
BLOCKEYE: Hunting For DeFi Attacks
on Blockchain

Bin Wang, Han Liu, Chao Liu, Zhiqiang Yang, Qian Ren, Huixuan Zheng, Hong Lei
Oxford-Hainan Blockchain Research Institute, Hainan, China

Abstract—Decentralized finance, i.e., DeFi, has become the
most popular type of application on many public blockchains
(e.g., Ethereum) in recent years. Compared to the traditional
finance, DeFi allows customers to flexibly participate in diverse
blockchain financial services (e.g., lending, borrowing, collateral-
izing, exchanging etc.) via smart contracts at a relatively low cost
of trust. However, the open nature of DeFi inevitably introduces
a large attack surface, which is a severe threat to the security
of participants’ funds. In this paper, we proposed BLOCKEYE,
a real-time attack detection system for DeFi projects on the
Ethereum blockchain. Key capabilities provided by BLOCKEYE
are twofold: (1) Potentially vulnerable DeFi projects are identified
based on an automatic security analysis process, which performs
symbolic reasoning on the data flow of important service states,
e.g., asset price, and checks whether they can be externally
manipulated. (2) Then, a transaction monitor is installed off-
chain for a vulnerable DeFi project. Transactions sent not only
to that project but other associated projects as well are collected
for further security analysis. A potential attack is flagged if
a violation is detected on a critical invariant configured in
BLOCKEYE, e.g., Benefit is achieved within a very short time and
way much bigger than the cost. We applied BLOCKEYE in several
popular DeFi projects and managed to discover potential security
attacks that are unreported before. A video of BLOCKEYE is
available at https://youtu.be/7DjsWBLdlQU.

Index Terms—DeFi, oracle analysis, attack monitoring

I. INTRODUCTION

Recent years have witnessed a rapid growth of decentral-
ized finance application, or DeFi application, on the public
blockchain ecosystem, e.g., Ethereum [1]. Unlike in tradi-
tional finance, DeFi applications leverage the transparency and
openness nature of decentralized network (i.e., blockchain) to
provide a diversity range of financial services, e.g., lending,
borrowing, collateralizing, exchanging etc., all without trust or
dependency on third-party intermediaries.

While DeFi has been gaining an increasing level of market
growth in terms of both popularity and liquidity, its openness
nature also leaves a large space to external attacks, which may
severely threaten the security of DeFi participants’ funds. To
elaborate on this point, consider a real-world attack (see Fig-
ure 1) on bZx project, which is a DeFi project for lending and
margin trading on Ethereum. In this case, the attacker lever-
aged an oracle dependency of bZx on other DeFi projects (i.e.,
Uniswap and Kyber) in manipulating cryptoasset exchange
rates, making net profit with a single atomic transaction.

Specifically, as shown in Figure 1, the attacker launched a
sequence of six internal transactions, consisting of borrowing
(e.g., transaction 1 and 5), exchanging (e.g., transaction 2, 3,
and 4), and paying back (e.g., transaction 6) cryptoassets (i.e.,

ETH and sUSD). Note, these transactions are packed into a single
external transaction in the exact order as in Figure 1, which
is then executed atomically by Ethereum. In its execution,
the attacker first borrowed 7, 500 ETH from bZx (transaction
1), then used 4, 417.86 borrowed ETH in exchange of sUSD

with other DeFi projects (i.e., Uniswap, Kyber, and Synthetix

in transactions 2–4). Because bZx relies on Uniswap and
Kyber for price feed oracles, which are instead susceptible to
large amount transactions, the attacker can therefore largely
skewed exchange rate of ETH/sUSD in bZx in favour of him or
herself. After that, he or she triggered transaction 5, borrowing
6, 799.27 ETH with all holding sUSD (i.e., 1, 099, 841.39),
followed by a last transaction 6 in paying back 7, 500 borrowed
ETH at the very beginning. The outcome of transactions 1–6
is thus a net profit of 2, 381.41 ETH (minus a small amount of
ETH for paying gas fee[1]), or $600K, for the attacker.

