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Abstract—Frequently source code analysis tools need to ex-
change internal representations of abstract syntax trees (AST)
with each other. Conveniently, and intuitively, the externalised
representations are in the form of hierarchical trees. We argue,
counter-intuitively, that hierarchical representation is not the
most efficient way for source analysis tools to exchange parsed
AST. In this work, we propose to speed up AST parsing whilst
preserving the equivalence of hierarchies in binary forms: (1)
AST could be saved as a flar one-dimensional array where
pointers to tree nodes are converted into integer offsets, and (2)
such flattened AST are more efficient to access by programming
tools through the generated application programming interfaces
(API). In programming language-agnostic evaluations, we show
that parsing flattened AST becomes 100x faster than in textual
form AST on a benchmark of open-source projects of 6 different
programming languages.

I. INTRODUCTION

Central to SE activities, automated tools need to parse the
source code as intermediate representations (IR) and store
them persistently to avoid parsing them again. However, none
of existing persisted IR achieve three attributes together:

« Expressive: the IR shall express (recursive) source code
structures of any mainstream programming language;

« Efficient: the IR shall be loaded into memory quickly;

« Interoperable: the IR shall be exchanged through com-
mon APL

In this work, we consider more efficient IR in binary forms
because they are closer to machine, and we aim to encode hier-
archically recursive structures into a form interoperable with
other programming tools. The proposed binary IR is called
“fAST” using for example protobuf [1] or flatbuffers [2],which
are expressive enough to flatten the AST in order to load them
back into memory without resorting to further parsing. As
demonstrated later, such flattened AST are efficient to access
by programming tools through the generated API.

II. OUR APPROACH

Tools such as srcML can serialise AST into semi-
structured data. To process semi-structured data efficiently,
two open-source projects have been adopted: Protocol buffers
(protobuf, or PB) [1] treats the data as a stream of messages
according to a predefined protocol specification, and generates
the API in different programming languages to integrate them
with custom tools. Flattened Buffers (flatbuffers, or
FBS) follows the standard of interface definition language

(IDL) to specify data structures as a variable length one-
dimensional array, where cross-referencing pointers to struc-
tured fields are encoded as integer offsets to the elements on
the flattened array.

PB or FBS were designed as efficient substitution to XML’s.
Since AST in IR can be represented in XML (e.g., StcML),
it is reasonable to express them in PB. However, existing
protobuf message protocols define records rather than trees.
Therefore, we need to create a recursive schema by engi-
neering the PB specification based on the ANTLR4 grammar
production rules used by srcML.

Our approach supports any ANTLR4 grammar of over 170
different types of programming languages. Using generative
compilers, our specification is translated into API to save or
to load data from/into the corresponding IR. One advantage
of reusing srcML is that the binary structures do not need
to be at the root level of compilation units. A method, a
statement, or even just an expression, could be the root
element, even if the source is not syntactically correct. This
flexibility also facilitates our case studies of code commits in
Git repositories.

The approach has been applied to many program analysis
tasks such as program slicing, tree-based diffs, clone detection,
bug localisation, cross-language algorith classification, etc.

The ‘fAST’ tool has been provided as a precompiled binary
in a docker image, which can be installed and used as follows:
docker pull yijun/fast:latest
docker run -e $(pwd):/e yijun/fast foo.cc foo.pb
docker run -e $(pwd):/e yijun/fast bar.java bar.fbs

docker run —-e $(pwd):/e yijun/fast moo.fbs moo.cs
docker run yijun/fast
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In the example, Line 1 installs the latest docker image from
the dockerhub, Line 2 runs the command to convert the AST
of a C++ program to PB, Line 3 runs the command to convert
the AST of a Java program to FBS, Line 4 converts an FBS
fAST back to C# code, and Line 5 shows all command line
options.

Furthermore, these commands can be integrated through
system calls to an IDE. For example, an extension for Visual
Studio Code has been created to demonstrate the use of fAST
for various applications:

https://github.com/yijunyu/vscode-fast

In this way, ‘fAST’ can be packaged together with program-
ming tools in any programming language.



III. PERFORMANCE EVALUATION

For validation, we collected the most popular open source
projects on the GitHub, one for each of the five program-
ming language supported by srcML [3] (i.e., Java, C, C++,
C#, Objective-C), as part of a benchmark for evaluating
the efficiency of fAST. To assess the expressiveness of the
proposed solution which could support any programming
language defined by ANTLR4, we extend fAST to support
Smali assembler for analysing Android apps, and evaluated
its efficiency on the reverse engineered code of publicly
available binary of the Instagram app.

Using srcML is our baseline, representative benchmarks
include any number of C, C++, C#, Objective C, and Java
projects. To evaluate parsing performance, from GitHub we
chose the most starred projects in each language category.
Additionally, we used a project to evaluate the extensibility
of fAST to a new programming language smali and chose
a reverse engineered Android app. In total 6 projects have
been selected for evaluating the performance of different code
analysis tasks.

For interoperability, one could generate both PB and FBS
API in multiple programming languages. In this experiments,
we chose the C++ API in order to provide a like-to-like
performance comparison to the baseline tool srcML which
was also implemented in C++. All experiments were carried
out on a Macbook Air of Early 2015 build.

The first 5 programs in the benchmark have shown a
significant speed up of parsing by using SrcML parser, which
varies from 2x (AFNetworking) to 5x (linux). This observation
suggests that srcML implementation has already considered
efficiency in its design.
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Fig. 1. Speed up parsing by loading respectively SrcML, PB, and FBS instead

After flattening all code structures into a stream of protocol

messages in binary form, Figure 1 reveals that using PB, pars-
ing speeded up by at least 13x, which is much more efficient
than parsing SrcML. Storing fAST as FBS further, Figure 1
highlights that the speed ups outperform PB, registering at
least 22x faster for all the projects. It is worth noting that
Instagram shows a high speed up ratio to 150x.

IV. CONCLUSIONS AND FUTURE WORK

As source code grows [4], it is essential to have their IR
efficient, expressive, and interoperable for further analysis. To
achieve these, we have proposed expressive binary IR and
compared the performance of parsing the textual counterparts.
The interoperability of our alternatives has also been exam-
ined, using 6 open-source projects in 6 different programming
languages. One of them is non-open source project', to assess
how effective it is to integrate the enhanced parsing process.
According to these experiments, parsing is at least 13x faster
using PB, or 22x using FBS. These demonstrate the efficiency
benefits of flattening AST. The toolkit can already support the
applications in cross-language algorithm classification using
deep learning [5], bug localisation [6], meaningful changes
detection [7].

Flattening AST is a general approach. Since natural lan-
guage documents also have hierarchical structures similar to
parsing trees, it is our future work to extend the approach to
support natural language intensitve parsing tasks, which may
be useful in NLP tasks such as security bug classification [8].
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IThese 6 programming languages include C, C++, Java, C#, Objective C,
and Smali.



