
Immutable Log Storage as a Service 

William Pourmajidi1, Lei Zhang1, John Steinbacher2, Tony Erwin3, and Andriy Miranskyy1 

1Department of Computer Science, Ryerson University, Toronto, Canada 
2IBM Canada Lab, Toronto, Canada 

3IBM Watson and Cloud Platform, Austin, USA 

{1william.pourmajidi, 2leizhang, 5avm}@ryerson.ca, 3jstein@ca.ibm.com, 4aerwin@us.ibm.com 
 

Abstract—Logs contain critical information about the quality of the 
rendered services on the Cloud and can be used as digital evidence. 
Hence, we argue that the critical nature of logs calls for immutability 
and verification mechanism without a presence of a single trusted 
party. In this paper, we propose a blockchain-based log system, called 
Logchain, which can be integrated with existing private and public 
blockchains. To validate the mechanism, we create Logchain as a 
Service (LCaaS) by integrating it with Ethereum public blockchain 
network. We show that the solution is scalable (being able to process 
100 log files per second) and fast (being able to “seal” a log file in 23 
seconds, on average). 

I. INTRODUCTION 

In the majority of Cloud offerings, there are two parties 
involved. A Cloud Service Provider (CSP) owns a pool of 
computing resources and offers them at a predefined price to 
a Cloud Service Consumer (CSC) via Internet. The CSP uses 
continuous monitoring to ensure that the current Quality of 
Service (QoS) provided to the CSC matches with the one in the 
signed Service Level Agreement (SLA). While the full control 
over monitoring systems and generated logs allow CSPs to 
monitor and maintain Cloud services efficiently, it gives them 
a controversial power over evidential resources that are 
important to CSCs. That is, logs are generated and stored on a 
platform, which is built, managed, and owned by a CSP. Hence, 
CSPs have full permission on all collected logs. Such situations 
cause many trust related issues. 

To address the trust issue of the current Cloud log storage 
solutions, our objective is to create an immutable log system 
called Logchain. We choose blockchain as our data storage 
model for its immutability and support for the storage of any 
type of data. We also address the main scalability limitation of 
the blockchain, namely, the number of computational 
resources that are needed to verify the integrity of each block. 
To make the Logchain more accessible, we construct a 
Logchain as a Service (LCaaS) by implementing an API that can 
be used to interact with the Logchain. 

The idea of the Logchain and its detailed design has been 
presented at the IEEE CLOUD 2018 [1] and the source code of 
the prototype can be accessed via [2]. This manuscript expands 
[1] by showing that LCaaS can be implemented on Ethereum 

(Section III) and by providing performance evaluation in 
Section IV. 

II. DESIGN OF LCAAS 

Current blockchain consensus protocols require every node 
of the network to process every block of the blockchain, hence 
a major scalability limitation. We overcome this limitation by 
segmenting a portion of a blockchain and locking-it-down in a 
block of a higher level blockchain, i.e., we create a two level 
hierarchy of blockchains. Validating the integrity of a high-level 
block confirms the integrity of all the blocks of the lower-level 
blockchain and leads to a reduction of the number of 
operations needed to validate the chain. 

While common key components of blockchains are 
necessary to implement a blockchain, our prototype requires 
additional components. We have expanded the basic genesis 
block concept and introduced absolute genesis block, relative 
genesis block, terminal block, super block, and super 
blockchains. These advancements allow the LCaaS to provide 
the hierarchical structure (depicted in Fig. 1), which improves 
the scalability of blockchains. The absolute genesis block is 
placed as the first block of the first circled blockchain while a 
relative genesis block is placed at the beginning of every 
subsequent circled blockchain after the first circled blockchain. 
As a key element of LCaaS, the terminal blocks are added at the 
end of a blockchain to “close” it and produce a circled 
blockchain that is capped. Moreover, super blocks (SB) exhibit 
the features of regular data blocks except that its data element 
stores all of the field of a terminal block of a circled blockchain. 
Finally, super blockchain is a blockchain where each of its 
blocks is a SB. 

 

Fig. 1. An SB (with data element) and its relationship with a circled 
blockchain 



TABLE I 
THE VALUES OF FACTORS USED IN THE SETUP OF EXPERIMENTS 

Factor Values 

Transactions per second (tps) [0.1,1,10,100] 
Length of circled blockchain (n) [1,10,100] 
Gas price (g) measured in gwei (1 Ether = 109 gwei) [6,9,20] 
Number of sample log files 200 or 1000 
Size of sample log files measured in bytes 64 
The above novel enhancements allow the LCaaS to provide 

the hierarchical structure that is needed to overcome 
scalability limitations of the blockchains. 