We point out the crux of this kind of arbitrage (i.e., making
profits by buying and selling goods at different prices) is
for the attacker successfully controlling exchange rates of
cryptoasset pairs, ETH/sUSD here in Figure 1, by exploiting
data dependencies of bZx on Uniswap and Kyber.

Attacker

Derivative Protocols
bZx(Flash Loan Provider) 1. borrow 7500ETH

Dencentralized Exchange Protocols
Uniswap

2. convert 540ETH to 92419.7sUSD

Dencentralized Exchange Protocols
Kyber

3. convert 360ETH to 63584.09sUSD:
(convert 20ETH to X sUSD)*18, X ↓

StableCoins
Synthetix4. deposit 3517.86ETH for 943837.59sUSD

5. borrow 6799.27ETH using 1099841.39sUSD

6. pay back 7500ETH

Fig. 1: Attack on the bZx project.

While many previous research works and tools have focused
on the security of smart contracts [2], [3], [4], [5], there
is relatively little study on the security of DeFi projects as
aforementioned. In general, detection of these attacks requires
a deep understanding on both the business nature of a DeFi
project as well as the market it is involved in, which are
missing in existing solutions to finding low-level bugs of smart
contracts. We summarized challenges in terms of addressing
security problems in DeFi projects as below.

Challenge 1: Model DeFi Dependency. Attacks on DeFi
often involve multiple projects rather than a single one. There-
fore, detection of such attacks requires an effective modeling
of critical dependencies among DeFi projects, e.g., information

ar
X

iv
:2

10
3.

02
87

3v
1

 [
cs

.C
R

]
 4

 M
ar

 2
02

1

https://youtu.be/7DjsWBLdlQU

Sy
m

bo
lic

 A
na

ly
sis

CFG Oracle Dependency

Smart
Contracts

Tx
Monitor Attack Report

Feature
Extraction

Tx
Collection

Analysis
Engine

Predefined
Heuristics

End-to-End
Analysis

0

1

k

…

DeFi Projects

Phase 1: Oracle Analysis Phase 2: Attack Monitoring

Vulnerable
Defi

Fig. 2: The general workflow of BLOCKEYE.

flow between two DeFi. While a full analysis would introduce
too much complexity, an abstract analysis might not be able
to capture important high-level business semantics.

Challenge 2: Understand End-To-End Transactions. Fur-
thermore, whether a sequence of transactions is considered
as malicious is largely determined by end-to-end analysis,
i.e., comparing benefits and costs in the transaction sequence.
However, such insights are hard to configure and generate
based on existing analysis infrastructures for blockchains.

The BLOCKEYE Solution. To overcome above challenges,
we have designed and developed BLOCKEYE, the very first au-
tomatic attack detection platform for blockchain DeFi projects.
The key insights behind BLOCKEYE are twofold. First, a
symbolic analysis is performed in BLOCKEYE to reason on
important data flow (e.g., asset price) among associated DeFi
projects. Potentially vulnerable projects are identified in this
process. Then, BLOCKEYE installs a runtime monitor on
vulnerable DeFi projects to detect potential attacks on the fly.
Specifically, an end-to-end economic analysis is executed to
report malicious transactions based on given heuristics, e.g.,
a large amount of profits are made in a very short time. We
further applied BLOCKEYE in several popular DeFi projects
on Ethereum and managed to uncover potential attacks which
were previously unreported.

