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Abstract—Neural Machine Translation (NMT) has been widely
adopted recently due to its advantages compared with the
traditional Statistical Machine Translation (SMT). However, an
NMT system still often produces translation failures due to the
complexity of natural language and sophistication in designing
neural networks. While in-house black-box system testing based
on reference translations (i.e., examples of valid translations)
has been a common practice for NMT quality assurance, an
increasingly critical industrial practice, named in-vivo testing,
exposes unseen types or instances of translation failures when
real users are using a deployed industrial NMT system. To
fill the gap of lacking test oracle for in-vivo testing of an
NMT system, in this paper, we propose a new approach for
automatically identifying translation failures, without requiring
reference translations for a translation task; our approach can
directly serve as a test oracle for in-vivo testing. Our approach
focuses on properties of natural language translation that can
be checked systematically and uses information from both the
test inputs (i.e., the texts to be translated) and the test outputs
(i.e., the translations under inspection) of the NMT system.
Our evaluation conducted on real-world datasets shows that our
approach can effectively detect targeted property violations as
translation failures. Our experiences on deploying our approach
in both production and development environments of WeChat
(a messenger app with over one billion monthly active users)
demonstrate high effectiveness of our approach along with high
industry impact.

I. INTRODUCTION

Neural Machine Translation (NMT) [1], [2], [3] has been
widely adopted over recent years due to its simple models and
satisfactory effectiveness on various machine translation tasks
compared with the traditional Statistical Machine Translation
(SMT) [4], [5]. Although NMT has shown great advantage
and is becoming increasingly popular, in practice it often
produces unexpected translation failures in its translations.
For example, Google Translate was recently reported to have
various translation failures [6] such as producing the same
translation for “A is worse than B” and “B is worse than
A” [7]. In our own empirical investigation, we also find various
translation failures in translations from other highly popular
providers of translation services. Past various incidents [8]

show that translation failures could lead to serious conse-
quences. For example, in 2009, a translation failure (mistrans-
lating a catchphrase “Assume Nothing” to “Do Nothing” in
various countries) caused the HSBC bank $10 million to repair
the caused damage [8].

Aiming to eliminate in-field translation failures for an NMT
system, in-house quality assurance techniques such as black-
box system testing commonly help NMT developers discover
translation failures, subsequently enabling the developers to
address these translation failures before the NMT system is
deployed to serve the users. In particular, the developers
construct test tests from parallel corpora, which are large
collections of bilingual text pairs. Each test case corresponds
to a bilingual text pair, which consists of (1) the original text
(i.e., the text to be translated), being the test input, and (2)
one or more reference translations, being the expected test
output. Note that reference translations are usually provided
by human and are considered as examples of valid translations
(i.e., samples of expected outputs from the NMT system).
Therefore, the developers cannot simply adopt the traditional
test oracle here: checking whether the NMT system’s actual
output (i.e., the translation under inspection) is equal to one
of the reference translations. Instead, the developers typically
adopt a special test oracle that (1) calculates the translation
quality score (e.g., BLEU score [9]) for measuring multi-
granular natural-language similarity between the actual output
and the reference translations, and (2) checks whether the
calculated translation quality score is equal to or greater than
a threshold (either a fixed or varying value), in order to
determine whether the test case passes.

While black-box system testing has been shown useful for
in-house quality assurance of an industrial NMT system, in-
vivo testing [10], which executes tests in the production en-
vironment, is also becoming increasingly critical in industrial
cases. In particular, by leveraging translation requests from
real users in the production environment as test inputs, in-
vivo testing can expose unseen types or instances of translation
failures not revealed by in-house black-box system test cases,
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whose quantity and variety are usually much limited. In
addition, in-vivo testing enables the developers to monitor
and handle translation failures instantly (e.g., by switching to
apply a backup model or multiple models of higher quality
but with higher cost) in the production environment, improving
the overall translation quality on translation requests from real
users.

However, during in-vivo testing for an industrial NMT
system, existing test-oracle techniques cannot be applied in
the production environment. First, due to the lack of samples
of expected outputs (i.e., reference translations), we cannot
simply apply the special test oracle that relies on the translation
quality score (as widely used in black-box system testing)
to in-vivo testing. Second, although there have been heuris-
tics [11], [12], [13] on speculating the expected outputs for
unlabeled data on classification-oriented or prediction-oriented
machine learning systems, these heuristics cannot be directly
applied to testing an NMT system due to the intractability of
natural languages.

To fill the gap of lacking test oracle for in-vivo testing of
an industrial NMT system, in this paper, we propose a new
approach for automatically identifying translation failures; our
approach can directly serve as a test oracle for in-vivo testing.
Different from using the translation quality score, our approach
conducts statistical analysis on both the inputs (i.e., the original
texts) and outputs (i.e., the translations under inspection) of the
NMT system, aiming to directly spot out translation failures
without samples of the expected outputs (i.e., the reference
translations). Our key insight underlying our approach is that
there are some properties of natural language translation that
can be checked systematically. If there is any violation of
these properties in the translation under inspection, there are
likely translation failures. In addition, we can leverage the
information from the inputs of the NMT system (i.e., the
original texts) to provide hints for finding translation failures,
whereas such information is overlooked when the translation
quality score is calculated. In this paper, we focus on one
property that generally holds for translations: the original text
and the translation generally have one-to-one mappings in
terms of their constituents, e.g., words/phrases.

