
Efficient Fuzz Testing for Apache Spark
Using Framework Abstraction

Qian Zhang
University of California, Los Angeles

Jiyuan Wang
University of California, Los Angeles

Muhammad Ali Gulzar
Virginia Tech

Rohan Padhye
Carnegie Mellon University

Miryung Kim
University of California, Los Angeles

Abstract—The emerging data-intensive applications are in-
creasingly dependent on data-intensive scalable computing
(DISC) systems, such as Apache Spark, to process large data.
Despite their popularity, DISC applications are hard to test.
In recent years, fuzz testing has been remarkably successful;
however, it is nontrivial to apply such traditional fuzzing to big
data analytics directly because: (1) the long latency of DISC sys-
tems prohibits the applicability of fuzzing, and (2) conventional
branch coverage is unlikely to identify application logic from
the DISC framework implementation. We devise a novel fuzz
testing tool called BIGFUZZ that automatically generates concrete
data for an input Apache Spark program. The key essence of
our approach is that we abstract the dataflow behavior of the
DISC framework with executable specifications and we design
schema-aware mutations based on common error types in DISC
applications. Our experiments show that compared to random
fuzzing, BIGFUZZ is able to speed up the fuzzing time by 1477X,
improves application code coverage by 271%, and achieves 157%
improvement in detecting application errors. The demonstra-
tion video of BIGFUZZ is available at \footnotesizehttps://www.
youtube.com/watch?v=YvYQISILQHs&feature=youtu.be.

Index Terms—fuzz testing, dataflow programs, data intensive
scalable computing, executable specifications

I. INTRODUCTION

The importance of emerging data-intensive applications
continues to grow at an increasing rate. Data-intensive scalable
computing (DISC) systems, such as Google’s MapReduce [1],
Apache Hadoop [2], and Apache Spark [3], enable processing
massive data sets by providing distributed, parallel versions
of dataflow operator (e.g., map, reduce, join, etc.) im-
plementations with application logic expressed in terms of
user-defined functions (UDFs). Although DISC systems are
becoming widely available to the industry, DISC applications
are hard to test. The standard practice for testing such DISC
applications today is to select a subset of inputs based on the
developers’ hunch with the hope that it will reveal possible
defects. Not surprisingly, these applications are thus not tested
thoroughly and may not be robust to bugs and failures in the
production setting.

In recent years, fuzz testing has emerged as an effective
technique for testing software systems [4], [5]. The effective-
ness of such fuzzing techniques is based on two inherent yet
oversight assumptions: (1) it takes a minuscule amount of time
in the order of milliseconds to execute the target application,
and (2) a set of arbitrary input mutations is likely to yield

meaningful inputs. However, our extensive experience with
DISC applications suggests that neither of the two assumptions
holds for big data analytics.

We devise a new coverage-guided, mutation-based fuzz
testing approach for big data analytics called BIGFUZZ. The
key insight behind BIGFUZZ is that fuzz testing of DISC
applications can be made tractable by abstracting framework
code and analyzing application logic in tandem. BIGFUZZ first
transforms a DISC application to a semantically equivalent,
yet a framework-independent program that is more amenable
to fuzzing to mitigate the long latency. It then uses a two-
level instrumentation method to monitor control flow coverage
of UDFs, while modeling the different outcomes of dataflow
operations (i.e., dataflow equivalence classes). We call such a
combination of behavior modeling as Joint Dataflow and UDF
coverage (JDU coverage). During fuzzing, it uses schema-
aware mutation operations guided by real-world error types
to increase the chance of creating meaningful inputs that map
to real-world errors.

The main contribution of BIGFUZZ is that we made tradi-
tional fuzzing feasible for big data analytics by abstracting
the dataflow behavior of the DISC framework with executable
specifications. Additionally, BIGFUZZ, to our knowledge, is the
first fuzzing tool that uses mutations are specifically designed
to reveal real-world DISC errors. In our experiments, BIGFUZZ

with framework abstraction can speed up the fuzzing time
by 78 to 1477X compared to random fuzzing. Schema-aware
mutation operations can improve application code coverage
by 20 to 200% with valid inputs as seeds, which leads to 33
to 100% improvement in detecting application errors, when
compared to naive random fuzzing. Even without valid input
seeds, BIGFUZZ improves application code coverage by 118 to
271% and error detection by 58 to 157%, demonstrating its
robustness.

