2302.06050v1 [cs.SE] 13 Feb 2023

arxXiv

BURT: A Chatbot for Interactive Bug Reporting

Yang Song*, Junayed Mahmud', Nadeeshan De Silva*, Ying Zhou?,
Oscar Chaparro*, Kevin Moran', Andrian Marcus?, Denys Poshyvanyk*
*William & Mary (USA), TGeorge Mason University (USA), YThe University of Texas at Dallas (USA)

Abstract—This paper introduces BURT, a web-based chatbot
for interactive reporting of Android app bugs. BURT is designed
to assist Android app end-users in reporting high-quality defect
information using an interactive interface. BURT guides the users
in reporting essential bug report elements, i.e., the observed
behavior, expected behavior, and the steps to reproduce the
bug. It verifies the quality of the text written by the user and
provides instant feedback. In addition, BURT provides graphical
suggestions that the users can choose as alternatives to textual
descriptions.

We empirically evaluated BURT, asking end-users to report
bugs from six Android apps. The reporters found that BURT’s
guidance and automated suggestions and clarifications are useful
and BURT is easy to use. BURT is an open-source tool, available
at github.com/sea-lab-wm/burt/tree/tool-demo.

A video showing the full capabilities of BURT can be found at
https://youtu.be/SyfOXpHYGRo.

I. INTRODUCTION

Bug reports are essential for successful software maintenance
and evolution. These reports are expected to provide clear and
detailed information related to a defect, including the system’s
observed behavior (OB), the expected behavior (EB), and
the steps to reproduce the bug (S2Rs) [1]. Unfortunately, bug
reports are often unclear, incomplete, and/or ambiguous — often
causing delays during the bug resolution process [2], [3].

One main challenge that contributes to low-quality bug
reports is the knowledge gap between what reporters know and
what developers need [1], [4]. This is especially true when
the reporters are software end-users, who are often unfamiliar
with the system internals and do not know the information
elements important for developers (e.g., the OB, EB, and S2Rs)
and how to express them. Most bug reporting systems (e.g.,
GitHub Issues, Jira, or Bugzilla) are not designed to address this
knowledge gap, since they are static web forms and templates
that: (1) offer limited guidance on what information needs to be
reported, and how it needs to be reported; and (2) do not provide
feedback to end-users on whether the information they provide
is clear and complete. In consequence, the burden of providing
high-quality bug information rests mainly on the reporters.

We propose a web-based chatbot for interactive BUg repoRT-
ing (or BURT). The software engineering challenge addressed
by BURT is ensuring high-quality bug reporting by end-users,
considering the above-mentioned limitations of existing bug
reporting systems. The envisioned users for BURT are end-users
who report problems with their app. BURT guides the users
during reporting essential bug report elements (i.e., OB, EB,
and S2Rs), offering instant quality verification, corrections, and

graphical suggestions. BURT’s usage methodology is described
in detail in section II-B.

BURT implements techniques based on natural language
processing, dynamic software analysis, and automated bug
report quality assessment. We designed and instantiated BURT
as a stand-alone web system for Android apps that focuses on
bugs manifesting in the app’s UL

We empirically evaluated BURT, asking 18 end-users to
report 12 bugs from six Android apps using BURT, and assess
their experience. The reporters found BURT’s guidance and
automated suggestions/clarifications to be useful, accurate, and
easy to use. Moreover, the bug reports collected by BURT
are of higher quality than reports collected via a traditional
template-based bug reporting system.

BURT is an open-source tool hosted on GitHub [5] that
can be used for any Android app project. More details about
BURT’s algorithms and evaluation can be found in its original
research paper [6].

II. THE BURT INTERACTIVE BUG REPORTING TOOL

BURT is a standalone web-based chatbot, currently tailored
for Android apps, that aims to collect high-quality information
from the reporter through a guiding dialog. It generates a bug
report with textual bug descriptions and app screen captures.

BURT (i) guides the user in reporting essential bug report
elements (the OB, EB, and S2Rs), (ii) checks the quality of
these elements and offers instant feedback about issues, and
(iii) provides graphical suggestions such as the next S2Rs.

