
gazel: Supporting Source Code Edits in
Eye-Tracking Studies

Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland
Washington State University, USA

{first.last}@wsu.edu

Cole S. Peterson
University of Nebraska-Lincoln, USA
Cole.Scott.Peterson@huskers.unl.edu

Venera Arnaoudova
Washington State University, USA

venera.arnaoudova@wsu.edu

Bonita Sharif
University of Nebraska-Lincoln, USA

bsharif@unl.edu

Jonathan I. Maletic
Kent State University, USA

jmaletic@kent.edu

Abstract—Eye tracking tools are used in software engineering
research to study various software development activities.
However, a major limitation of these tools is their inability to
track gaze data for activities that involve source code editing. We
present a novel solution to support eye tracking experiments for
tasks involving source code edits as an extension of the iTrace
[9] community infrastructure. We introduce the iTrace-Atom
plugin and gazel [g@"zel]—a Python data processing pipeline
that maps gaze information to changing source code elements
and provides researchers with a way to query this dynamic data.
iTrace-Atom is evaluated via a series of simulations and is
over 99% accurate at high eye-tracking speeds of over 1,000Hz.
iTrace and gazel completely revolutionize the way eye tracking
studies are conducted in realistic settings with the presence of
scrolling, context switching, and now editing. This opens the
doors to support many day-to-day software engineering tasks
such as bug fixing, adding new features, and refactoring.

I. INTRODUCTION

Eye tracking tools and techniques are increasingly being
used in software engineering research to study participants
interactions with source code. Traditional approaches trace
gazes over static images of code, where the text does not move
relative to the screen for the duration of an experiment. The
static nature of images prevents researchers from analyzing
data from experiments conducted in realistic settings, where
the text visible on the screen can be dynamically changed via
scrolling, editing, or switching between multiple files.

To address this problem, the iTrace [9] infrastructure was
developed to map gaze locations to specific source elements
within an IDE. An eye tracker provides an (x,y) coordinate
indicating where a gaze is located relative to the active display,
and the IDE translates this (x,y) coordinate to a row and
column in a source code file within the editor. Researchers
then use parsers to identify the source code element that
corresponds to the row and column being viewed.

This process assumes that the source code file being parsed
is static, i.e., no edits are made during the experiment. Edit
support has been a widespread limitation for gaze mapping
tools, and greatly impacts the types of software engineering
tasks that can be studied using eye trackers (e.g., bug fix or
feature addition).

This paper presents a novel solution to address the editing
limitation, as an extension to the iTrace [9] infrastructure.
We propose iTrace-Atom, a plugin that tracks gaze and
edit information over source code files in the Atom edi-
tor, accompanied by gazel [g@"zel] (gaze edit evolution) a
Python data processing library to analyze the data collected
by iTrace-Atom.

Researchers can use these tools to track source code el-
ements as they move and change throughout the course of
an experiment, all while maintaining accurate gaze fixation
information. For example, researchers can track how long par-
ticipants looked at a source code element of interest throughout
a task, without losing valuable gaze data when an element is
deleted, edited, or moved.

The paper provides the following contributions to the re-
search community.

• Source Code Editing Support. To enable researchers
to study a variety of software tasks that involve source
code editing during eye tracking experiments, we present
a novel technique to capture source code edits and map
eye gaze data to evolving source code.

• Tracking Source Code Evolution. We present a novel
technique to track the evolution of source code elements,
at identifier-level granularity, over the course of an ex-
periment, including elements that are moved, renamed,
or refactored.

• Extended Language Support. We present a novel data
processing pipeline, gazel , in the form of an extensible
Python library. The library includes parsers for all main-
stream languages, improving upon existing support with
23+ new languages.

• Support for high-frequency eye trackers. Eye tracking
studies performed with existing plugins can drop up to
60% of gaze information from high frequency eye track-
ers due to high latency from IDE plugin environment.
iTrace-Atom can capture 99% of all gaze information
from eye trackers with data sampling rates up to 2,000Hz
important for in-depth cognitive analyses such as mi-
crosaccades [8].

ar
X

iv
:2

10
6.

10
56

3v
1

 [
cs

.S
E

]
 1

9
Ju

n
20

21

II. APPROACH

The steps described in Sections II-B and II-C are imple-
mented as part of the iTrace-Atom plugin which is published
to atom.io and can installed via apm1. The steps described
in Sections II-D–II-G are implemented as a collection of
functions part of gazel which can be installed via pypi2.
Documentation, detailed usage instructions, and demonstration
video can be found in our online replication package [5].