The full technical paper on this approach appeared at ASE
2020 [6] and this paper describes BIGFUZZ’s user interfaces
and internal implementation with a focus on tool demonstra-
tion. BIGFUZZ is a Java-based command line tool for testing
Scala/Java Spark applications and can be easily generalized to
other DISC frameworks such as Hadoop MapReduce [1]. We
provide access to artifacts of BIGFUZZ at https://github.com/
qianzhanghk/BigFuzz.

ar
X

iv
:2

10
3.

05
11

8v
1

 [
cs

.S
E

]
 8

 M
ar

 2
02

1

Spark Program Bytecode

Framework Abstraction:
Automated S2S Transformation

with Specification

Instrumentation:
Joint Dataflow and UDF Coverage

Fuzzing Loop:
Error Type Guided Mutation for

Data Analytics

...

ArrayList<Map1> results1 =LoanSpec.map1

(inputs);

ArrayList<Map1> results2 =LoanSpec.filter2

(results1)

...

public ArrayList<Map1>

map1(ArrayList<String> input){

ArrayList<Map1> output = new ArrayList<>();

for (String item: input){

output.add(Map1.apply(item));}

return output;}

...
val locations =
sc.textFile("zipcode.csv")
 .map{s =>
 val cols = s.split(",")
 (cols(0), cols(1) }
 .filter{s => s._2 == "New York"}
...

(b) Extracted UDF from .map{...}
 is represented as Map1.java

Step 1: UDF Extraction Step 2: S2S Transformation

(a) Original Spark Code

(d) Specification implementation of map
operator

public class Map1 {

static final Map1 apply(String line2)

{

String cols[]=line2.split(",");

return new Map1(cols[0],cols[1]);

}

(c) Transformed program with executable
specifications

Fig. 1: An Overview of BIGFUZZ’s Approach with Framework abstraction

II. TECHNICAL APPROACH

We describe BIGFUZZ’s main technical contributions below.
The detailed explanation is described in our full paper [6].
BIGFUZZ takes in an Apache Spark program written in Scala
or Java and an input schema, and it automatically generates
concrete data for effective and efficient testing. Figure 1
illustrates the three novel parts in BIGFUZZ.

A. Framework Abstraction

BIGFUZZ maps each dataflow operator’s implementation to
a corresponding simplified yet semantically-equivalent imple-
mentation, which we call executable specifications. Such spec-
ifications help eliminate the dependency on the framework’s
code, transforming a DISC application into an equivalent,
simplified Java program that can be invoked numerous times in
a fuzzing loop. BIGFUZZ automates this process in two steps:
UDF Extraction and Source-to-Source Transformation.

In the first step, BIGFUZZ decomposes the input Spark
program into a direct acyclic graph (DAG) of dataflow op-
erators and a list of corresponding UDFs. It decompiles the
bytecode of the original Spark program into Java source code
and traverses the Abstract Syntax Tree (AST) to extract each
UDF into a separate Java class, as shown in Figure 1b. It
then uses the extracted DAG and UDFs to reconstruct the
DISC application in the same interconnected dataflow order
using executable specifications. For example in Figure 1c,
map operator is followed by filter operator, emulating their
connection in Figure 1a. The dataflow spec implementation,
such as the spec of map operator in Figure 1d, takes in an
ArrayList object as input, applies the corresponding UDF on
each element of the input list, and returns an output ArrayList.

