
HAL Id: hal-03157158
https://inria.hal.science/hal-03157158

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

R-MOZART: A Reconfiguration Tool for WebThings
Applications

Francisco Durán, Ajay Krishna, Michel Le Pallec, Radu Mateescu, Gwen
Salaün

To cite this version:
Francisco Durán, Ajay Krishna, Michel Le Pallec, Radu Mateescu, Gwen Salaün. R-MOZART: A
Reconfiguration Tool for WebThings Applications. 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion), May 2021, Madrid / Virtual,
Spain. pp.41-44, �10.1109/ICSE-Companion52605.2021.00031�. �hal-03157158�

https://inria.hal.science/hal-03157158
https://hal.archives-ouvertes.fr


R-MOZART: A Reconfiguration Tool for
WebThings Applications

Francisco Durán∗, Ajay Krishna†, Michel Le Pallec‡, Radu Mateescu† and Gwen Salaün§
∗ITIS Software, University of Málaga, Spain

†Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG 38000 Grenoble, France
‡Nokia Bell Labs 91620 Nozay, France

§Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG 38000 Grenoble, France

Abstract—The Internet of Things (IoT) is a network of physical
devices and software entities that interact together for fulfilling
an overall objective and thus providing added-value services.
Designing such applications by selecting a set of candidate objects
and defining how they interact with one another is a difficult and
error-prone task. Moreover, IoT applications are not monolithic
applications built once and for all. In contrast, they are constantly
modified due to removal, replacement, or addition of new objects
during the application’s lifetime. In this paper, we present a tool
built on top of the WebThings platform, which supports users
when they want to dynamically change a running WebThings
application. To do so, R-MOZART provides three components
for (i) designing the new application using a user-friendly UI,
(ii) verifying that this new application respects some consistency
properties with respect to the current application, and (iii) de-
ploying this new application in an automated manner. This tool
was applied on several smart home applications for evaluation
purposes. Video URL: https://youtu.be/bG4oiQUrWSQ

I. INTRODUCTION

The Internet of Things (IoT) is a network of physical
devices and software entities that interact together for fulfilling
an overall objective and thus provide added-value services.
Designing IoT applications by selecting a set of candidate
objects and defining how they interact with one another is a
difficult and error-prone task. Moreover, IoT applications are
not monolithic applications built once and for all. Contrarily,
they are constantly modified due to removal, replacement, or
addition of new objects during the application lifetime. The
reconfiguration of the application must be taken into account
in the overall design process. Tool support is also required
when dynamically reconfiguring IoT applications to simplify
this task for end-users.

Several frameworks, such as IFTTT, Zapier and WebThings,
promote to build IoT applications by using “if event(s) then
action(s)” rules, i.e., if an event is raised, then an action is
triggered. In this paper, IoT applications are described by
using a composition language built on top of such rules,
which provides basic constructs such as the sequence of rules,
the choice between several rules, the concurrent execution
of several rules, or the repetition of rules. Given such a
composition expression, we can rely on an execution platform,
such as WebThings, in order to deploy and effectively run the
application according to the composition expression defining
how objects involved in the application are supposed to interact
with one another.

In this paper, we present a tool called R-MOZART, which
supports the reconfiguration of IoT applications described
using composition expressions. R-MOZART is an extension
of MOZART [1] and of the WebThings (formerly Mozilla
WebThings) platform [2]. More precisely, R-MOZART im-
plements three new components for supporting the reconfigu-
ration process: a dedicated UI, a verification component, and a
deployment manager. At the design level, a new UI allows the
user to model the new application, starting from the current
one, and adding / removing objects or rules. Once the new
application is described, a verification component is called to
check whether the reconfiguration properties are satisfied. One
of the reconfiguration properties (called seamless) determines
if the current state of each remaining object (an object present
in the current and in the new application) is reachable in the
new application. If this is the case, it means that replacing the
current application by the new application can be achieved
transparently from the user’s perspective. These properties
are checked using an encoding of the applications and of
the properties into Maude’s rewriting logic [3], and using
Maude’s tools to verify them. Once the reconfiguration has
been validated, a deployment manager takes care of the
replacement of the current application by the new one, while
preserving the consistency of the remaining objects. Note that
the only step of our approach requiring human intervention is
the design of the new version of the application. The two other
steps (verification and deployment) are fully automated by
dedicated tools we have implemented and validated on several
smart home applications.

The rest of this paper is organised as follows. Section II
introduces models of IoT applications. Section III describes
the R-MOZART functionalities to support the design of new
applications, the verification of reconfiguration properties, and
the application deployment. Section IV presents the evaluation
of the tool. Section V surveys related work. Section VI
concludes the paper.