A. Overview of the Approach

A high level overview of the approach is shown in Figure 1.
First, all edit actions performed by a user during an experiment
are captured by iTrace-Atom and saved to a change log.
Throughout the experiment, the initial version of any source
code file opened in the IDE is saved to memory. After an
experiment is completed, gazel parses all source code files
and uses the edit information saved in the change log to re-
create different versions of the file in the form of source code
snapshots. Snapshots represent the version of a source file at
different points in time during the experiment.

All gazes captured by the eye tracker and resolved to line
and column values by iTrace-Atom are saved to a file, which
gazel then partitions. Gazes that occurred during the time
for which a specific snapshot is valid will be paired to that
snapshot file. Gazes are then processed using a fixation filter.

All snapshot files will now have gaze data mapped to the
correct syntactic tokens. However, in order to understand how
gaze and code edit information changes across snapshots,
gazel uses the change log to create an in-memory object
to represent the source code evolution during an entire ex-
periment. Tokens are linked across snapshots, changes to a
token’s content or location are resolved by time, and fixation
information is mapped to tokens in the appropriate snapshot.

B. Recording Gaze Data

Gaze data is captured by the eye trackers and streamed
to iTrace-Atom via iTrace Core [9]. Gaze data is in the
form of (x,y) screen coordinates, which iTrace-Atom must
resolve to line and column numbers.

To do this, we first scale the (x,y) coordinates by the
scale factor of the primary active display. Any coordinates
outside of the active editor window bounds are recorded as
invalid gazes. We then calculate the bounds of the source code
within the active file, by taking into account the file gutter,
the folded code, and any active toolbars which may offset the
file location. We then pass the final coordinates to Atom’s
getLine and getColumn functions, to obtain the appropriate
line and column location given an (x,y) coordinate. This
data is written asynchronously to an .xml ’Gaze’ file, which
contains data for each gaze including: (x,y) coordinates, line
and column information, timestamp, and the active file name.

1https://atom.io/packages/itrace-atom
2https://pypi.org/project/gazel/

C. Capturing Edit Information

Edit information is captured directly from the Atom IDE.
Once iTrace-Atom is in the tracking phase, a change log
JSON file is created containing the following information:
File: The file which was edited. Type: The type of edit. Edits
can be an insert or a delete. For example, a cut-and-paste
action would be registered by the IDE as a delete and then an
insert. Offset: an integer denoting the position of a character in
the text buffer at which the edit was made. Text: The contents
of the edit, i.e., the inserted or deleted text. This is always
a single character if the text is inserted or deleted character
by character. Length: The length of the text. This is used to
determine how the character offset buffer has been modified.
Timestamp: The time of the edit in Unix epoch time. Row,
Column: The starting row and column numbers in which the
edit was made.

D. Creating Source Code Snapshots

Challenge: In order to generate correct gaze information, eye
tracking data provided from the eye tracker at time tn needs
to be mapped to the appropriate source code elements for the
snapshot of the code that was being viewed at the same time
tn. All versions of the source code need to be captured and
parsed in order to generate correct gaze information.
Solution: At the start of the experiment, the original version
of the source code files open in the editor are saved. Once
tracking starts, all edit information is captured in a change log
throughout the experiment. The original version of the source
code file is parsed using TreeSitter [6], a parser generator
tool that builds editable syntax trees. Edits from the change
log are sequentially applied to update the syntax tree. Each
updated version of the syntax tree is considered as a snapshot
of the original file, at a certain point in time. Consecutive
edits, which are made close in time (3 seconds by default;
customisable), are aggregated and applied together, to make a
single snapshot with multiple changes to the syntax tree.

Evaluation: To ensure correctness of the reproduction of
edits in gazel several different scenarios have been thor-
oughly tested, including simple edits, multi-line deletes, copy-
pasting, replacing of text, multi-location edits (using the
multiple cursors and find/replace), and changes introduced by
Atom’s autocomplete functionality. To verify the correctness
of snapshot reproduction gazel compares the final generated
snapshot to the final file version saved by Atom plugin.

E. Partitioning the Gaze Set

Each snapshot represents the state of the source code file
at a certain point in time, between two aggregate edit actions.
All gaze information that is captured between two edit actions
can now be accurately mapped to source code elements in the
corresponding file snapshot. Because the IDE resolves line and
column information in real time, all line and column values
recorded in the gaze file are correct. The appropriate version
of the code that a user was viewing is associated with the
gazes captured for that time period.

....

def	start_mock_server(
frequency:	float,
duration:	float,
data:	List[dict],
++	new_arg	:	float,
port:	int,
wait=False,
--	delay=1,
data_path="./",
):

... Fixation
Resolution

Token
 Resolution

Partitioned Gaze Set
Start timestamp t1

paired with

Fixation
Filter

Language
 Parser

Changelog

time = x [type = insert, row = .. col = .., ..

time = x+n, [type = delete, row = .. col = .