In particular, our approach includes two algorithms for
detecting two specific types of violations of this property,
respectively: (1) under-translation, where some words/phrases
from the original text are missing in the translation, and (2)
over-translation, where some words/phrases from the original
text are unnecessarily translated multiple times. Based on our
experience in deploying NMT models in large-scale industrial
settings, many translation failures can be reflected by these
two types of violations. For under-translation, our detection
algorithm leverages the recommendation algorithm of Item-
based Collaborative Filtering [14] to build a word/phrase trans-
lation dictionary from massive parallel corpora, and uses such
algorithm for examining translations. Our detection algorithm
additionally addresses two challenges: efficiently identifying
and translating phrases from texts, and recognizing implicit
word/phrase translations. For over-translation, our detection

algorithm is based on word frequencies and also considers
the cases where multiple occurrences of words/phrases exist
in the text to be translated. We implement and evaluate our two
algorithms as well as baseline algorithms on manually labeled
datasets, which contain sets of original texts, corresponding
translations, and corresponding marks of the existence for
two types of violations. Our algorithms achieve better overall
performance compared with the baseline algorithms.

Our experiences on deploying our approach in both pro-
duction and development environments of WeChat (a mes-
senger app with over one billion monthly active users [15])
demonstrate that our approach is both practical and scalable.
By using our approach for in-vivo testing in the production
environment, the developers are able to collect translation
tasks with unseen types or instances of translation failures
and observe the performance of deployed models in real-world
usages. The developers are also able to handle the translation
failures instantly through switching to backup models (e.g.,
SMT models), improving the overall translation quality nearly
effortlessly. On top of that, our approach is able to process
about 12 million unique translation tasks every day.

In addition, not limited to only in-vivo testing, our approach
also helps enhance in-house black-box system testing during
the NMT-system development. By using our approach, the
developers manage to find outputs from the NMT system
(i.e., the translations) that contain translation failures and are
previously unable to be processed by the special test oracle
based on the translation quality score (due to missing reference
translations). The developers are also able to quickly locate
and diagnose translation failures when test cases fail, based
on the information provided by our approach.

Finally, our approach helps build in-house testing sets con-
taining 130,000 English and 180,000 Chinese words/phrases.
With such valuable test sets, we test multiple other highly pop-
ular translation services and find various translation failures.
The detected translation failures indicate potential defects of
the design, implementation, or training data in machine trans-
lation systems used by these service providers and help these
providers improve their services. All these preceding results
demonstrate high effectiveness of our approach along with
high industry impact. We also build an online demonstration1

for our approach on English and Chinese translation tasks.

II. BACKGROUND

In this section, we introduce background of NMT quality
assurance. We first explain why testing neural network (NN)
software is a challenging task. Then, we discuss recent work
on testing NN software. After that, we introduce two common
types of translation-property violations that we focus on (i.e.,
under-translation and over-translation) with examples. Finally,
we present BLEU score [9], one of the most widely used
translation quality scores.

1http://bit.ly/2P4hEB4



A. Why NN Software is Hard to Test

Although there are various studies on automatically testing
traditional software, testing NN software still largely relies on
manual and non-systematic strategies. Typically, NN software
developers often conduct testing with a randomly selected
testing dataset. Because the size of the testing dataset is
limited and the testing dataset is constructed in a random
manner, these existing strategies are limited at finding and
locating potential issues. In addition, it is inappropriate for
NN software developers to directly adopt automated testing
techniques proposed for traditional software for the following
two main reasons.

(1) Learning instead of implementing program logics [16].
For traditional software, improving the coverage of program
control-flow structures (e.g., path coverage) is the main tar-
get of automated testing techniques, because for traditional
software, the program logics lie in its control-flow statements.
However, the core logics of NN software are embedded in the
network structure and parameters, which cannot be revealed
by existing coverage metrics based on control-flow structures.
In particular, network structure is often defined by only a few
lines of code, whose coverage can easily reach 100% without
finding any potential issues.

(2) Non-linearity. Constraint solving is a crucial compo-
nent in automated testing techniques for traditional software.
Solvers using the Satisfiability Modulo Theory (SMT) [17]
have been quite successful for different demands such as
generating high-coverage test inputs. However, a neural net-
work might consist of thousands or even millions of neurons
with non-linear activation functions. These neurons might also
be composed in a variety of ways according to different
network structures. Thus, it is significantly more challenging
to find the connections between inputs and outputs (or any
other intermediate values), making constraint solving nearly
infeasible there.

B. Existing Testing Techniques for NN Software

To address the aforementioned difficulties, a line of research
work has been recently proposed on testing NN software, in-
cluding whitebox testing [11], [18], [19], metamorphic testing
[20], [21], mutation testing [22], and empirical studies [23].
Specifically, inspired by path coverage for traditional software,
Pei at al. [11] propose Neuron Coverage, which evaluates how
many neurons in the neural network under test have been
activated (i.e., covered) in testing. This novel whitebox testing
technique is further applied by Tian et al. [13] to testing NN-
based autonomous cars. Based on the core idea of neuron
coverage, Ma et al. [18] further propose five fined-grained
coverage criteria for whitebox testing of NN software. Sun et
al. [19] propose the first concolic testing technique for NN
software. Zhang et al. [20] develop a GAN-based technique
using the idea of metamorphic testing to synthesize test images
with the same label under different weather conditions to test
NN-based autonomous cars. Dwarakanath et al. [21] design
metamorphic rules to detect implementation faults for image
classifiers (e.g., SVM and ResNet [24]). Ma et al. [22] study

mutation testing strategies for both network structure and
training data.