A. BURT’s Graphical User Interface (GUI)

BURT’s GUI is composed of a standard chatbot interface
and various panels for interactive bug reporting (see figure 1).
The Chat Box @ allows the reporter to provide textual
descriptions of the OB, EB, and S2Rs and select BURT’s
graphical suggestions (e.g., the next S2Rs via screenshots). The
Reported Steps Panel @ enumerates and displays the S2Rs that
the user has reported, allowing them to edit the steps to correct
mistakes. The Screen Capture Panel € displays screen captures
of the last three S2Rs. The Quick Action Panel @ provides
buttons to finish reporting the bug, restart the reporting session,
and (pre)view the bug report. The Tips Panel @ displays
suggestions to reporters on how to use BURT and how to better
express the OB, EB, and S2Rs. The tips change depending on
the current stage of the conversation. BURT also provides a
Developer Panel that allows developers to add new apps to
BURT (via the Settings icon next to the Help button).

github.com/sea-lab-wm/burt/tree/tool-demo
https://youtu.be/SyfOXpHYGRo

@ - Reported Steps Panel @ - The Chat Box

£ neportensres l

1. Open the application
2. Type a valid input on the "price (35)" text f...
3. Type a valid input on the "volume (95)" text

B

Tap the "partial (Tank was not filled to the top)" check
4. Type a valid input on the "odometer (23)" tex...]

box

5. Tap the "save btn (Save Fillup)” button [EEY 1l
6. Tap the view
7. Type a valid input on the "price (35)" text f... "
]

9. Type a valid input on the "odometer (23)" tex.

8. Type a valid input on the "volume (95)" text

10. Tap the "partial (Tank was not filled to the

Type a valid input on the "Comment" text field

performed might be the following (see the.
list below)

@ Please select the steps that you actually.
performed

- Screen Capture Panel

|
|
|
|
|
| @ OKay, it seems the next steps that you
|
|
|
|
|
|

0 - Quick Action Panel

W T LT T \ Reporter BURT GUI

| 7 quick actions

I ;

! |

|

I | @

] View the bug report | »

=== J

— T T T =TT \

) i useruL ies |

I| To express a step, you can use the |

|y format "I [action] [UI component or - - -

I complement]", I { j
|

|| Examples: | clicked the save button, | | I I

|y entered "test” in the comments, etc . Natural

| | || Dialogue

I) Language ||

| The screenshots displayed by BURT are | Manager

I} for reference only | | Parser |

I| Input values and Ul components may | | |

appear differently on the actual app | I

| screens |

| | | Report

I| You can click the button "Finish | processing Engine |

|y reporting the bug" at any moment . ~

! I App Execution! | iz 23 |1

| voucan edit the text of the reported | | Response Quality

) steps by ciicking on them and typing | MOdeI Predictor Ml Processor |

Il the text modifications I I

|==——=—====) —_——— = ———

I @ -Tips Panel BURT Backend

L T J

Fig. 1 BURT’s graphical user interface

B. Reporting a Bug with BURT

To report a bug, the user first selects the target app exhibiting
the defect by clicking on its icon—BURT lists the apps that it
supports. Then, BURT guides the reporter through three phases:
OB, EB, and S2R reporting. In each phase, BURT prompts
the user to provide individual descriptions of the OB, EB, and
S2Rs, respectively. BURT automatically parses the descriptions
and verifies their quality by matching them to states of a
GUI-level execution model for the app (see Sec. III-C).

If the OB/EB/S2R is matched to an app screen from BURT’s
execution model, BURT asks the user to confirm the matched
screen. If the user confirms, BURT proceeds to the next phase
of the conversation (e.g., asking for the EB or next S2Rs);
otherwise, BURT asks the user to rephrase the bug element.

If there are no app screen matches, BURT suggests the
user to revise their description and asks them to rephrase the
OB/EB/S2R. With a new description, the quality verification
is re-executed. If there are multiple matches, BURT provides
a list of up to five app screenshots (derived from the app
execution model) that match the description. The user can then
inspect the app screens and select the one that she believes
best matches her description of the bug element. If none are
selected, BURT suggests additional app screens, if any. If the
user selects one app screen, BURT saves the bug element
description and screen, and proceeds to prompt the user for the
next bug element. After three unsuccessful attempts to provide
a high-quality description, BURT records the (last) provided
description for bug report generation. This process proceeds
for each bug element starting with the OB.