III. LCAAS ON ETHEREUM 

Given the popularity of Ethereum, we have selected 
Ethereum as the blockchain platform for integration with the 
LCaaS. LCaaS is built on top of a private blockchain. In order to 
replace it with a public blockchain, we propose a composite 
structure, in which receiving logs and converting them to 
blocks happens at the LCaaS side and storing the hash 
encryption and digitally signing them happens over the 
Ethereum blockchain. Within the Ethereum blockchain, the 
economics are controlled by an execution fee called gas. The 
gas is paid by Ether—the Ethereum intrinsic currency [3]. The 
gas measures the effort (in terms of computational resources) 
needed to process the transaction. We employ Ethereum test 
network. Ethereum test networks uses test Ether currency—a 
virtual Ether that has no monetary value. We use MetaMask 
Ether Faucet [4] to obtain test Ether. We use Solidity [5] to 
publish our smart contract. All interactions with the Ethereum 
blockchain can be traced using Etherscan [6], a web dashboard 
connected to Ethereum blockchain. Etherscan allows anyone 
to look up transactions’ details by using the sender or recipient 
address, transaction hash, or block number. An example of a 
successful transaction of LCaaS on Etherscan can be seen in [7]. 

IV. PERFORMANCE TEST AND ANALYSIS 

To test the performance, we design a load test and run it on 
our test computer with Intel i7-7500U CPU and 16 GB of RAM. 
The main goal of the load test is to evaluate the impact of the 
three configurable factors: incoming transactions (i.e., log files) 
per second (tps), length of circled blockchains (n), and gas price 
(g). The values of the factors are given in Tab. I. The 
permutations of the values of tps, n, and g (shown in Table I) 
lead to 36 distinct setups. As for the transaction, we use the 
digest of a log file (64 bytes long). We use Postman [8] to 
generate incoming transactions (i.e., log files) to the LCaaS. It 
is important to mention that one has the option to submit the 
actual log records or their digest at any desired intervals. We 
conduct 36 experiments (one for every permutation of the 
values of the factors listed in Tab. I). To see whether the 
performance will be affected by n, g and tps, we perform 
Pearson and Spearman’s correlation analysis, as well as linear 
regression analysis, on the raw data (i.e., per SB 

 

Fig. 2. Density estimate of the processing time for SB 

timing) as well as mean, median, and 95th percentile timing of 
SBs for each experiment. Aggregate statistics are chosen to 
reduce the amount of noise in the data. We found that none 
of the factors or the composite factors have any statistically 
significant relation to the response times, based on the low (< 
0.15) values of correlations and high (> 0.1) p-values of linear 
models. This implies that the time needed to process SB is 
dependent mainly on the Ethereum network and availability of 
the miners. We show a distribution of processing times for SB 
in Fig. 2. Eyeballing of the distributions suggests that the lower 
the gas price, the more SB have higher processing time (> 32 
seconds), even though the difference is not dramatic. Based on 
Kolmogorov-Smirnov test, the distribution of g =20 case differs 
significantly (p-value < 0.001) from the cases when g =9 or g 
=6. However, the difference between g =6 and g = 9 cases is 
less pronounced: p-value ≈ 0.08. We were anticipating a 
stronger difference between all three cases; probably our 
usage of the test network rather than a production one lead to 
this anemic difference. 

Essentially, our findings show that the network has enough 
capacity to “absorb” the changes in our workload even in the 
intense cases, such as tps =100 and n =1. However, in rare 
cases, the processing time is high: out of 3089 processed SBs, 
5 (0.16%) had been processed in between 3 and 5 minutes, and 
1 (0.03%) in 23 minutes. As we can see, these cases are rare, 
but they do exist and we have to be aware of such events. 

V. CONCLUSIONS 

The proposed solution prevents log tampering, ensuring 
transparent logging process and establishing trust between all 
Cloud participants. In the future, we are planning to test LCaaS 
with other blockchain solutions with the focus on the private 
blockchain offerings. 

REFERENCES 

[1] W. Pourmajidi and A. Miranskyy, “Logchain: Blockchain-assisted log 
storage,” in 2018 IEEE 11th International Conference on Cloud 
Computing (CLOUD), July 2018, pp. 978–982. 

[2] “Logchain source code,” https://github.com/WilliamPourmajidi/LCaaS. 
[3] G. Wood, “Ethereum: A secure decentralised generalised transaction 

ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014. 
[4] “Test ether faucet,” https://faucet.metamask.io/. 
[5] “Solidity contract-oriented language,” http://solidity.readthedocs.io/en/ 

v0.4.24/. 

0 

1 

2 

3 

10 1 10 1 . 5 10 2 10 2 . 5 10 3 

Time (seconds) 

gas_price 
6 
9 
20 



[6] “Ethereum (eth) blockchain explorer,” https://etherscan.io/. 
[7] “Ropsten transaction,” https://bit.ly/2VGbtH4. 
[8] “Postman api development environment,” 

https://www.getpostman.com/. 
 