II. MODELS

An IoT application consists of a set of IoT objects or
things interacting all together to fulfil a certain overall goal. In
this work, although inspired by the web of things description
model [4], we prefer to rely on an abstract model for represent-
ing objects. Since the events / actions involved in an object

1



are executed in a specific order, we describe the behaviour
of the objects using a Labelled Transition System (LTS). The
transition labels in this LTS are the events or actions associated
with the object and the system can move from a state to
another by performing an event or an action.

In R-MOZART, an IoT application is described by a set
of objects and a composition expression, which acts like an
orchestrator indicating how the involved objects interact. We
use a simple rule-based composition language for this purpose.
This language assumes “if event(s) then action(s)” rules as
basic elements. A rule is triggered when one or several events
are issued by specific objects and, as a reaction, one or several
actions are issued to other objects defined as target.

These rules can be composed to build more complex expres-
sions, using operators such as sequence, choice, concurrent
execution (parallel) or repetition (loop) of rules.

Let us now explain how an IoT application, consisting
of a set of objects and a composition expression, executes.
The communication model being asynchronous, each object is
equipped with an input message buffer (FIFO). The composi-
tion expression and all objects start their execution from their
initial states. Then, an application can evolve in two ways:
execution of a rule or buffer consumption. In the first case, let
us assume a basic rule with one event and one action. If the
event appearing in the left part of the rule has been issued,
the rule can be triggered and the action appearing in the right
part of the rule is pushed to the corresponding object’s buffer.
In the second case, if there is something in its input buffer,
one object can individually consume from its buffer according
to its LTS model. A global state consists of the current state
of all objects involved in the application and of the progress
state of the composition expression.

III. TOOL SUPPORT FOR RECONFIGURATION

This section first introduces the WebThings platform, and
then presents the three components supporting reconfiguration
in terms of UI, verification and deployment.

A. WebThings

WebThings [2] is a platform for monitoring and controlling
devices over the web. It is based on Thing Description (TD).
A TD describes the state attributes of an object that can be
modified by interacting with the object. In our work, we use
the WebThings platform because it is simple to use and extend.
The Things UI component in WebThings allows users to build
IoT automation in the form of “If event(s) then action(s)”
Event-Condition-Action (ECA) rules. It also provides web
APIs for monitoring and controlling IoT objects. Many of
the popular objects are already supported by the platform and
more objects are constantly being added.

MOZART [1] is a tool built on top of WebThings to
support the design and deployment of complex applications.
In addition to individual ECA rules, it allows users to com-
pose these rules using the composition language described in
Section II. Composition of rules enables the design of more
expressive application scenarios. In this work, MOZART has

been extended to support end-to-end reconfiguration. The next
subsection presents the reconfiguration support in detail.

B. Reconfiguration Support

Support for reconfiguration requires the implementation of
three components. First, at the design level, graphical user
interfaces need to be available to specify changes to an
existing application. Once the changes are specified, another
component is required to verify that the new application
satisfies several properties. Finally, a third component is in
charge of the deployment of the new application.
User Interface. Initially, a first version of an IoT application
is running. When the user starts the reconfiguration process
by clicking on the corresponding button, a copy of the current
application appears in a new window. Then, (s)he can modify
this application by adding or removing objects or rules, and
also by changing the way in which the rules are composed.
The UI also provides several buttons to initiate the verification
or the deployment of the new application.
Verification. Once the redesign is finalised from a modelling
perspective, the user can compare the new application with
the current one to check the reconfiguration impact. Given
the current and new applications, and the global state of the
current application, the main reconfiguration property (called
seamless) determines if the given global state is reachable
for objects remaining in the new application. If this is the
case, it means that replacing the current application by the
new application can be achieved transparently from the user’s
perspective. We also define two additional properties called
conservative and impactful to check whether all former be-
haviours can still be executed in the new application, and
whether all new behaviours can be executed after the re-
configuration, respectively. These three properties focus on
the reconfiguration of an application given a global state.
Complementary to these properties, functional properties of
interest, like deadlock freeness, can be verified on the new
application. When checking these properties, a result indicates
whether they are satisfied or not. If they are satisfied, the user
can decide to proceed with the deployment. If they are not,
(s)he can revise the design or keep the application running as
it is.
Deployment. The deployment manager performs two tasks:
i) undeploy the removed objects while preserving the state
of the remaining objects; ii) set up and deploy the new
objects, and start the reconfigured application. First, current
states of all objects are stored in a database along with the
execution history of the application. This is followed by the
disabling of rules. Then, rules are replaced or new rules
are created depending on the reconfiguration. New rules are
created using the Rules UI, and when they are enabled, event
listeners associated to the events in these rules are created.
Similarly, when the rules are disabled, their associated event
listeners are removed. Here, we say rules and not individual
objects because adding or removing objects is a modification
to a rule, as objects are part of an event or an action. In
other words, adding an object means including the object