BURT includes an additional feature to help users save time
writing S2Rs: it suggests the probable next S2Rs that the user
may have performed during actual app usage. BURT suggests
the first five S2Rs from the most likely path from the current
state to the OB state in the app execution model. This dialogue
flow uses a predictive algorithm that uses BURT’s execution

Fig. 2 Overview of BURT’s architecture

model (see section III-C). The suggestions are displayed as
a list of generated app screens, each screen representing a
S2R. The generated screen is visually annotated with a yellow
oval highlighting the GUI component (e.g., a button) executed
by the step. The user can select none, one, or multiple of
the suggested S2Rs. When a S2R is selected, BURT suggests
additional S2Rs, if any. When none are selected and BURT has
more suggestions, BURT asks the user if they want additional
suggestions. If so, BURT displays them. Otherwise, BURT
prompts the user to describe the next S2R.

C. Adding New Apps to BURT

Developers can add new apps to BURT through the Developer
Panel, which requires the developer to upload the app icon
and ZIP files containing app execution data required by BURT
to build the app execution model. BURT uploads/extracts the
files, parses the data to identify the app name and version,
verifies the data format, and stores the data for later use. BURT
provides feedback if there are any detected issues with the data.

III. BURT’S ARCHITECTURE & IMPLEMENTATION

BURT has three main components (see figure 2). The Natural
Language Parser (NL) parses users’ bug descriptions. The
Dialogue Manager (DM) implements the conversation flows
for the reporting process. The Report Processing Engine (RP)
matches the parsed bug descriptions to the app execution model,
to assess bug element quality and provide suggestions.

A. Natural Language Parser (NL)

BURT parses the textual OB/EB/S2R descriptions using
dependency parsing via the Stanford CoreNLP toolkit [7],
which produces a tree of grammatical dependencies between
words. BURT first utilizes a heuristic-based approach from
our prior work [8] to identify the sentence type of each
user message (e.g., conditional, imperative, or passive voice).
Then, BURT executes one of its 16 parsing algorithms (one

for each sentence type) that traverse the tree to extract the
relevant words from the sentences. This parsing is based on
our prior work on S2R quality assessment [9] and extracts
a phrase using the following format: [subject]
[object] [preposition] [object2]. For example, for
the Mileage app [10], the OB sentence “The fuel economy
shows a NaN value on page”, written in present tense, is
parsed as [fuel economy] [NaN value] [on]
[page]. The S2R sentence “Save the car fillup”, written
imperatively, is parsed as [user]

B. Dialogue Manager (DM)

BURT’s dialogue flow guides users to report the OB, EB,
and S2Rs. BURT’s dialogue is multi-modal and capable of
suggesting both natural language and graphical elements, e.g.,
screenshots, to assist the user through the reporting process. The
DM relies upon the RP engine to assess the quality of the bug
elements reported by end users. There are two main dialogue
flows that BURT navigates: (i) performing quality checks on
written bug report elements (applies to all bug elements), and
(i1) automated suggestion of S2Rs (for S2Rs only).

[action]

[shows]

[saves] [car fillup].

C. Report Processing Engine (RP)

BURT’s RP Engine consists of three sub-components:

(1) the App Execution Model is a directed graph where nodes
represent app screens and the edges are transitions between
screens, triggered by GUI interactions (e.g., taps or type events)
on GUI components (e.g., buttons or text fields). The graph
screens contain the hierarchy of GUI components with their
metadata (e.g., labels) and a screen capture. The graph edges
contain the action type, the interacted GUI component, and
a screen capture highlighting the component. BURT builds the
execution model from app usage data collected automatically,
via automated app exploration, or manually (see section III-D).

(2) the Dialogue Quality Processor performs quality veri-
fication of the parsed OB/EB/S2R descriptions, by mapping
them to app states/interactions from the execution model. A
textual description is high-quality if it can be matched to
the model, otherwise, it is low-quality. This definition and
BURT’s dialogue features that prompt users to improve low-
quality descriptions aim to reduce the knowledge gap between
reporters and developers. To perform quality verification, BURT
extends the bug description resolution/matching algorithm from
our prior work [9] and performs exploration of the execution
model, driven by the matching of the reported OB/EB/S2Rs
and user confirmations during the bug reporting process.