II. ATTACK DETECTION FOR DEFI

A. Overview

The general workflow of BLOCKEYE is shown in Figure
2. Specifically, BLOCKEYE works in a two-phase manner. In
the first phase, BLOCKEYE performs symbolic analysis on
smart contracts of a given DeFi project. This is realized by
extending an underlying smart contract analyzer SERAPH [6],
which is also developed by our team. Specifically, the goal of
this phase is to model the inter-DeFi oracle dependency, i.e.,
how does the oracle data provided by one DeFi affect services
of another. In cases where oracle-dependent state updates
are found, we identify the DeFi as potentially vulnerable.
Next, BLOCKEYE installs a runtime monitor in the second
phase for vulnerable DeFi projects to detect external attacks.
Specifically, BLOCKEYE uses a transaction monitor to collect

related transactions based on extracted features, e.g., address.
Then, end-to-end transactions are analyzed according to pre-
defined heuristics, e.g., a large profit is made in a short period.
Potential attacks are flagged by BLOCKEYE when an abnormal
sequence of transactions is detected. Moreover, BLOCKEYE
generates analysis report to help blockchain service providers
diagnose the found problems.

B. Oracle Analysis

As aforementioned, BLOCKEYE performs oracle analysis
to check whether a DeFi is dependent on the oracle provided
by another DeFi. Particularly, we focused on the price feed of
assets shared through oracles.

1 function calculateContinuousMintReturn(uint _amount)
2 public view returns (uint mintAmount) {
3 return CURVE.calculatePurchaseReturn(totalSupply(),
4 reserveBalance, uint32(reserveRatio), _amount);
5 }
6
7 function sell(uint _amount, uint _min) external
8 returns (uint _bought) {
9 _bought = _sell(_amount);

10 require(_bought >= _min, "slippage");
11 _burn(msg.sender, _amount);
12 DAI.transfer(msg.sender, _bought);
13 ...
14 }

Fig. 3: Oracle in the EMN project

An illustrative example of EMN project is given in Figure 3.
Specifically, the function call at line 9 implicitly invokes the
function from line 1–5, which receives an oracle at line 3–4.
Moreover, the payment at line 12 is dependent on the oracle
due to a data flow from line 9 to 12. That said, EMN has an
oracle-dependent state update in its smart contracts. To enable
such oracle analysis, BLOCKEYE extended the SERAPH smart
contract analyzer to perform symbolic reasoning on oracles.
Specifically, when processing a CALL instruction to a specified
oracle, BLOCKEYE starts a data flow analysis to track whether
the value retrieved from the oracle is linked to a further state
operation, e.g., payment, storage update etc.. In cases where a

feasible link is detected as in Figure 3, BLOCKEYE dumps the
data flow and identifies given DeFi as potentially vulnerable.

C. Automatic Attack Monitoring

For vulnerable DeFi projects, BLOCKEYE launches a run-
time transaction monitoring to detect external attacks. To this
end, BLOCKEYE allows users to specify targeted projects and
further performs end-to-end analysis on relevant transactions.
In general, the analysis aims at finding violations on invariant
as predefined heuristic rules.

Specifically, as in Figure 1 with associated DeFi projects
Uniswap, Synthetix and Kyber, BLOCKEYE first marks a
random transaction t0 in these platforms as a target. Moreover,
we search for other related transactions t1 · · · tk based on the
sender address x in t0. Additionally, we filter transactions
which are not in the same block as t0 in order to find frequent
transactions, which are more likely to be involved in attacks.
With the collection of t0 · · · tk transactions, BLOCKEYE runs
a process to calculate the benefits received by x and its
cost as well. With both numbers, BLOCKEYE is then able to
determine whether x is attacking the target DeFi by comparing
the profit made by x and a threshold value as configured.
BLOCKEYE will also dumps the malicious sequence of trans-
actions to facilitate an in-depth analysis of the potential attack.

III. DESIGN OF BLOCKEYE

A. Architecture

The BLOCKEYE is implemented as a web platform with
front and back-end services, where the back-end architecture
is shown in Figure 4. There are five functional modules in
this architecture. At the bottom, BLOCKEYE extends a smart
contract analyzer to perform oracle analysis as introduced
earlier. Z3 [7] is adopted as the SMT solver in this module.

