Leveraging Contextual Information from Function
Call Chains to Improve Fault Localization

Arpad Beszédes Ferenc Horvéth

Massimiliano Di Penta Tibor Gyiméthy

Software Engineering Department Software Engineering Department Department of Engineering Software Engineering Department

University of Szeged
Szeged, Hungary
beszedes @inf.u-szeged.hu

University of Szeged
Szeged, Hungary
hferenc @inf.u-szeged.hu

Abstract—In Spectrum-Based Fault Localization, program el-
ements such as statements or functions are ranked according
to a suspiciousness score which can guide the programmer in
finding the fault more efficiently. However, such a ranking does
not include any additional information about the element under
investigation. In this work, we propose to complement function-
level spectrum based fault localization with function call chains
- i.e., snapshots of the call stack occurring during execution — on
which the fault localization is first performed, and then narrowed
down to functions. Our experiments using defects from four
Defects4] programs show that (i) 84% of the defective functions
can be found in call chains with highest scores, (ii) the proposed
approach improves Ochiai ranking of 1 to 6 positions on average,
with a relative improvement of 45%, and (iii) the improvement
is substantial when Ochiai produces bad rankings.

Index Terms—Spectrum Based Fault Localization, function call
chains, call stack trace, testing and debugging.

I. PROBLEM ADDRESSED

This work deals with Spectrum-Based Fault Localization
(SBFL) [1], a class of Fault Localization (FL) methods, whose
purpose is to aid debugging by finding the root causes of an
observed failure.

There has been a lot of research performed with various
SBFL algorithms, and so far variations to these approaches
may yield only marginal improvements without involving
additional information to the process. Additional information
can either be feedback from the user or should go beyond the
simple hit-based spectrum on basic code elements and can be
used as a context for the suspicious elements. Early attempts to
incorporate control or data flow information, for instance [2],
have not been further developed because it soon became
apparent that they are difficult to scale to large programs and
real defects.

In this work, we propose to enhance traditional SBFL with
Sfunction call chains on which the FL is performed. Function
call chains are snapshots of the call stack occurring during
execution and as such can provide valuable context to the
fault being traced. Call chains (and call stack traces) are
artifacts occurring during program execution which are well-
known to programmers who perform debugging and can show,

Arpad Beszédes was supported by the Janos Bolyai Research Scholarship of
the Hungarian Academy of Sciences. Ministry of Human Capacities, Hungary
grant 20391-3/2018/FEKUSTRAT is acknowledged.

University of Sannio
Benevento, Italy
dipenta@unisannio.it

University of Szeged
Szeged, Hungary
gyimothy @inf.u-szeged.hu

for instance, that a function may fail if called from one
place and perform successfully when called from another.
There is empirical evidence that stack traces help developers
fix bugs [3], and locate crash-faults [4], for instance. Call
chains provide a context about the possible failures, which
can complement the basic ranking lists of program elements
or, in some cases, replace them.

II. APPROACH

Fig. 1 provides a high-level overview of our approach. Using
a given set of test cases 7, the subject program P is executed
while collecting the necessary execution trace information.
This is used to produce the function call chains, as well as
the test case pass/fail outcomes. Based on that, we compute
the call chain level program spectrum information, which is
used to calculate the ranking of the chains according to their
suspiciousness levels. In the next step, two algorithms are
applied to compute the ranking of the functions for FL, which
are then merged together to produce the final ranking.

0 | cr?:ilrlus l

Execution .
& Tracing Chain FL

‘ | Pass T
I Fail

Weighted
chain counts

Chain
ranks

OO

Output

i

Rank merge

Func.
ranks

Reapplied
spectrum

Fig. 1. Call chain based FL overview.

Let F' be the set of functions in a program P, and T a
set of test cases used to test P. Then, a Call Chain c is a
sequence of functions f; — fo — --- - f, (f; € F'), which
occur during the execution of some test case ¢ € T, and for
which: (i) f; is the entry point called by ¢, (ii) each f; directly
calls f;+1 (0 < i < n), and (iii) f, returns without calling
further functions in that sequence.

TABLE I
FAULT LOCALIZATION EFFECTIVENESS COMPARISON (AVERAGES SHOWN).