(3) the S2R Response Predictor determines and suggests to
the reporter the next S2Rs that she may have performed in
practice. BURT implements a shortest-path approach to predict
the next S2Rs [6]. BURT determines the paths between the
current graph state and the corresponding OB state, and then,
it computes the likelihood score based on the execution model
edge weights, which are higher for manual app usage [6].

D. Collecting App Execution Data

BURT requires app execution data for building the execution
model. This data encodes sequential interactions made on the

app features and comes from two sources: systematic app
exploration via CRASHSCOPE [11], [12] and crowdsourced
app usage (e.g., from app users or developers).
CRASHSCOPE’s GUI-ripping engine automatically generates
app execution data (app interactions such as faps or type events)
by running an app on a mobile device/emulator and a set of
systematic exploration strategies (e.g., top-down or bottom-up)
on the app [11], to uncover as many app screens as possible
and interact with most screen GUI components.
Crowdsourced app usage data complements the automated
app usage data [13]. This data can be collected through built-in
trace recording app features that capture app usages “in the
wild”, or during in-house GUI-level app testing performed by
developers. BURT provides two tools to assist trace capture:
AVT and TRACEREPLAYER. AVT is a desktop app that allows
humans to collect video recordings and getevent traces from
a mobile device/emulator while humans are using an app.
TRACEREPLAYER parses the collected AVT traces (i.e., from
humans) and converts them into the CRASHSCOPE data format.
In this way, BURT can read/use this data to augment the app
execution model (see details in BURT’s repository [5]).

E. BURT Implementation

BURT is currently implemented as a web application, using
the React Chatbot Kit [14] and Spring Boot [15]. BURT also
provides command-line tools for CRASHSCOPE and TRAC-
EREPLAYER, and the desktop AVT app, along with detailed
documentation on how to use them. BURT’s implementation
is tailored for Android applications, however, its underlying
techniques are generic enough to be easily adapted for other
types of software—the App Execution Model Data Collection
is the only platform-specific part.

IV. BURT’S EVALUATION

We conducted an empirical study to evaluate: (1) BURT’s
perceived usefulness/usability (RQ1/RQ>); (2) BURT’s intrinsic
accuracy in performing bug report element quality verification
and prediction (RQ3); and (3) the quality of the bug reports
collected with BURT (RQy).

A. Methodology

We selected 12 Android bugs (seven crashes, one handled
error, and four non-crashes) from the dataset of our prior
work [16]. The bugs come from six Android apps of different
domains: AntennaPod, Time Tracker, GnuCash, GrowTracker,
and Droid Weight. To collect app execution data, we executed
CRASHSCOPE on these apps and asked two computer
science (CS) students to use their main features—see our
original paper for more details [6]. We recruited 18 participants
to report these bugs (each reported three bugs) using BURT
(most had little or no bug-reporting experience) and asked
them to evaluate their experience via a questionnaire (with
Likert-scale and open-ended questions). We analyzed the
conversations the reporters had with BURT and measured
how accurate BURT was during the reporting process. We
asked additional 18 participants to report the same bugs with

a template-based bug-reporting system (a.k.a. ITRAC) and
analyzed the collected bug reports to measure their quality
based on the bug element correctness framework from our
prior work [9]. ITRAC resembles existing issue trackers as it
implements a web form with text fields and templates that
explicitly ask for the bug summary/title and the OB/EB/S2Rs.

B. Results

1) RQ1/RQ5: BURT’s User Experience: The participants
evaluated the usefulness of BURT’s main features.

Screen Suggestions: Half of the 18 reporters agreed that the
screen suggestions were useful, and another half (nine reporters)
agreed that they were sometimes useful.

OB/EB/S2R Quality Verification: The reporters had a positive
impression on how often BURT correctly verified the quality of
their bug descriptions. BURT was able to always (sometimes)
verify the OB/EB/S2R descriptions of 9/10/11 (9/6/6) reporters
(out of 18). Only two/one participant(s) felt that BURT rarely
recognized and verified their EB/S2Rs.

BURT Messages & Questions: 11 of 18 users often understood
BURT’s messages/questions, while 6 reporters understood them
sometimes. Only one reporter rarely understood them.

Panel of Reported S2Rs: BURT’s panel of reported S2Rs was
deemed to be useful by nine participants and somewhat useful
by six participants — one reporter found it somewhat useless.

