCA Lab
Institute of Software, Chinese Academy of Sciences, Beijing, China
Email: chengliang@iscas.ac.cn
T Email: yzhang7874 @ gmail.com
{diDST NLP, Alibaba, Hangzhou, China
Email: wuchen.wc@alibaba-inc.com
§Beijing Technology and Business University, Beijing, China
Email: lihsh@th.btbu.edu.cn

Abstract—The success of a fuzzing campaign is heavily de-
pending on the quality of seed inputs used for test generation.
It is however challenging to compose a corpus of seed inputs
that enable high code and behavior coverage of the target
program, especially when the target program requires complex
input formats such as PDF files. We present a machine learning
based framework to improve the quality of seed inputs for fuzzing
programs that take PDF files as input. Given an initial set of
seed PDF files, our framework utilizes a set of neural networks
to 1) discover the correlation between these PDF files and the
execution in the target program, and 2) leverage such correlation
to generate new seed files that more likely explore new paths in
the target program. Our experiments on a set of widely used PDF
viewers demonstrate that the improved seed inputs produced by
our framework could significantly increase the code coverage
of the target program and the likelihood of detecting program
crashes.

Index Terms—Fuzzing, Test Case Generation, Machine Learn-
ing, Recurrent Neural Networks

I. INTRODUCTION

Fuzzing has been widely used to detect security vulnerabili-
ties and bugs in IT systems because of its high efficiency. Most
existing fuzzing tools, or fuzzers, generate excessive test inputs
by mutating a pre-selected corpus of seed inputs with the
hope to reveal potential bugs in the target program. Therefore,
extensive research effort has been dedicated to improving
the quality of seed corpora [1f]. Existing approaches in this
direction, however, share a common limitation that they focus
on discovering syntactic or semantic constraints posed by the
target program for inputs in order to generate valid seed inputs.
As a result, seed corpora generated by these approaches often
include too many redundant seed inputs that waste fuzzing
effort by triggering the same execution paths in the target
program.

To address this limitation, we present a machine learning
based framework that discovers and leverages the correlation
between seed inputs and the execution of the target program
to generate new seed inputs that trigger higher code coverage

This research was supported in part by National Natural Science Foun-
dations of China (Grant No. 61471344, 61772506) and National Key R&D
Program of China (Grant No. 2017YFB0802902).

OOOO
o ©

Entry blocks

Go[©®

oooooo

*[2]

Path corpus

: 'Ms

Object extractor

Target program

Path recorder

Seed corpus Input generator

New inputs
| Object corpus | [

Learning

Generating

Fig. 1: A framework for improving seed inputs in fuzzing.

of the target program (and hence increase the chance of
bug/crash detection) than the original seed inputs. Notably,
our framework can work in combination with techniques that
optimize the test mutation strategies in modern fuzzers (e.g.,
[2]) to further improve the effectiveness and efficiency of
fuzzing.

Our framework first utilizes a generative model that bases on
recurrent neural networks (RNNs) to generate new execution
paths of the target program not covered by the original
seed corpus. The new execution paths are then forwarded
to a sequence-to-sequence(Seq2seq)-based transition model to
translate into valid PDF files (i.e., new seed inputs) triggering
them. In these tasks, both models are trained with the original
seed inputs and corresponding execution of the target program.

We have conducted a set of experiments on widely used
PDF viewers, which demonstrates that new seed inputs pro-
duced by our framework significantly increased the code
coverage of the target program and the likelihood of detecting
program crashes. Additional experiments also confirmed that
our framework is applicable to other input formats such as
PNG and TTF files with minimal customization.

II. A SEED INPUT GENERATION FRAMEWORK

The presented framework, as illustrated in Figure |1} gener-
ates new seed inputs in three steps:

Step 1: Data Preparation. The Path Recorder in Figure
built upon Intel’s instrumentation tool Pin, first feeds the origi-
nal seed corpus to the target program and records the resulting
execution sequences. These execution paths are encoded as
the starting addresses of the basic blocks along the paths
and stored in the path corpus. Given that execution paths are
often too lengthy to be handled by the RNN models, a path
compression algorithm is introduced to compress long paths
down to a length less than 300 by replacing short sequences
of basic blocks shared by multiple execution paths with super-
blocks.