Although researchers have designed various testing tech-
niques specialized for NN software, these techniques consider
only the neural networks whose outputs can be judged using
simple equivalence oracles. For example, most of these tech-
niques focus on image classification, where the correctness of
NN outputs can be judged by trivially referring to image labels
or voting among multiple models. However, for NMT systems,
there lacks a rigorous definition on the correctness of its output
(i.e., whether the translation is valid) even when some of the
expected outputs (i.e., reference translations) are provided. As
the result, it is difficult to adapt the existing testing techniques
(for classification/prediction-oriented NN systems) to NMT
quality assurance.

C. Translation-Property Violations

As introduced in Section I, we focus on two specific types of
violating the one-to-one mapping property for natural language
translation: under-translation and over-translation.

Under-translation. For a specific translation task, if the
translation misses one or more words/phrases from the text
to be translated, then the translation is considered under-
translated. Table III shows two examples of under-translation.
In the first example, the underlined Chinese word correspond-
ing to ‘mother’ is missing in the English translation, leading
to the wrong interpretation of what the person ‘she’ refers
to at the beginning of the second sentence. In the second
example, the underlined Chinese word corresponding to ‘desk’
is missing in the English translation, making readers unaware
of the object desk.

Over-translation. For a specific translation task, if any
word/phrase is unnecessarily translated multiple times, then
the translation is considered over-translated. Table V shows
an example of over-translation, where the underlined Chinese
phrase representing ‘can never be changed’ appears four times
in the translation, while there is only one occurrence (as
indicated by italicized words) in the original sentence. Such
repetition is redundant since it does not change the meaning
of the translation.

As can be seen, these two specific types of violations
can directly affect the user experience and even lead to
misunderstanding of the translation. Also according to our
observation, these two specific types of violations can indicate
more types of translation failures, including wrong names and
incorrect interpretation of numbers. In this paper, we propose
two algorithms that can automatically and effectively detect
these violations.

D. Translation Quality Scores

There are various translation quality scores that can be
used to measure the overall quality of translations. BLEU
(BiLingual Evaluation Understudy) score [9] is one of the most
widely-used quality scores for machine translation. BLEU
score measures the similarity between the translation under
inspection and the reference translation(s). In particular, a



higher BLEU score indicates that translation under inspection
is closer to reference translation(s), being considered of higher
translation quality. The range of a BLEU score is [0, 1], which
is often presented as a percentage value (i.e., [0, 100]). For
example, if none of the tokens in the translation appears in any
reference translation, the BLEU score is 0. On the contrary,
if the translation is exactly the same as any of the reference
translations, the BLEU score is 100.

III. DETECTION ALGORITHMS FOR UNDER- AND
OVER-TRANSLATION

In this section, we introduce our detection algorithms
for under-translation and over-translation. Our algorithms are
based on the one-to-one constituent mapping property of
natural language translation. Specifically, we first build the
mappings between both words and phrases from the source and
destination languages on massive training translation task sets
(i.e., parallel corpora). Then, the two algorithms can leverage
such mappings to examine the property on the translations
under inspection.

A. Building Mappings Between Bilingual Words and Phrases

For the very beginning, based on massive training trans-
lation task sets (i.e., parallel corpora), we aim to build the
mappings from each word/phrase in the source language to a
list of words/phrases in the destination language, where each
word/phrase in the destination language is a valid translation
for the corresponding word/phrase in the source language.
There are two steps to achieve this goal: phrase identification
and mapping learning.

Phrase identification. The purpose of identifying phrases
from texts is to handle the situations where the phrase
meanings cannot be conveyed by the combination of word
meanings. The identified phrases from texts of both source
and destination languages are essential to build an accurate
mapping. As a naive approach to identify phrases, we can
assume that each phrase contains up to lph words, extract all
2-grams, 3-grams, ..., lph-grams (note that here an n-gram
is a contiguous sequence of n words) from the texts, and
regard them all as candidate phrases. However, this naive
approach would probably require an enormous amount of
computation due to a huge number of candidate phrases,
whose number would be approximately

∑lph
i=2 |Ws|i for only

the source language, where Ws is the word vocabulary of the
source language. Besides, a phrase might have different forms,
adding difficulties to statistical analysis when the whole word
sequences are considered.