The reporters also assessed BURT’s overall ease of use. 12
of 18 reporters indicated BURT was either easy or somewhat
easy to use. Four reporters were neutral, while two reporters
expressed that BURT was somewhat difficult to use.

RQ:/RQ>; Summary: Overall, reporters found BURT’s
screen suggestions and S2R panel useful and BURT is easy to
use. Reporters also suggested improvements to BURT to support
additional wording of bug report elements and provide more
accurate suggestions. Improvements are planned for future work
to improve BURT ’s ability to recognize additional vocabulary
and ways of phrasing the OB/EB/S2Rs.

2) RQs: BURT’s Intrinsic Accuracy: We analyzed the 54
conversations with BURT to assess how often BURT was able
to 1) match OB/EB/S2R descriptions to the execution model,
and 2) suggest relevant OB/S2R app screens to the reporters.

OB reporting: BURT matched the OB description to the
correct screen in 3 of 54 (5.5%) conversations and multiple
screens in 35 of 54 (64.8%) conversations. In 29 of 35 (80%)
conversations, the reporters selected one of the suggested
screens. Overall, BURT correctly matched the users’ OB
descriptions in 32 of 54 (59.3%) conversations.

EB reporting: BURT correctly matched the EB against the OB
screen in 17 of 32 (53.1%) cases without having to ask the
reporter for confirmation. In 6 of 32 (18.8%) cases, BURT
needed to ask the users for confirmation. In the remaining 9
cases, BURT struggled to parse the EB description.

S2R reporting: In the 54 conversations, BURT matched 205 of
the written S2R descriptions from the reporters. BURT matched

the correct screen in 157 of 205 (76.6%) cases. As for S2R
prediction, among 32 conversations with a matched OB screen,
S2R prediction occurred 146 times (mean: 4.6 per conversation).
The reporters selected 1.6 of the 3.9 suggested S2Rs (on avg.)
in 91 of 146 cases (62.3%).

RQ3; Summary: The results confirm the users’ perception on
the usefulness of screen suggestions and ability of performing
correct bug element verification, which indicates that the
techniques used in designing BURT’s components are adequate.

3) RQy4: Bug Report Quality: We compared the quality of
the 54 x 2 = 108 bug reports, collected with ITRAC and BURT.
S2R Quality: On average, BURT’s reports contain fewer
incorrect S2Rs than the ITRAC reports (8.3% vs. 20.4%) and
fewer missing S2Rs (19.4% vs. 32%).

OB/EB Quality. BURT and ITRAC reports have a comparable
number of incorrect EB descriptions (8 vs. 6 out of 54 reports).
However, BURT reports have more incorrect OB descriptions
compared to ITRAC reports (16 vs. 8 out of 54 reports).
RQ, Summary: BURT bug reports have higher-quality S2Rs
than ITRAC reports, and comparable EB descriptions. BURT
improvements are needed to better collect OB descriptions.

V. MOST RELATED EXISTING TOOLS

Moran et al. [4], [17] proposed FUSION, a web system that
allows the user to report the S2Rs graphically via dropdown
lists of GUI components and actions (taps, swipes, efc.). Song et
al. [18] proposed BEE, a GitHub plugin that identifies the type
of each sentence in bug reports and alerts reporters of missing
OB/EB/S2Rs. Fazzini et al. proposed EBUG [19], a mobile
app bug reporting system, similar to FUSION, that suggests
possible future S2Rs as they are written. Shi et al. [20] proposed
BUGLISTENER, an approach that identifies bug report dialogs
in community live chats and synthesizes bug reports from them.

BURT has two main advancements over these prior tools:
(1) it supports end-users with little or no bug reporting
experience; for example, FUSTON was not specifically designed
to end-users, as inexperienced users found it more difficult
to use; and (ii) it offers an interactive interface, supporting
automated suggestions, instant quality verification, and prompts
for information clarification.

VI. FINAL REMARKS AND FUTURE WORK

BURT is a web-based chatbot for interactive bug reporting.
Unlike existing bug reporting systems, BURT can guide
end-users in reporting essential bug report elements (i.e., OB,
EB, and S2Rs), provide instant feedback about issues, and
produce graphical suggestions of the elements that are likely
to be reported next. BURT can help end-users easily report
bugs and provide higher-quality bug reports. As future work,
we plan to integrate BURT with existing issue trackers.