B. Coverage Guidance

To differentiate UDFs from framework code, BIGFUZZ de-
signs a two level instrumentation and monitoring method for
application specific coverage guidance. For dataflow operators,

it monitors at the level of equivalence classes by extending the
TraceEvent in JQF [7] to a specific DataFlowEvent. In
addition to an identifier, DataFlowEvent has an additional
Boolean or Integer variable to keep track of which subset
of equivalence classes is exercised by the corresponding
dataflow operator. For example, "FilterEvent(arm=1)"
for filter operator represents the non-terminating equiv-
alence class, where the filter predicate holds true and in-
dividual data records thus pass through the filter predicate.
"FilterEvent(arm=0)" indicates the other terminating
case, where the filter predicate holds false. For UDFs coverage,
BIGFUZZ uses a selective instrumentation scheme in ASM [8],
while ignoring all other dependent libraries. This combination
of monitoring dataflow equivalence coverage together with
control flow events in UDFs constitutes the JDU coverage,
which essentially represents the behavior of application logic.

C. Mutation

Instead of bit-level mutations, BIGFUZZ uses a user-
defined schema to perform record-level schema-aware muta-
tions—modifying data with respect to the structured data types
as well as value ranges. In the schema, a user can indicate the
number of columns, data type, and data distribution for each
column of the input data. Unlike random bit-level mutations
that produce unnatural inputs, each of the schema-aware
mutations mimics a real-world error type in DISC applications
that may lead to program crashes or failures at runtime. To
this extent, we extensively investigate DISC application errors
posted on popular Q/A forums and code repositories.

III. IMPLEMENTATION

BIGFUZZ is a Java-based command line tool that provides
efficient fuzz testing of DISC applications. BIGFUZZ is built
on top of JQF [7], a Java-based fuzz testing framework that
instruments Java bytecode on-the-fly as classes are loaded by
the JVM. BIGFUZZ requires a test driver to indicate the test

1 public ArrayList<Tuple3> filter1(ArrayList<Tuple3>
2 input){
3 ArrayList<Tuple3> ans = new ArrayList<>();
4 for(Tuple3 item: input){
5 if(Filter1.apply(item)) ans.add(item);}
6 int iid = LoanSpec.class.hashCode();
7 int arm = 0;
8 if(ans.isEmpty()==false) arm=1;

9 TraceLogger.get().emit(new FilterEvent

10 (iid,arm));

11 return ans;}

Fig. 2: Instrumented filter to emit dataflow equivalence
class coverage

class and test method. A test driver is a JUnit-style test class
with @RunWith(JQF.class) annotation on the test class
and @Fuzz annotation on the test method. A user can use the
following command line to invoke BIGFUZZ:

BigFuzz/bin/jqf-bigfuzz -c
.:$(BigFuzz/scripts/classpath.sh)
testclass testmethod <maxTrials>

Given an input Spark program, BIGFUZZ first reads its
bytecode and translates it to Java source code with Java
Decompiler (JAD) [9]. It parses the AST of the de-compiled
Java source code to search for a method invocation cor-
responding to each dataflow operator. The input arguments
of such method invocations represent the UDFs, which are
stored as separate Java classes. Next, based on the trans-
formed program, BIGFUZZ inserts code, for example, lines
6-10 in Figure 2, to each specification-based implementation
of dataflow operators to monitor which equivalence class is
activated, and it instruments the bytecode of the extracted UDF
classes only to collect exercised branches in current execution.
All DataflowEvents and TraceEvents are emitted to
a coverage logger. Then during fuzzing, BIGFUZZ will either
randomly mutate the seed input or randomly generate valid
inputs followed by mutating such inputs to increase cumulative
coverage.

IV. DEMONSTRATION

In this section, we present a step-by-step demonstration of
BIGFUZZ. Suppose Alice would like to investigate the average
income per age range in her district. She uses the entire income
survey database which contains the income information of
states and counties for over several years. A sample row in
this dataset is a string that contains the zipcode of employee,
the age, and the annual income amount of this employee
respectively (e.g., 90095,33,58000).