Program | Bugs | Ochiai E(E’) Comb. E(E’) Diff. E(E’) Rel. change | Ochiai>10 Enabling impr. Rel. impr.
Commons Lang 46 4.7 (0.23%) 3.9 (0.19%) -0.8 (-0.04%) -17% 6 4(9%) -15.1 (-67%)
Commons Math 74 8.7 (0.23%) 3.8 (0.11%) -4.9 (-0.12%) -56% 18 15 (20%) -24.3 (-87%)
JFreeChart 18 5.3 (0.12%) 3.4 (0.08%) -1.9 (-0.04%) -36% 2 2 (11%) -19.0 (-76%)
Joda-Time 23 13.4 (0.38%) 7.8 (0.22%) -5.6 (-0.16%) -42% 7 4 (17%) -43.1 (-88%)
Total / Average ‘ 161 ‘ 7.8 (0.24%) 4.3 (0.14%) -3.5 (-0.10%) -45% ‘ 33 25 (16%) -25.4 (-84%)

FL on the call chains takes as inputs the test case execution
outcomes (pass/fail) and uses a program spectrum representa-
tion with the chains as code elements. The output is a ranked
list of call chains with the associated suspiciousness scores.
We apply a traditional program spectrum representation based
on binary matrices, and for SBFL, any existing suspicious-
ness score could be used. We report results with the Ochiai
score [5], which outperforms other scores.

A trivial approach for the user to locate the defective
function (and statement, respectively) is to consider the highest
ranked call chains and investigate the functions occurring in
them. We also propose an approach to produce a ranked list
for functions as well based on the call chain scores. It consists
of executing two competing function ranking algorithms and
then combining their results, as follows.

1) Weighted chain counts: In this strategy, we count the
number of occurrences of each function in the chains weighted
by the respective chain scores from the previous phase. The
intuition behind this is that functions frequently occurring in
highly ranked chains will be more suspicious.

2) Reapplied spectrum: Here, we re-apply the spectrum-
based approach, but this time on the functions using the call
chains in place of the test cases. For this purpose, we treat a
call chain as a “proxy” to a test case in the following manner.
If its score is greater than a threshold z € [0,1) it is treated
as “failing” otherwise as “passing.” The final scores, in this
case, will be computed by re-applying the Ochiai formula to
this function-level spectrum.

3) Merging the ranks: In the final step, we merge the two
ranked lists by alternatively selecting the next element from
each of the two lists.

III. RESULTS SO FAR

Our research question is the following: How much improve-
ment can the call chain-based approach achieve compared to
basic function-level fault localization?

We performed the experiments on real defects from four
programs of the Defects4J suite (v1.0.0) [6]. For computing
the effectiveness of an SBFL approach, we follow the strategy
to look at “elements that need to be investigated” using the
“expected case” in the case of ties and express this in a set of
measures called Expense. We use two variants of the measure:
an absolute one expressed in the number of code elements (E)
and a relative version compared to the length of the rank list
(E).

Apart from the general average change, we define the
notion of enabling improvement, an improvement in which the
traditional SBFL algorithm ranks the faulty element beyond
the 10th position but the proposed approach reaches it in
at most 10 steps. In a “hopeless” localization scenario, our
approach enables the user to localize the fault by inspecting
only the top elements in the list.

Table I reports the results for FL effectiveness. Columns
“Ochiai” and “Comb” show the absolute and relative Expense
values for function-level Ochiai and for the proposed approach,
respectively. Column “Diff” reports the difference between the
average rankings, while column “Rel. change” expresses the
same as percentage increase/decrease with respect to Ochiai.
Column “Ochiai > 10” reports the number of defects in the
programs for which the ranking position is more than 10. “En-
abling impr.” indicates how many defects were successfully
moved to the 10th or below position (relative to bug number),
and the last column shows the average ranking absolute and
relative difference for such cases.

For each program, the improvement in terms of the Expense
metric ranges from one to about six ranking positions on aver-
age. The relative change ranges from 17% to 56%, and 45% on
the overall evaluation set. Noticeably, the proposed approach is
able to achieve a very good improvement when Ochiai scores
a bad ranking position of the correct recommendation, i.e.,
> 10th. More specifically, about 76% of such defects obtained
an enabling improvement in terms of ranking (25 out of the
33), and in this case, the relative Expense improvement was
even higher than the overall average, 84%.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707-740, 2016.

[2] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An empirical
investigation of the relationship between spectra differences and regres-
sion faults,” Software Testing, Verification and Reliability, vol. 10, no. 3,
pp. 171-194, 2000.

[3] A. Schroter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?” in 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), May 2010, pp. 118-121.

[4] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE Trans-
actions on Software Engineering, 2019.

[S] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1780-1792, Nov. 2009.

[6] R. Just, D. Jalali, and M. D. Ernst, “Defects4]: A database of existing

faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis. ACM, 2014, pp. 437-440.