In order to improve the efficiency make phrase identification
most robust, we adopt a heuristic by only considering the
representative word pairs (i.e., keyword pairs) of any phrase.
In other words, we abstract a phrase w1w2 · · ·wn with an
ordered (potentially not unique) word pair 〈wa, wb〉, where
1 6 a < b 6 n and the word pair appears in different forms
of the phrase. By using the heuristic, we reduce the problem of
enumerating all potential candidate phrases from enumerating
all short word sequences to enumerating all word pairs in

a sentence. Specifically, assume we want to identify phrases
whose keywords are at most dph words away from each other,
then we only need to extract each word pair 〈wa, wb〉 (a, b de-
notes the word order in the same sentence) of both source and
destination languages from the training dataset, where a < b
and b−a 6 dph+1. For example, if we set lph = 1, we would
obtain at most 5 unique word pairs from a 4-word sentence
w1w2w3w4: 〈w1, w2〉, 〈w1, w3〉, 〈w2, w3〉, 〈w2, w4〉, 〈w3, w4〉.
Using such heuristic, we reduce the number of candidate
phrases to at most |Ws|2 for only the source language. We
further discard any word pair with less than cph occurrences
to reduce false positives (i.e., the word pairs that are not
keyword pairs of any phrase). Additionally, mapping learning
(as introduced later) also helps identify real phrases.

Mapping learning. We employ the recommendation al-
gorithm of Item-based Collaborative Filtering [14] to build
the word/phrase translation mappings from massive training
translation task sets (i.e., parallel corpora). The recommen-
dation algorithm of Item-based Collaborative Filtering was
originally used in scenarios such as product and movie recom-
mendation [25], [26], [27]. The algorithm predicts an user’s
prospective interested items (e.g., movies) by looking at the
user’s rating history and searching the items that are similar
to the user’s highly-rated items. The algorithm’s key insight
of finding similar items is that similar items should have
similar ratings from a lot of users. Thus, it determines the
similarity between two items by looking at the similarity
between their ratings. To reduce our mapping problem to
the recommendation problem, we can view each training
translation task as a user, each word/phrase appearing the
original text (of the source language) or reference translation
(of the destination language) as an item with a positive
rating, and all other words/phrases as items with negative
ratings. In this way, we adapt the recommendation algorithm to
uncover the connections between words/phrases in the source
and destination languages, i.e., the word/phrase translations.
Specifically, we define the user rating matrix M as follows:

Mk,w =

{
1 if w appears in P k

s or P k
d

0 otherwise
where w is a word/phrase, P k

s and P k
d denote the original

text and the reference translation in the training translation
task numbered k correspondingly. Then, we calculate the
relevance/similarity between ws (a word/phrase in the source
language) and wd (a word/phrase in the destination language)
using the Cosine similarity [28]:

Rel(ws, wd) =

−−−→
M·,ws

·
−−−→
M·,wd

||
−−−→
M·,ws ||2 · ||

−−−→
M·,wd

||2

=

∑
k Mk,ws

Mk,wd√∑
k M

2
k,ws

√∑
k M

2
k,wd

Tables II shows an instance of M for the translation
task in Table I. We can calculate Rel(I,我) = ([1, 1, 1, 0] ·
[1, 1, 1, 0])/(||[1, 1, 1, 0]|| · ||[1, 1, 1, 0]||) = 1, indicating that
we speculate ‘我’ to be the translation of ‘I’. In fact, such
translation is exactly the correct Chinese translation of ‘I’.



TABLE I: Example training translation tasks

English (original) Chinese (translated)
1 I love my family. 我爱我的家人。
2 I have a lovely son. 我有一个可爱的儿子。
3 I have worked for seven years. 我工作七年了。
4 They have a big house. 他们有一个大房子。

TABLE II: User rating matrix M corresponding to Table I

I love have · · · 我 爱 有 · · · 。
1 1 1 0 · · · 1 1 0 · · · 1
2 1 0 1 · · · 1 0 1 · · · 1
3 1 0 1 · · · 1 0 0 · · · 1
4 0 0 1 · · · 0 0 1 · · · 1

Based on such relevance between words/phrases in the
source and destination languages, we build the mappings
directly. Specifically, for each word ws in the source language,
we consider a total of ctr words in the destination language
with the highest relevance to ws to be valid translations of
ws, where ctr is a predefined threshold value. Such technique
has two advantages compared with using generic translation
dictionaries. First, the words in an existing generic translation
dictionary may be limited. If a word is not in the existing
dictionary, then the mapping cannot be constructed. Second,
the word translations included in the generic dictionary might
also be too limited, too generic, or outdated with respect to
various translation tasks, causing the algorithms to miss correct
translations.

B. Detection Algorithm for Under-translation

With the word/phrase translation mappings derived from
the previous steps, under-translation detection can now be
achieved by checking the existence of word/phrase trans-
lations in the whole translation text. Specifically, for each
word/phrase in the original text, we obtain the list of its corre-
sponding word/phrase translations, and check if any of these
word/phrase translations appear in the whole translation text.
We use two real-world examples to illustrate this process. Ta-
ble III shows two example translations with under-translation
violations. The underlined Chinese words (corresponding to
‘mother’ and ‘desk’ in English) are missing in the English
translation. When our algorithm detects potential violations
related to these two words, two translation lists are available
for each of them. Specifically, our algorithm produces the
contents in Table IV, which is part of the mappings constructed
by the previous steps. In the table, ‘origin’ indicates the words
to be translated and ‘trans k’ denotes the k-th most relevant
translation. Our algorithm goes through each translation for
both Chinese words and checks whether it appears in the
translation being examined. Then, the algorithm finds that for
both Chinese words, none of translations in Table IV appears
in the translation being examined (as shown in Table III). The
algorithm subsequently marks both translations with potential
under-translation violations.