Alice writes a Spark application to perform this analysis, as
shown in Figure 3. She first uses a map operator to extract the
zipcode, the age, and the income amount from each row using
a UDF in line 4, and uses a filter operator to filter the data
rows based on if its zipcode is ”90024” in line 5. Next, Alice
uses another map operator to cluster the data into different
age groups. In lines 18-19, she aggregates all the income and
number of persons in each age group with a reduceByKey

1 val data = text.map {
2 s =>
3 val cols = s.split(",")
4 (cols(0), Integer.parseInt(cols(1)),

Integer.parseInt(cols(2)))
5 }.filter(s => s._1.equals("90024"))
6 val pair = data.map {
7 s =>
8 if (s._2 >= 40 & s._2 <= 65) {
9 ("40-65", s._3)

10 } else if (s._2 > 20 & s._2 < 40) {
11 ("20-39", s._3)
12 } else if (s._2 < 20){
13 ("0-19", s._3)
14 } else {
15 (">65", s._3)
16 }
17 }
18 val sum = pair.mapValues(x =>(x,1))
19 .reduceByKey((x, y) => (x._1 + y._1, x._2 + y._2))
20 .mapValues(x=>(x._2,x._1.toDouble/x._2.toDouble))
21 .foreach(println)

Fig. 3: Alice’s program that finds the average income per age
group in her district.

operator. In the end, Alice calculates the average income with
a mapValues operator in line 20.

To run BIGFUZZ on her program, she writes an input schema
shown in the following code snippet to describe her data.
number string[900xx],integer[0-120],integer[0-232]

This indicates that each input entry comprises of three
comma-separated columns: the first column must be a 5-bit
number string with prefix ”900”, the second column must be
an integer within the range [0-120], and the last column is
an integer within [0-232]. BIGFUZZ takes such input schema
through conf file and passes it to MutationGeneration
to automatically generate mutations that are tailored for this
schema.

As a first step, BIGFUZZ decomposes her program into six
Java classes representing the UDFs, each of which can be iden-
tified with the operator name followed by its execution order
(e.g.,, map1.java). Next, BIGFUZZ reconstructs her program
with these Java classes using the executable specifications and
automatically generates a test driver for her program. Alice
invokes BIGFUZZ by typing the following command:

BigFuzz/bin/jqf-bigfuzz -c
.:$(BigFuzz/scripts/classpath.sh)
IncomAggregationDriver IncomeAggregation

Alice can monitor the fuzzing process by observing the
console log and interrupts the execution by pressing ”Ctrl-
C”. BIGFUZZ does not require valid inputs as seeds. For each
iteration, BIGFUZZ produces a new input with several data
rows by either randomly mutating the seed inputs or randomly
generating valid inputs. Such new input will be saved to a
separate csv file if it detects a unique crash or a new JDU
branch.

Alice uses the generated test data 90024,20,10900 as
input for unit testing. This input represents the income for
a 20-year old person; however, the test output classifies it to

(>65). Alice investigates her code and identifies an error
where a ≥ is misused by > in line 10 of Figure 3). BIGFUZZ

also generates inputs such as non-numeric strings or non-
integer numbers to reveal critical runtime crashes in line 3 of
Figure 2. Alice inserts relevant exception handling and data
filter to eliminate such corner cases.

V. RELATED WORK

Testing DISC Applications. Gulzar et al. model the semantics
of these operators in first-order logical specifications alongside
the symbolic representation of UDFs [10] and generate a test
suite to reveal faults. Prior DISC testing approaches either
do not model the UDF or model the specifications of dataflow
operators partially [11], [12]. Li et al. propose a combinatorial
testing approach that automatically extracts input domain in-
formation from schema and bounds the scope of possible input
combinations [13]. However, all these symbolic executions use
a heuristic (loop iteration bound K) during path exploration,
which may lead to false negatives, and they are also limited
in applicability due to their symbolic execution scope.
Fuzz Testing. Fuzz testing mutates the seed inputs through a
fuzzer to maximize a specific guidance metric, such as branch
coverage, and find crashes in programs and frameworks. Fuzz
testing has been shown to be highly effective in revealing
a diverse set of bugs, including correctness bugs [4], [14],
security vulnerabilities [15], [16], and performance bugs [17].
For example, AFL [4] mutates a seed input to discover previ-
ously unseen coverage profiles. MemLock [17] employs both
coverage and memory consumption metrics to find abnormal
memory behavior.