Tx Monitor

Eventum Framework

Features

Z3 LibraryExtended Smart Contract Oracle Analyzer

EtherScan API
• get_transactions
• get_blocks
• get_logs

…

DeFi API
• get_price
• get_pairs

…

Twilio Library

Configuration

Block

Txs

Analysis Engine

Engine Core

Heuristics Analysis

…Time

Task Manager

Schedule Notify

Fig. 4: The general architecture of BLOCKEYE.

In the middle are Tx Monitor and Analysis Engine. Transac-
tions are monitored and collected via the Eventum framework,
which streams events from blockchain to BLOCKEYE. More-
over, we implemented the analysis engine to detect potential
attacks based on collected transactions and events. At the
top layer, BLOCKEYE provides a Configuration module to
allow users to specify detection criteria, e.g., in physical time
or block number. Furthermore, the Task Manager module is
designed to schedule detection tasks submitted from front-end
and send back notifications to users with the Twillo library.

B. Main Functionalities

We now describe the input and output interfaces of
BLOCKEYE with screenshots shown in Figure 5 and Figure 6.

Fig. 5: The input interface for BLOCKEYE.

As in Figure 5, BLOCKEYE expects DeFi smart contract
source code as input. Users can either type in code in the
code editor, or provide the address of a deployed DeFi project.
BLOCKEYE then will try to load corresponding source code
using Etherscan’s source code retrieving API. Once smart
contract code is available, users are free to click the START
button to launch security analysis on the given DeFi project.

Fig. 6: The output interface for BLOCKEYE.

An example output of BLOCKEYE is in Figure 6. Here, re-
sults are divided into two parts: Oracle Analysis, which shows
potential oracle dependencies found in DeFi source code, and
Attack Monitoring, that provides information of real-world at-
tack transactions which break heuristic invariants as described
in Section II-C. For example, in Figure 6, BLOCKEYE has
found an oracle dependency which spans across four smart
contract functions, with oracle contract defined in code line
154 and fired by function calculateContinuousBurnReturn

in line 168. Corresponding state access operation is in line 242
as a request to transfer DAI with dependent amount of value.
Besides, in Figure 6, BLOCKEYE shows a list of five latest
suspicious transactions, each with detailed information on its

internal operation. At last, BLOCKEYE also presents a graph
of top attackers along with their number of detected attack
transactions, which may help users in further investigations.

IV. PRELIMINARY EVALUATION

We conducted a preliminary evaluation on BLOCKEYE to
validate its effectiveness in finding oracle-dependent state
updates. Specifically, we considered eight DeFi projects on
Ethereum, i.e., bZx, DDEX, Aave, dYdX, Compound, Nuo,
Oasis, and Eminence.

In Table I, we present a comparison of BLOCKEYE with
Codefi Inspect [8] in oracle-dependent state update detection.
The results show that BLOCKEYE successively identifies all
vulnerable DeFis with no false positive or false negative
alert. Whereas, Codefi Inspect falsely ignores vulnerabilities
in DDEX, leading to a false negative (FN) result.

TABLE I: A comparison of BLOCKEYE and Codefi Inspect
in oracle-dependent state update detection. TP: True Positive;
TN: True Negative; FN: False Negative; N/A: Not Available.

DeFi Codefi Inspect BLOCKEYE

bZx TP TP
DDEX FN TP
Aave TN TN
dYdX TN TN

Compound TN TN
Nuo N/A TN
Oasis N/A TN

Eminence N/A TP

We further evaluated BLOCKEYE with real-world transac-
tions on the Ethereum mainnet. In Table II, we show detailed
results of detected arbitrage transactions in two DeFis, i.e.,
ETH/sUSD token pair on bZx and DAI/EMN on Eminence.

TABLE II: Detailed results of BLOCKEYE with two DeFis.