However, there might be some words/phrases of the source
language whose translations usually do not show up in the
translations of the whole sentences, i.e., some words/phrases

might incur implicit translations. Examples include the and
to in English. The techniques specified earlier can likely
produce numerous false positives due to such phenomenon.
We introduce error rate filtering to address such limitation.
Specifically, we calculate the error rate ews

for each word ws

of the source language (similar for any phrase) on the training
dataset using ews = Ne

ws
/Nws , where Ne

ws
denotes the

number of sentence pairs that are considered under-translated
on ws, and Nws

is the number of translation sentence pairs
involving ws. Then, we disregard any under-translation caused
by missing ws on real translation results if we find that
ews > eth, where eth is a predefined threshold value that
controls the tolerance of such error-prone ws. Table III shows
the technique being used in two example translations, where
‘error rate’ shows the error rates for two words in the source
language. The algorithm also checks whether the error rates
are beyond eth (usually set to be 0.2 in our production
environment) for both Chinese words before marking them
with potential under-translation violations. In the examples,
the algorithm finds that both error rates are acceptable and
confirm the marks. On the contrary, if the algorithm finds that
the error rate on one word/phrase is too high, it will skip the
word/phrase and continue checking other words/phrases.

C. Detection Algorithm for Over-translation

Our over-translation detection algorithm is based on fre-
quency of words appearing in the translation. Specifically,
we count the occurrences for each word appearing in the
translation under inspection, and mark the word as over-
translated if more than one occurrence is found and the
occurrences are near to each other. In addition, our algorithm
includes techniques to address two main challenges being
faced.

First, particles such as have, the, and to in English tend
to have multiple occurrences and no actual meaning in many
well-formed expressions. These words would confuse over-
translation detection and cause false positives. To alleviate
this challenge, we remove all such common words (i.e., stop
words) from the translation under inspection before conducting
over-translation detection.

Second, some words/phrases might have multiple occur-
rences in the original text, and they are probably also supposed
to appear multiple times in the translation under inspection.
Aiming to differentiate such situations from those with real
over-translation violations, our algorithm includes a technique
to estimate the number of words/phrases (in the original text)
that are translated to each word wd in the translation under
inspection, and compare such number with the number of
occurrences of wd. Specifically, for each word wd in the
translation under inspection, we use the word/phrase trans-
lation mappings introduced by the previous steps in the other
direction to find out a set of words/phrases (of the source
language) that can be all translated to wd (i.e., for each
word ws in the set, wd is its translation according to the
dictionary), and count the number of words/phrases in the
original text (denoted as counts(wd)) that fall in the set. Let



TABLE III: Example translations with under-translation violations

Chinese (original) English (translated) English (reference)
三姑给你的红包给
你妈妈了，她见了你
会给你的。

Third Aunt gave you a red
envelope. She’ll give it to you
when she sees you.

Third Aunt gave your red envelope
to your mother. She’ll give it to you
when she sees you.

放寒假一个月宿舍
地上桌上床上全是
灰...都不知道该从哪
里开始收拾..

Winter vacation a month
dormitory on the floor of the bed
is all gray ... I don’t know
where to start ..

After a month’s winter vacation,
dust is everywhere on the floor, the
desk, and the bed in the dormitory...
I don’t know where to start cleaning...

TABLE IV: Example translation lists for two under-translated
words in Table III

origin 妈妈 桌
error rate 0.04116 0.07293

trans 1 mother table
trans 2 mom desk
trans 3 mum papers
trans 4 mama tables
trans 5 mommy coffee
trans 6 moms placed
trans 7 mothers piled
trans 8 mummy put
trans 9 my breakfast
trans 10 her laid

TABLE V: Example translation with over-translation violation

English (original) Chinese (translated)
U have to admit that some-
thing can never be changed,
live with it or break with it!

你必须承认，有些东西是永
远无法改变的，无法改变的，
无法改变的，无法改变的！

us denote the number of occurrences of wd in the translation
under inspection as count(wd). Finally, we can consider a wd

to be over-translated if we find counts(wd) < count(wd),
indicating that we find more occurrences of wd than there
should be, i.e., redundant translations.

Table V shows an example with an over-translation violation
to illustrate our algorithm. The Chinese translation contains 3
more repetitions for the translation of “can never be changed”.
Our algorithm first discovers that there are 4 instances of “无
法” and “改变”. Then, the algorithm looks up the word/phrase
translation mappings to find whether there is any word/phrase
in the original text with such translations. The algorithm finds
that “can never” and “changed” have such translations. Then
it also finds that these two English words/phrases appear only
once in the original text, fewer than the occurrences in the
translation under inspection. Finally our algorithm marks the
translation with an over-translation violation.

IV. EVALUATION

In this section, we present our evaluation on assessing
our proposed approach. Specifically, we try to answer the
following two research questions (RQs):

RQ1: How accurate are the two proposed violation detection
algorithms (included in our approach) in testing benchmark
datasets consisting of real-world translation tasks?

RQ2: How useful is our approach in assisting our NMT
system improvement during both in-vivo testing and in-house
testing?

RQ3: How effective is our approach on testing NMT sys-
tems from other public service providers?