Step 2: Path Generation. Execution paths in the path
corpus are used to train the Path Generator, an RNN-based
language model built on top of Andrej Karpathy’s Char-RNN
implementatiorﬂ in order to learn the conditional distribution
of basic blocks on these paths. This language model inher-
its the two-layer structure of standard char-RNNs, one for
learning how basic blocks form functions and the other for
learning how functions form complete execution paths, where
the number of hidden states in each layer is set to 256.

When queried with an initial basic block, the fully trained
Path Generator is able to generate the rest of an execution
path that has not been covered by previous execution paths
(including those in the path corpus). Two sampling strategies,
Sample and SampleFunction, are introduced to the Path Gen-
erator to ensure the diversity of the generated execution paths.
Under these strategies, the Path Generator samples the learned
distribution either when the next basic block is predicted or
when the current basic block is at the end of a function,
respectively.

Step 3: Seed Generation. Execution paths produced by the
Path Generator are ’translated’ by the Input Generator into
PDF files (i.e., new seed inputs) that trigger these execution
paths. The Input Generator includes: 1) an Object Extractor
that retrieves all object sequences from PDF files in the
original seed corpus; and 2) a Seq2Seq model that, after
being trained with the path corpus and the corresponding
object sequences retrieved by the Object Extractor, learns and
leverages the correlation between the original seed corpus and
the path corpus to achieve an accurate translation from new
execution paths to new seed inputs.

The Seq2Seq model, implemented on top of the general-
purpose Se2Seq framewor includes an encoder RNN and a
decoder RNN, where the size of both RNNs is set to 256, and
the dropout rate is set to 0.5 for the former and 1 for the latter
(to avoid potential overfitting issues).

III. EVALUATIONS

We evaluated our framework against the widely-used PDF
viewer MuPDF: a total of 43,684 PDF files (5.2 GB in
size) were first downloaded from the Internet and fed to
MuPDF (using AFL - one of the most used greybox Fuzzer.

Uhttps://github.com/karpathy/char-rnn
Zhttps://github.com/google/seq2seq
3http://lcamtuf.coredump.cx/afl/

TABLE I: Comparison of code coverage triggered by different
seed corpora, where C; and C, ¢ denote improved seed corpora
generated using the Sample and Sample Function strategies,
respectively.

Original Cs Csr
% # %
basic blocks 4,548 +113 +2.48% +109 +2.40%
execution paths 14,522 +1008 +6.94% +3528 +24.30%

Execution paths thus acquired and the downloaded PDF files
were used to train our framework for 24 hours (on a computer
with 4-core Intel i7-7700 CPU, 16G RAM and a NVidia
GTX 1080 Ti GPU). Table [[] shows that the new seed corpora
generated by our framework caused up to 2.48% more basic
blocks and 24.30% more execution paths being covered than
the original seed corpus. Our results significantly surpassed
similar works such as [1], which generated seed corpora by
learning the grammar of the PDF files and the new corpora
covered 0.11% more instructions.

We next evaluated our framework by fuzzing MuPDF and
three other PDF viewers (pdfium, podofo, and poppler) with
the original and generated corpus for 24 hours. This produced
similar results: the improved seed inputs generated by our
framework explored on average 23.21% more basic blocks
and 31.69% more execution paths. In addition, the improved
seed inputs triggered 67 crashes in the PDF viewers under
fuzzing including 2 CVE vulnerabilities, as compared to only
32 crashes (with none CVE vulnerability) triggered by the
original seed corpus.

We also applied our framework to libpng (a PNG reference
library) and freetype (an open source TTF library). Trained
with PNG and TTF files extracted from the downloaded PDF
files, our framework generated new seed inputs that led to
significant code coverage increase in both target programs
(i-e., 53.90% more paths and 22.38% more edges covered in
freetype after 24-hour fuzzing). This might suggest that our
framework is applicable to other complex input formats.

REFERENCES

[1] P. Godefroid, H. Peleg, and R. Singh, “Learn&Fuzz: Machine Learning
for Input Fuzzing,” in Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2017. Pis-
cataway, NJ, USA: IEEE Press, Nov. 2017, pp. 50-59.

[2] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “NEUZZ:
Efficient Fuzzing with NeuralProgram Smoothing,” arXiv:1807.05620
[cs], Jul. 2018, arXiv: 1807.05620. [Online]. Available: http://arxiv.org/
abs/1807.05620

http://arxiv.org/abs/1807.05620
http://arxiv.org/abs/1807.05620

	I Introduction
	II A Seed Input Generation Framework
	III Evaluations
	References