....
paired with

paired with

Gazes processed

Insert

Delete

Source File Initial
File

End timestamp

Ti
m
e

tx

tx+n

paired with

Snapshot
#1

Snapshot
#2

Snapshot
n

Source
Code

Evolution
Object

< gazel Queries >

Fig. 1. gazel: overview of the approach and data processing pipeline.

F. Gaze Fixation Filters

gazel provides the option of processing raw gaze data
saved by the Atom plugin using various fixation filters to
generate fixations from the combined raw gaze files tagged
with AST information. Currently, gazel provides the same
fixation filters from the iTrace Toolkit [2]. The algorithm
parameters are customizable, and options to provide alternative
fixation algorithms are supported.

Fig. 2. Challenges of tracking gazes on edited source code.

G. Tracking Changes Across Snapshots

Challenge: Tracking how gazes change as syntactic ele-
ments are edited, inserted, or deleted from a file is a major
challenge. Figure 2 contains two snapshots of a source code
file, snapshot 1 is the original file and snapshot 2 has an
new line inserted on line 66. Three gaze fixations recorded
on snapshot 1 are displayed as yellow circles on the figure.
Fixation 1 is recorded on line 64, fixation 2 on line 68, and

fixation 3 on line 71. Current solutions assume the text at
a specific line and column is static, and resolve syntactic
tokens by parsing the source file. However, when a new line is
inserted on line 66, fixation 2 and 3 are still mapped to lines
68 and 71. However, the syntactic token under the fixation has
changed. Fixation 3 was correctly mapped on to the identifier
’frequency,’ but with the edit, is now mapped to white space.
A viable solution needs to keep track of all edits, and resolve
gazes the correct syntactic tokens.

Solution: gazel provides functionality to track both source
code elements and gazes across edits. gazel goes over every
edit in the change log, and detects which tokens and gazes
existing before the edit are affected by it. This allows tracking
a token from the original version of the file to the final version
with a record of how it changes, along with any fixations
associated with it.

This is implemented in a two-step approach: First, for the
original version of the source code, we construct a parse tree
in which we assign a unique id to every token; we update
fixation data with the source code token information as well
as the ids. Second, for every edit, we apply it and we parse
the source code. We then use Tree-Sitter to obtain all the
tokens in the parse tree that semantically changed from the
previous version of the parse tree. If a token has not changed
semantically, we assign it the same id that it had in the previous
version of the source. Otherwise, the token is assigned a new
unique id. We then update fixation data with the source code
token information as well as the ids.

At the end of this process, each source code element in
each version of the file will be tagged with an id. This id is
stable through time; if two source code elements have the same
id, they are guaranteed to be the same source code element
regardless of time or source file version. It is important to
note here that fixation data is always correct for the snapshot
of the file at the time it was recorded, and hence can be reliably
attributed to a source code token if applicable. Thus, we only
need to track source code elements across edits, and that
information can then be used to recover the gazes on a specific

source code element from previous snapshots. gazel provides
a high level API to allow the use this information to perform
aggregate analysis. For example, it allows users to obtain
all fixations over a single or a set of source code elements
across multiple edits, get fixation data with adjusted position
information for a given snapshot (see Figure 2), and identify
what tokens changed due to a particular edit, and how it
affected their associated gazes.

H. Supporting High Speed Eye Trackers

Challenge: Existing eye tracking plugins struggle with the
high latency of IDE API calls, which prevents real time gaze
and textual analysis at the data sampling rate of high-speed
eye trackers as gazes are lost due to the high latency. One
way that researchers have addressed this problem is to move
any real-time analysis into an offline tool (e.g., Déjà Vu [12]).
However, software engineering researchers often require quick
analysis of eye tracking data for use in post-experiment walk-
through of the data to gain more insight into the gathered data
for which real-time resolution of (x,y) coordinates is needed.

Solution: To support real-time resolution of (x,y) co-
ordinates, we create iTrace-Atom—an open-source cross
platform text editor. Atom exposes APIs to efficiently map
gaze data to line and columns, and is extremely fast, taking less
than 1ms to resolve (x,y) coordinates to line and column in
the text editor (compared to existing plugins for Visual Studio
where a single API call takes 15ms). To ensure no gazes are
dropped, we limit the number of API calls needed at the eye
tracking data rate by caching and writing data asynchronously.