We next discuss the evaluation setup (Section IV-A) and
present the accuracy comparison and analysis results (Sec-
tion IV-B) w.r.t. baseline algorithms, for RQ1. We then share
our experience of deploying our proposed approach in both
the production and development environment of WeChat, a
messenger app with over one billion of monthly active users
(Section IV-C), for RQ2. We also demonstrate the effectiveness
of our approach on testing NMT systems from other public ser-
vice providers by showing the instances of detected translation
failures in the translations from those systems (Section IV-D),
for RQ3.

A. Evaluation Setup

We implement our proposed detection algorithms (denoted
as ‘proposed’) from scratch, and evaluate our proposed algo-
rithms. We also evaluate baseline algorithms on both under-
and over-translation detection for comparison with our pro-
posed algorithms:

Algorithms based on primitive dictionary looking-up (de-
noted as ‘std-dict’). For under-translation, we look up each
word/phrase of the text to be translated in an existing generic
translation dictionary and check whether any translation of
the word appears in the translation. For over-translation, we
replace the learned word/phrase translation mappings in our
algorithm with the existing generic translation dictionary. We
use the software StarDict [29] to provide existing generic
translation dictionaries and implement such baseline algorithm
by ourselves.

Algorithms based on word alignment [30], [31] (named as
‘word-align’) from the traditional SMT models. For under-
translation, we let the word-alignment model provide a list
of candidate translations for each word of the text to be
translated, and check whether any translation of the word
appears in the translation. For over-translation, we replace
the learned word/phrase translation mappings in our algorithm
with the candidate translation lists provided by the word-
alignment model. Note that the candidate translation list is also
derived by choosing the translations with top ctr alignment
probabilities. We use the software fast align [32] with default
settings for the word-alignment model implementation.

We build the word/phrase translation mappings (for our
algorithms) and train the word-alignment model (for the
baseline algorithm) with 16 million sentence pairs crawled
from various sources (e.g., example word/phrase usages in
dictionaries) on the Internet. We evaluate all the algorithms



TABLE VI: Overview of evaluation datasets

Name Lang Type #all #ws #U #O

ench news en-cn News 200 7497 54 4
chen news cn-en News 200 7418 31 8
ench oral en-cn Oral 300 3237 42 1
chen oral cn-en Oral 300 2918 37 5

on datasets that are randomly sampled from larger benchmark
datasets (crawled online and independent of training datasets)
and are manually labeled by us. Each dataset contains a
number of sentence pairs, each of which consists of the
sentence to be translated (i.e., the input to our NMT system)
and the translation under inspection (i.e., the corresponding
output of our NMT system). Each sentence pair is also
marked with the existence of two types of violations in the
translation identified by manual inspection. Table VI shows
the overview of the evaluation datasets, where #all denotes
the total number of sentence pairs, #ws denotes the total
number of words of the source language, and #U and #O

denote the numbers of sentence pairs flagged with under- and
over-translation violations, respectively. ‘en-cn’ and ‘cn-en’
indicate translating from English to Chinese and from Chinese
to English, respectively.

For any algorithm on any dataset, let S be the manually
labeled sentence pair sets containing a specific violation type
(i.e., ground truth), and let S ′ be the sentence pair sets
identified by the algorithm detecting the specific violation type,
then precision, recall, and F-measure can be calculated as:

precision =
|S ∩ S ′|
|S ′|

recall =
|S ∩ S ′|
|S|

F-measure = 2 · precision · recall
precision + recall

B. Effectiveness Comparison and Analysis

General comparison. For the algorithms under comparison,
Table VII shows the result summary of under-translation
detection, and Table VIII shows the result summary of over-
translation detection. The precision, recall, and F-measure are
abbreviated as ‘P’, ‘R’, and ‘F’, respectively, in both tables.
In Table VII, ‘Count’ indicates the number of under-translated
words identified by the three algorithms under comparison. We
set ctr = 10 and cph = 10 for all the experiments, eth = 0.15
for experiments on the ‘ench news’ and ‘chen news’ datasets,
and eth = 0.25 for experiments on the ‘ench oral’ and
‘chen oral’ datasets. We turn on phrase identification for ‘en-
cn’ tasks while keeping it off for ‘cn-en’ tasks due to the
fact that most Chinese words are already phrases after word
segmentation. As shown in Tables VII and VIII, our proposed
algorithm achieves the highest F-measures on all the datasets,
compared with the two baseline algorithms (‘std-dict’ and
‘word-align’). Such result indicates the effectiveness of our
proposed algorithm.

For under-translation detection, as shown in Table VII,
the higher effectiveness of our proposed algorithm mainly
comes from higher precisions. Our algorithm’s precisions
are up to about 2.6× of those by the baseline algorithms
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Fig. 1: Trends of F-measures of the detection results on all
datasets with different eth values

(‘std-dict’ and ‘word-align’). Such result indicates the high
accuracy of our combined techniques for under-translation
detection. We also notice that precisions achieved by ‘word-
align’ are higher than those by ‘std-dict’. Such result shows the
necessity of word/phrase translation mapping learning, which
helps avoid too generic or limited word/phrase translations.
Meanwhile, we find that our algorithm has relatively lower
recalls, potentially as the cost of achieving higher accuracy.
On the contrary, ‘std-dict’ achieves the highest recalls on all
the datasets. However, such scores are accompanied by a large
number of false positives, making it difficult to leverage the
detection results.