ACKNOWLEDGEMENTS

This work is supported in part by the NSF grants: CCF-
1955837, CCF-1955853, CCF-2217733, and CCF-2007246.
Any opinions, findings, and conclusions expressed herein are
the authors and do not necessarily reflect those of the sponsors.

[1]

[2]
[3]

[4]
[5]
[6]

[7
[8]

[9]

[10]
(11]

REFERENCES

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What Makes a Good Bug Report?” in FSE’0S.
https://github.com/dear- github/dear- github, 2019.

T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characterizing
and predicting which bugs get reopened,” in ICSE’12.

K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, and D. Poshyvanyk,
“Auto-completing Bug Reports for Android Applications,” in FSE’I5.
“https://github.com/sea-lab-wm/burt/tree/tool-demo,” 2023.

Y. Song, J. Mahmud, Y. Zhou, O. Chaparro, K. Moran, A. Marcus,
and D. Poshyvanyk, “Toward interactive bug reporting for (android app)
end-users,” in ESEC/FSE’22.

“https://stanfordnlp.github.io/CoreNLP/,” 2022.

O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng, “Detecting missing information in bug descriptions,”
in ESEC/FSE’17.

O. Chaparro, C. Bernal-Cardenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality of
the steps to reproduce in bug reports,” in ESEC/FSE’19.

“Mileage,” https://fossdroid.com/a/mileage.html, 2021.

K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and
D. Poshyvanyk, “Crashscope: A practical tool for automated testing of
android applications,” in ICSE’17.

[12]

[13]

[14]
[15]
[16]

(171

[18]

[19]

[20]

K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
android application crashes,” in /CST’16, 2016.

M. Linares-Vasquez, M. White, C. Bernal-Cardenas, K. Moran, and
D. Poshyvanyk, “Mining android app usages for generating actionable
gui-based execution scenarios,” in MSR’15, 2015.

“React chatbot kit,” https://tinyurl.com/yhz3ws6h, 2022.

“Spring boot,” https://spring.io/projects/spring-boot, 2022.

N. Cooper, C. Bernal-Cardenas, O. Chaparro, K. Moran, and D. Poshy-
vanyk, “It takes two to tango: Combining visual and textual information
for detecting duplicate video-based bug reports,” in ICSE’21.

K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, and D. Poshyvanyk,
“Fusion: A tool for facilitating and augmenting android bug reporting,” in
2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), 2016, pp. 609-612.

Y. Song and O. Chaparro, “Bee: a tool for structuring and analyzing bug
reports,” in ESEC/FSE’20.

M. Fazzini, K. P. Moran, C. Bernal-Cardenas, T. Wendland, A. Orso,
and D. Poshyvanyk, “Enhancing mobile app bug reporting via real-time
understanding of reproduction steps,” TSE, 2022.

L. Shi, F. Mu, Y. Zhang, Y. Yang, J. Chen, X. Chen, H. Jiang, Z. Jiang,
and Q. Wang, “Buglistener: identifying and synthesizing bug reports
from collaborative live chats,” in /ICSE’22.

https://github.com/dear-github/dear-github
https://github.com/sea-lab-wm/burt/tree/tool-demo
https://stanfordnlp.github.io/CoreNLP/
https://fossdroid.com/a/mileage.html
https://tinyurl.com/yhz3ws6h
https://spring.io/projects/spring-boot

	I Introduction
	II The Burt Interactive Bug Reporting Tool
	II-A Burt's Graphical User Interface (GUI)
	II-B Reporting a Bug with Burt
	II-C Adding New Apps to Burt

	III Burt's Architecture & Implementation
	III-A Natural Language Parser (NL)
	III-B Dialogue Manager (DM)
	III-C Report Processing Engine (RP)
	III-D Collecting App Execution Data
	III-E Burt Implementation

	IV Burt's Evaluation
	IV-A Methodology
	IV-B Results
	IV-B1 RQ1/RQ2: Burt's User Experience
	IV-B2 RQ3: Burt's Intrinsic Accuracy
	IV-B3 RQ4: Bug Report Quality

	V Most Related Existing Tools
	VI Final Remarks and Future Work
	References