2



in a rule, from the available pool of objects, and removing
an object implies that it is no longer used in a rule. Now,
these rules need to be deployed for the application to run.
Deployment resumes the application from the state where it
was before initiating the reconfiguration. Remaining objects
maintain their previous states. As for newly added objects, we
simulate the execution trace of the current application on the
new composition expression. As a result, we obtain the states
from where the new objects have to start when deploying the
new application. Newly added rules are initialised in disabled
states. As a last step, we use the execution history of the
current application to compute the progress state from where
the new composition expression should start, which allows
us to determine the set of rules to be enabled. From here,
the execution engine takes care of running the application.
It follows the composition expression semantics by enabling
or disabling relevant subsets of rules as the execution of the
expression progresses.
Implementation Stack. The reconfiguration UI is built on top
of the Things UI powered by Node.js. Users can drag and drop
rules and composition operators to modify the composition.
The reconfiguration check is achieved by transforming the cur-
rent and new compositions, specified in JSON, to a Maude [3]
specification using Java/SpringBoot and Freemarker libraries.
Current states of the objects are collected using the monitoring
APIs provided by the Things API and stored in an SQLite
database. The state of the composition expression is updated
by manipulating the event listeners. During deployment, new
objects are moved to appropriate states using the control APIs
that allow to set object states (e.g., switch on the lamp or
change its colour to red).

Figure 1 gives a glimpse of our tool for reconfiguration.
On the left of the figure, we can see the available rules and
composition operators in the redesign screen. The top of the
figure shows the reconfiguration scenario with the current and
the new application. In the middle, the response from the
analysis can be seen. Options for verification and deployment
are shown on the right. The available devices are shown on
the bottom of the screenshot.

IV. EVALUATION

The tool has been tested to evaluate the usability, perfor-
mance and correctness of the approach.

Setup. R-MOZART was hosted on a local machine (PC)
and on a Raspberry Pi 3, connected to a private wireless
network. Then, we added a set of connected devices which
included Philips Hue lights, Hue motion sensors, Hue Play
lights, connected thermometer, and connected speakers. As the
devices were on the same network, they were easily discovered
and added to the monitoring interface of the WebThings UI.

Usability. The tool provides an interface based on the
WebThings UI elements for reconfiguration, analysis, deploy-
ment of reconfigured applications. Six users (age range 23-45)
with varying programming skills (none to expert) were given
a short training (∼ten minutes) on the usage of the tool and
its features. Then, they were given a description in natural

language about the reconfiguration of two existing applica-
tions having four and five rules in them. The IoT devices
required for the new application were already connected to
the WebThings platform. Users had to create new rules and
update the composition expression. All the users were able
to complete the given tasks in under ten minutes (time-based
efficiency of 0.24 goals/min) (Figure 2).

Finally, the users were asked a Single Ease Question (SEQ)
at the end of the tasks in a 7-point Likert Scale and the
users found the interfaces intuitive (average SEQ score: 5.83).
Beyond usability, users found the notion of conservative and
impactful useful and the utility of seamless reconfiguration
was evident for them when we explained the reconfiguration
scenarios.

Performance. The time taken to transform the new compo-
sition to Maude encoding and to perform the formal analysis
for different applications was always in hundreds of millisec-
onds as the analysis syntactically compares the traces from the
global state. Moreover, the objects involved in IoT applications
are simple and the number of objects is usually not very
high, explaining why the results are almost instantaneous.
The readers can find online [5] several applications and the
corresponding generated Maude code for verifying properties.

Correctness. Once validated, applications were deployed
through the newly developed deployment manager. Reconfig-
uration is correct / seamless if after deployment of the new
application, each remaining object remains in its current state.
Upon deployment, we indeed observed that the applications
kept working smoothly without any change of state for the
remaining objects.

V. RELATED WORK

There are several tools available for end-users to design
and deploy IoT applications. IFTTT [6] relies on ECA rules
and provides a large repository of pre-defined ECA rules
called Applets. The Applets use single event triggers in the
ECA rules. Similarly, Node-RED [7] provides Recipes to
connect IoT devices visually. OpenHAB [8] is another home
automation software that can be programmed by advanced
users. It provides rule scripts in the form of WHEN something-
happens THEN do-something and it allows logical disjunction
of multiple triggers in the rules, if-else expressions, for loops,
etc. webCoRE [9] is another programmable rule engine to
build advanced automation. Samsung SmartThings and Apple
Workflow provide automation support in the form of routines.
Finally, WebThings in its current form supports rules with
multiple triggers and actions. In all these tools, rules are
executed in parallel and there is no support for composition
of rules. Further, there are no mechanisms to support the re-
configuration of IoT applications ensuring specific properties.