DeFi bZx(ETH/sUSD) Eminence(DAI/EMN)

Block 10799704 ∼ 10950575 10956504 ∼ 11031087
Tx ≈ 7138 ≈ 1486

Suspicious Tx
slippage > 0.05 25 slippage > 0.05 124
slippage > 0.07 23 slippage > 0.057 107
slippage > 0.1 19 slippage > 0.059 37

For example, as for bZx (ETH/sUSD), there were around
7, 138 valid transactions detected between block 10, 799, 704
and 10, 950, 575. By enforcing different slippage thresholds,
BLOCKEYE found 19 to 25 suspicious arbitrage transactions,
e.g., 19 for slippage threshold 0.1 and 25 for slippage threshold
0.05. Besides, for Eminence(DAI/EMN), the number of suspi-
cious transactions found ranged from 37 to 124 with different
slippage thresholds, where overall valid transactions detected
were 1, 486 between block 10, 956, 504 and 11, 031, 087.

V. RELATED WORK

Security problems of smart contracts have been widely
discussed in recent years [4], [5], [3], [2], [6]. Luu et al.
highlighted four types of vulnerabilities for smart contracts [2].
Tsankov et al. proposed a verification technique [3], which
transforms Ethereum smart contracts into Datalog logics [9].

Permenev et al. further presented their solution to verify smart
contracts in an inductive manner [10]. In addition to security
problems, Liu et al. proposed a statistical approach to identify
potential code smells [5]. Security of DeFi projects is relatively
less discussed in previous works. Several mathematical and
economic models were proposed to help understand risks of
DeFi in a theoretical manner [11], [12], [13], [14].

VI. CONCLUSION

In this paper, we highlighted BLOCKEYE as an open
platform to detect DeFi attacks on blockchain. Compared
to existing analyzers for smart contracts, BLOCKEYE pro-
vides important capabilities to model dependency among DeFi
projects and flag potential end-to-end attacks at real-time. The
key insights behind BLOCKEYE are symbolic oracle analysis
and pattern-based runtime transaction validation. We applied
BLOCKEYE in several popular DeFi projects on Ethereum and
managed to find potential attacks previously unreported.

VII. DATA AVAILABILITY STATEMENT

For ethical considerations, experimental data used in our
work will be publicly available after discussions with the
relevant DeFi development team.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[3] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” arXiv preprint
arXiv:1806.01143, 2018.

[4] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in ICSE (Companion).
ACM, 2018, pp. 65–68.

[5] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in ASE.
ACM, 2018, pp. 814–819.

[6] Z. Yang, H. Liu, Y. Li, H. Zheng, L. Wang, and B. Chen, “Seraph:
enabling cross-platform security analysis for evm and wasm smart con-
tracts,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: Companion Proceedings, 2020, pp. 21–24.

[7] “Microsoft z3 smt solver,” https://z3.codeplex.com/, 2019.
[8] “Codefi inspect,” https://inspect.codefi.network/, 2020.
[9] T. Eiter, G. Gottlob, and H. Mannila, “Disjunctive datalog,” ACM

Transactions on Database Systems (TODS), vol. 22, no. 3, pp. 364–418,
1997.

[10] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” Security and
Privacy, vol. 2020, 2019.

[11] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the
defi ecosystem with flash loans for fun and profit,” arXiv preprint
arXiv:2003.03810, 2020.

[12] J. Kamps and B. Kleinberg, “To the moon: defining and detecting
cryptocurrency pump-and-dumps,” Crime Science, vol. 7, no. 1, p. 18,
2018.

[13] B. Liu and P. Szalachowski, “A first look into defi oracles,” arXiv
preprint arXiv:2005.04377, 2020.

[14] L. Gudgeon, D. Perez, D. Harz, A. Gervais, and B. Livshits,
“The decentralized financial crisis: Attacking defi,” arXiv preprint
arXiv:2002.08099, 2020.

https://z3.codeplex.com/
https://inspect.codefi.network/

	I Introduction
	II Attack Detection For DeFi
	II-A Overview
	II-B Oracle Analysis
	II-C Automatic Attack Monitoring

	III Design of BlockEye
	III-A Architecture
	III-B Main Functionalities

	IV Preliminary Evaluation
	V Related Work
	VI Conclusion
	VII Data Availability Statement
	References