Instead of flipping several bits/bytes in each mutation,
[18] has investigated specific mutations for web browsers.
BIGFUZZ, along with our full technical paper [6], designs
mutations based on an empirical study of Apache Spark appli-
cation errors reported in StackOverflow and Github. To speed
up test execution while fuzzing, UnTracer [19] dynamically
strips out code-coverage instrumentation for lines of code
that have already been covered. For DISC applications, the
overhead is not due to instrumentation but indeed due to
the extensive framework code. BIGFUZZ is the first fuzzing
tool that transforms the target application by simplifying
framework logic.

VI. CONCLUSION

To adapt fuzzing to DISC applications with long latency,
we propose BIGFUZZ that leverages (1) dataflow abstraction
using source-to-source transformation, (2) tandem monitoring
of equivalence-class based dataflow coverage with control
flow coverage in user-defined functions, and (3) schema-aware
mutations that reflect real world error types. BIGFUZZ achieves
up to 1477X speed-up compared to random fuzzing, improves
application code coverage by up to 271%, leading to up to
157% improvement in detecting application errors.

VII. ACKNOWLEDGMENT

The participants of this research are in part supported
by NSF grants CHS-1956322 CCF-1764077, CCF-1723773,
ONR grant N00014-18-1-2037, and Intel CAPA grant.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation - Volume 6, OSDI’04,
USENIX Association, 2004.

[2] https://hadoop.apache.org/, 2020.
[3] https://spark.apache.org/, 2020.
[4] “American fuzz loop.” http://lcamtuf.coredump.cx/afl/, 2020.
[5] V. Manes, H. Han, C. Han, s. cha, M. Egele, E. Schwartz, and

M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. PP, pp. 1–1, 10 2019.

[6] Q. Zhang, J. Wang, M. A. Gulzar, R. Padhye, and M. Kim, “Bigfuzz:
Efficient fuzz testing for data analytics using framework abstraction,”
in Proceedings of The 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2020.

[7] R. Padhye, C. Lemieux, and K. Sen, “Jqf: Coverage-guided property-
based testing in java,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2019, (New York, NY, USA), p. 398–401, Association for Computing
Machinery, 2019.

[8] https://asm.ow2.io/, 2020.
[9] http://java-decompiler.github.io/, 2020.

[10] M. A. Gulzar, S. Mardani, M. Musuvathi, and M. Kim, “White-box
testing of big data analytics with complex user-defined functions,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, (New York, NY, USA), p. 290–301,
Association for Computing Machinery, 2019.

[11] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and C. Csallner,
“Sedge: Symbolic example data generation for dataflow programs,” in
Automated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, pp. 235–245, IEEE, 2013.

[12] C. Olston, S. Chopra, and U. Srivastava, “Generating example data
for dataflow programs,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’09, (New
York, NY, USA), pp. 245–256, ACM, 2009.

[13] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combinatorial
test data generation to big data applications,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2016, (New York, NY, USA), p. 637–647, Association for
Computing Machinery, 2016.

[14] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “Fudge: fuzz driver generation
at scale,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 975–985, 2019.

[15] T. Brennan, S. Saha, and T. Bultan, “Jvm fuzzing for jit-induced side-
channel detection,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pp. 1011–1023, 2020.

[16] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP), pp. 679–696, IEEE, 2018.

[17] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen, X. Xie,
G. Pu, and T. Liu, “Memlock: Memory usage guided fuzzing,” in 42nd
International Conference on Software Engineering, ACM, 2020.

[18] Y.-D. Lin, F.-Z. Liao, S.-K. Huang, and Y.-C. Lai, “Browser fuzzing by
scheduled mutation and generation of document object models,” in 2015
International Carnahan Conference on Security Technology (ICCST),
pp. 1–6, IEEE, 2015.

[19] S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing,” in 2019 IEEE Symposium on Security
and Privacy (SP), pp. 787–802, IEEE, 2019.