Seamless reconfiguration is not a new notion and was
used in several works focusing on dynamic reconfiguration,
e.g., [10], [11]. As an example, [11] presents a flexible
approach to seamless reconfiguration of Entreprise JavaBeans
applications. This work provides generic and reusable proce-
dures for automatically supporting reconfiguration tasks. The

3



Fig. 1. Screenshots of the reconfiguration tool

Fig. 2. Task completion time

role of the administrator is reduced to selecting an appropriate
strategy and creating a reconfiguration plan that configures
a generic procedure for a concrete reconfiguration. Our goal
here is to propose a tool providing formal guarantees before
triggering the reconfiguration process. Our work presents
seamless reconfiguration in the context of the IoT and we also
propose two new properties (impactful and conservative).

The approach presented in [12] proposes to extend semantic
application descriptions (called recipes) with constraints to
enable dynamic and automatic reconfiguration of IoT applica-
tions. Using recipes, dynamic choreographies can be created
that self-adapt to changing device states without human inter-
vention. [13] introduces the OpenPnP reference architecture,
which allows a significant reduction of configuration and
integration efforts during industrial plant commissioning. The
OpenPnP architecture reduces configuration and installation
time by up to 90 percent, while scaling to IIoT systems with
many nodes. OpenPnP also provides concepts for replacing
malfunctioning devices. In our work, we propose analysis
techniques for reasoning on the behaviour of the application
before deciding actual reconfiguration, and a solution to deploy
this new application on the WebThings platform.

VI. CONCLUDING REMARKS

In this paper, we have presented R-MOZART, an extension
of WebThings and MOZART to support the reconfiguration
(design, verification, deployment) of WebThings applications

modelled using compositions of ECA rules. The main per-
spective of this paper is to extend this work with quantitative
analysis results in order to check if the reconfiguration also
preserves quality-of-service properties.

VII. DATA AVAILABILITY

The code related to the tool is available at
https://zenodo.org/badge/latestdoi/312541691.

REFERENCES

[1] A. Krishna, M. L. Pallec, A. Martinez, R. Mateescu, and G. Salaün,
“Mozart: Design and deployment of advanced iot applications,” in
Companion Proceedings of the Web Conference 2020, ser. WWW ’20.
New York, NY, USA: ACM, 2020, p. 163–166.

[2] WebThings, “WebThings Open Platform,” 2021. [Online]. Available:
https://webthings.io/

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. L. Talcott, Eds., All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, ser. LNCS. Springer, 2007, vol. 4350.

[4] W3C, “Web of Things at W3C,” 2020. [Online]. Available:
https://www.w3.org/WoT/

[5] F. Durán, A. Krishna, M. L. Pallec, R. Mateescu, and G. Salaün, “R-
MOZART: A Reconfiguration Tool for WebThings Applications (Online
Code),” https://github.com/ajaykrishna/rmozart/tree/main/maude, Febru-
ary 2021.

[6] IFTTT, “Do more with the things you love,” 2020. [Online]. Available:
https://ifttt.com/

[7] JS Foundation. (2020) Node-red: Flow-based programming for the IoT.
[Online]. Available: https://nodered.org/

[8] openHAB. (2020) openHAB: Empowering the smart home. [Online].
Available: https://www.openhab.org/

[9] webCoRE. (2018) webcore: The web community’s own rule engine.
[Online]. Available: https://wiki.webcore.co/webCoRE

[10] L. Rosa, L. E. T. Rodrigues, and A. Lopes, “A Framework to Support
Multiple Reconfiguration Strategies,” in Proc. of Autonomics 2007, ser.
ACM International Conference Proceeding Series, vol. 302. ACM,
2007, p. 15.

[11] T. Vogel, J. Bruhn, and G. Wirtz, “Autonomous Reconfiguration Proce-
dures for EJB-based Enterprise Applications,” in Proc. of SEKE’2008.
Knowledge Systems Institute Graduate School, 2008, pp. 48–53.

[12] J. Seeger, R. A. Deshmukh, V. Sarafov, and A. Bröring, “Dynamic IoT
Choreographies,” IEEE Pervasive Computing, vol. 18, no. 1, pp. 19–27,
2019.

[13] H. Koziolek, A. Burger, M. Platenius-Mohr, J. Rückert, and
G. Stomberg, “OpenPnP: A Plug-and-produce Architecture for the
Industrial Internet of Things,” in Proc. of ICSE’19. IEEE / ACM,
2019, pp. 131–140.

4