For over-translation detection, as shown in Table VIII, the
higher effectiveness of our proposed algorithm also mainly
comes from higher precisions. However, different from the
results of under-translation detection, rankings of recalls vary
across the datasets. Such result might be due to a relatively
small number of over-translation instances in the datasets.

Analysis of Error Rate Thresholds eth. Changing the
value of eth might influence the detection results. Thus, we
further investigate how different threshold values would affect
the overall effectiveness of our algorithm. As stated in Section
III-B, eth controls the tolerance of error-prone words in the
proposed under-translation detection algorithm. We also know
from the definition that eth ∈ (0, 1]. Aiming to understand
the influence of eth on the algorithm effectiveness, we run
the under-translation algorithm on all the datasets with eth set
to {0.05, 0.1, · · · , 0.95, 1}. Figure 1 shows the trends of F-
measure of the detection results under different eth values.
Note that we run the algorithm on ‘en-ch’ datasets both
when phrase identification is enabled and disabled (corre-
sponding to ‘ench news’, ‘ench news phrase’, ‘ench oral’,
and ‘ench oral phrase’ in Figure 1), while on ‘ch-en’ datasets
the feature is always turned off (corresponding to ‘chen news’
and ‘chen oral’ in Figure 1).

As shown in Figure 1, the trends of F-measures on the
detection results of different datasets are very similar un-
der the same setting. Such result indicates the commonality
of under-translation detection in various scenarios. However,
differences still exist. As shown in Figure 1, F-measures on
the detection results of ‘ench news’, ‘ench news phrase’, and
‘chen news’ peak when eth is around 0.15 ∼ 0.2. In contrast,



TABLE VII: Results of under-translation detection on the evaluation datasets

proposed std-dict word-align
P R F Count P R F Count P R F Count

ench news 0.51 0.69 0.59 113 0.28 1.00 0.43 1853 0.35 0.85 0.49 250
chen news 0.43 0.65 0.52 50 0.16 1.00 0.27 1827 0.18 1.00 0.30 523
ench oral 0.52 0.40 0.45 32 0.15 1.00 0.26 689 0.20 0.79 0.32 309
chen oral 0.30 0.49 0.37 70 0.12 0.97 0.22 895 0.14 0.73 0.24 259

TABLE VIII: Results of over-translation detection on the evaluation datasets

proposed std-dict word-align
P R F P R F P R F

ench news 0.38 0.75 0.50 0.13 0.50 0.20 0.24 1.00 0.38
chen news 0.73 1.00 0.84 0.13 1.00 0.23 0.40 1.00 0.57
ench oral 0.33 1.00 0.50 0.00 0.00 0.00 0.14 1.00 0.25
chen oral 0.80 0.80 0.80 0.38 1.00 0.56 0.28 1.00 0.43
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Fig. 2: Trends of precisions and recalls of the detection results
on ‘en-ch’ datasets with different eth values

for ‘ench oral’ and ‘chen oral’, F-measures peak when eth
is around 0.2 ∼ 0.25, and for ‘ench oral phrase’ the peak
value is even higher. This finding is expected: expressions in
news reports tend to be more rigorous than those in casual
conversations, limiting the scope of word/phrase meanings
and thus making it easier to achieve precise translations. Such
finding also shows that our algorithm can be easily tuned on
different scenarios. In addition, the algorithm effectiveness is
worse at eth = 1 for all curves, where error rate filtering
is not in use. Such finding indicates that error rate filtering
contributes to the algorithm effectiveness.

However, as shown in Figure 1, the influence on F-measures
of the detection results is much smaller when phrase iden-
tification is on, although the overall F-measures are higher
than those in the situation where phrase identification is off.
A potential explanation is that disabling phrase identification
causes more false positives on words that actually belong to
phrases, given that words can have totally different meanings
in phrases. Filtering the detection results based on error rates
helps reduce these false positives and consequently improve
the F-measures. Such finding indicates that phrase identifica-
tion could actually contribute to the algorithm effectiveness.
To understand why the F-measures change insignificantly,
in Figure 2, we show the trends of precisions and recalls
with different eth values for ‘en-ch’ datasets when phrase
identification is enabled. As can be seen from Figure 2, as
eth goes up, precisions gradually become lower while recalls
steadily increase. The trend is intuitive: less strict filters allow
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Fig. 3: Statistics of unique English-Chinese translations with
translation-property violations identified by our algorithms
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Fig. 4: Combined statistics of under- and over-translation
violations in real-world English and Chinese translations by
our NMT model

more true positives that contribute to higher recalls and miss
more false positives, which lead to lower precisions. Such
finding still shows that error-rate filtering is useful: one of
our goals for detecting violations in translations is to build in-
house test suites for regression testing and manual inspection.
Keeping test suites small and precise saves time and manual
efforts from running or inspecting false positives.

C. Experience of Deployment

By using our approach for in-vivo testing in the production
environment, the developers are able to collect translation
tasks with unseen types or instances of translation failures
and observe the performance of deployed models in real-world



usages. The developers are also able to handle the translation
failures instantly through switching to backup models (e.g.,
SMT models), improving the overall translation quality nearly
effortlessly. Figure 3 shows an example 2-day statistics of
unique English-Chinese translations in which our algorithms
identify any translation-property violation, where Y-axis cor-
responds to the statistics within each period of 5 minutes. As
can be seen, our approach is able to find over 8 translations
with translation-property violations each second during the
busiest periods. On top of that, our algorithms are able to
process about 12 million unique translation tasks every day,
with over 200 translations processed each second during the
busiest periods. Such result indicates the good performance
and applicability of our algorithms and approaches on real-
world tasks. The statistics also show that these translation-
property violations are non-trivial in the real world, and in-
vivo testing on NMT systems is of great significance.