Evaluation: To evaluate the efficiency of iTrace-Atom, we
run an experiment by generating mock eye tracking data within
the editor window at rates from 60Hz–2,000Hz for variable
lengths of experiment time, and number of files open in the
editor. We compare the number of gazes sent by the script to
the number of gazes received and resolved to line and column
numbers by the plugin. For data rates 60Hz–120Hz Atom is
able to capture 100% of gazes. For 150Hz–2,000Hz Atom’s
data retention drops slightly but remains higher than 99.7%.
Number of files and experiment time has no measurable effect.
Compared to existing plugins this is a major improvement.
iTrace-VisualStudio plugin captures 64% of gazes at
60Hz and sharply drops to 6% and 3% for rates of 1,000Hz
and 2,000Hz. This decreases even more when multiple files are
open in the editor [12]. iTrace-Eclipse plugin performs
similarly to iTrace-Atom up to 300Hz, but then can only
capture 30–15% of gazes at 1,000–2,000Hz. Experiment data
and scripts can be found in our replication package [5].

III. USAGE SCENARIOS

iTrace-Atom and gazel allow researchers to conduct a
much wider variety of eye tracking studies including:

1) Conducting studies involving a large variety of soft-
ware maintenance tasks that involve source code editing
(e.g., feature implementation and testing).

2) Analyzing the evolution of source code elements through-
out the course of an experiment.

3) Maintaining access to gaze areas of interest (AOIs) that
are connected to a single source code element, even if it
is modified or shifts location within a file.

IV. RELATED WORK

The software engineering research community has made
significant effort to develop the tools and infrastructure needed
to make experiments with source code and eye tracking de-
vices feasible, with plugins designed for popular IDEs such as
Visual Studio and Eclipse [9], [12]. Researchers have also de-
veloped essential tools to help with eye tracking data process-
ing [1], [3], [4] and visualization of eye-tracking data (such
as fixations and gaze paths) over source code elements [7],
[10], [11]. However, to the best of our knowledge, gazel is
the first to support source code editing actions and to resolve
eye-tracking data over evolving source code. gazel empowers
researchers to conduct software engineering experiments with
a larger spectrum of tasks where participants can edit source
code, and provides a simple way for researchers to query
complex source code evolution information for data analysis.

V. LIMITATIONS AND FUTURE DIRECTIONS

iTrace-Atom does not track gazes that occur at the same
time as edits, as they can not be accurately paired to one
source code snapshot. Certain IDE features, such as split code
windows, are not supported, and a detailed list of limitations
can be found in iTrace-Atom’s documentation [5]. In the
future, we plan to add support to track refactoring edit actions
across files. Moreover, to ensure the usefulness and usability
of gazel , we plan to conduct user experience experiments
with participants, and reach out to researchers to assess their
needs and the usefulness of the data processing pipeline in
gazel . Finally, we plan to extend edit support to the existing
iTrace plugins for Visual Studio and Eclipse in the near
future, integrating it into the iTrace infrastructure [9].

VI. ACKNOWLEDGMENTS

This work is supported by the NSF (award CCF-1942228).

REFERENCES

[1] Eye Code. http://github.com/synesthesiam/eyecode. Accessed: 2020-11.
[2] iTrace-Toolkit. http://www.i-trace.org/toolkit_doc_home_0-1-0/. Ac-

cessed: 2020-11.
[3] Pandas Eye. http://github.com/hanav/PandasEye. Accessed: 2020-11.
[4] PyGaze. http://www.pygaze.org/. Accessed: 2020-11.
[5] Replication-package. https://github.com/Smfakhoury/gazel.
[6] Tree-Sitter. https://tree-sitter.github.io/tree-sitter/. Accessed: 2020-11.
[7] B. Clark and B. Sharif. iTraceVis: Visualizing eye movement data within

eclipse. In VISSOFT, pages 22–32, 2017.
[8] R. Engbert and R. Kliegl. Microsaccades uncover the orientation of

covert attention. Vision research, 43(9):1035–1045, 2003.
[9] D. Guarnera, C. Bryant, A. Mishra, J. Maletic, and B. Sharif. iTrace:

Eye tracking infrastructure for development environments. In ETRA,
pages 1–3, 2018.

[10] N. Peitek, S. Apel, A. Brechmann, C. Parnin, and J. Siegmund.
CodersMUSE: multi-modal data exploration of program-comprehension
experiments. In ICPC, pages 126–129. IEEE, 2019.

[11] D. Roy, S. Fakhoury, and V. Arnaoudova. VITALSE: visualizing eye
tracking and biometric data. In ICSE: Companion, pages 57–60, 2020.

[12] V. Zyrianov, D. Guarnera, C. Peterson, C. Scott, B. Sharif, and
J. Maletic. Automated recording and semantics-aware replaying of high-
speed eye tracking and interaction data to support cognitive studies of
software engineering tasks. In ICSME, 2020.

http://github.com/synesthesiam/eyecode
http://www.i-trace.org/toolkit_doc_home_0-1-0/
http://github.com/hanav/PandasEye
http://www.pygaze.org/
https://github.com/Smfakhoury/gazel
https://tree-sitter.github.io/tree-sitter/