In addition, not limited to only in-vivo testing, our approach
also helps enhance in-house black-box system testing during
the NMT-system development. By using our approach, the
developers manage to find outputs from the NMT system
(i.e., the translations) that contain translation failures and are
previously unable to be processed by the special test oracle
based on the translation quality score (due to missing reference
translations). Our result also shows the violations decrease sig-
nificantly after the deployment of our tool. Such result suggests
that the developers are able to quickly locate and diagnose
translation failures when test cases fail, based on the informa-
tion provided by our approach. Figure 4 shows the combined
statistics of under- and over-translation violations in real-world
English and Chinese translations by our NMT model within 6
months after the deployment of our approach. As can be seen,
the percentage of translations with under- or over-translation
violations decreases significantly over time. More specifically,
for English-Chinese translations, the percentage drops from
18.6% to 4.1%, while for Chinese-English translations, the
percentage drops from 8.2% to 4.2%. Such statistics reflect
the effectiveness of our approach in helping development and
improvement of a machine translation system.

D. Large-scale Test Suite Generation and Test Results

Our algorithms also help collect 130,000 English and
180,000 Chinese meaningful words/phrases (i.e. words/phrases
with low error rates by learning from training data). These
words are used as in-house test cases for testing and im-
proving WeChat’s continuously-improved machine translation
model. Using our approach not only helps diagnose issues
in WeChat’s NMT system but also helps diagnose issues in
other competing machine translation systems released by other
providers. We show some examples of translation-property
violations in English and Chinese translations provided by
systems from various providers in Table IX. By analyzing the
translations, we gain some insights on potential causes of those
violations, showing that our approach is able to detect potential
defects lying in the design, implementation, or training data
in machine translation systems, with examples as below.

TABLE IX: Example issues found in machine translation
systems by various providers

Provider
Name

Original
Text

Given
Translation

Expected
Translation

Prvd. A 成人 mature people adult
Prvd. A 太好了 what fun great
Prvd. B large-scale large-scale 大规模
Prvd. B long-term long-term 长期
Prvd. B U.S. U.S. 美国
Prvd. C 蛋糕 Runeberg torte cake
Prvd. C 酸奶 Viili yoghurt
Prvd. D 疟原虫 p. plasmodium
Prvd. D 酶原 The original enzyme zymogen

For Provider A, translations in both examples seem to be
too “straightforward”, i.e., two Chinese words are translated
character by character instead of being as a whole. There might
be an issue in the design of the model, causing the model to
disregard some context information.

For Provider B, three English phrases with dots or hyphens
remain untranslated. It might also be the problem of model im-
plementation that causes the model to disregard such phrases.

For Providers C and D, translations for common food names
and terminologies are too specific (e.g., Runeberg torte is one
type of cakes) or inaccurate (e.g., p. is the abbreviation of
plasmodium, but there are too many words beginning with the
letter p). Both providers might need to investigate into their
training data.

V. RELATED WORK

Tu et al. [33] propose coverage-based NMT models, which
keep track of the attention history by maintaining coverage
vectors. The coverage mechanism assists attention adjustment
to provide more chances for untranslated source words. Both
under- and over-translation issues are addressed by the cover-
age mechanism. The coverage mechanism is also adopted by
Google NMT models [34]. However, such coverage mecha-
nism only alleviates (but cannot eliminate or detect) under-
translation and over-translation issues from the perspective
of NMT model design. It does not reveal defects lying in
the implementation or the training data of the model. Our
approach is applicable on general machine translations, aim-
ing to provide common-issue detection regardless of specific
translation models, and such common-issue detection could
be useful for model development and improvement. In other
words, even when coverage-based NMT models are used, our
approach is still needed and applicable to detect remaining
issues. In addition, our approach can be used even when other
NMT models (not being coverage-based ones) are used.

Our detection algorithms make use of the Item-based Col-
laborative Filtering [14] algorithm to construct the word/phrase
translation dictionary. Linden et al. [25] describe how to use
the algorithm to recommend products to Amazon customers,
and Davidson et al. [26] use a similar approach to recommend
videos to YouTube users. We show that such algorithm is
also suitable for recommending words/phrases in the scenario
of translation quality assurance. It is also possible to apply



more advanced recommendation algorithms, such as those
summarized by Adomavicius and Tuzhilin [27].

VI. CONCLUSION

In this paper, we present a novel approach for in-vivo testing
of an NMT system. Our approach automatically identifies
translation failures without requiring reference translations.
Our approach focuses on properties of natural language trans-
lation that can be checked systematically and uses information
from both the test inputs (i.e., the texts to be translated)
and the test outputs (i.e., the translations under inspection)
of the NMT system. Our evaluation conducted on real-world
datasets shows that our approach can effectively detect targeted
property violations as translation failures. Our experiences on
deploying our approach in both production and development
environments of WeChat, a messenger app with over one
billion monthly active users, demonstrate high effectiveness
of our approach along with high industry impact.
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