arXiv:1901.00891v1 [cs.SE] 3 Jan 2019

Guigle: A GUI Search Engine for Android Apps

Carlos Bernal-Cardenas, Kevin Moran, Michele Tufano,
Zichang Liu, Linyong Nan, Zhehan Shi, and Denys Poshyvanyk
Department of Computer Science
College of William & Mary
Williamsburg, VA
Email: {cebernal, kpmoran, mtufano, lzcemma, Inan, zshiOl, denys} @cs.wm.edu

Abstract—The process of developing a mobile application
typically starts with the ideation and conceptualization of its user
interface. This concept is then translated into a set of mock-ups to
help determine how well the user interface embodies the intended
features of the app. After the creation of mock-ups developers
then translate it into an app that runs in a mobile device. In
this paper we propose an approach, called GUIGLE, that aims
to facilitate the process of conceptualizing the user interface of
an app through GUI search. GUIGLE indexes GUI images and
metadata extracted using automated dynamic analysis on a large
corpora of apps extracted from Google Play. To perform a search,
our approach uses information from text displayed on a screen,
user interface components, the app name, and screen color
palettes to retrieve relevant screens given a query. Furthermore,
we provide a lightweight query language that allows for intuitive
search of screens. We evaluate GUIGLE with real users and found
that, on average, 68.8% of returned screens were relevant to the
specified query. Additionally, users found the various different
features of GUIGLE useful, indicating that our search engine
provides an intuitive user experience. Finally, users agree that
the information presented by GUIGLE is useful in conceptualizing
the design of new screens for applications.

Video URL: https://youtu.be/hqUuuMM;2BU

I. INTRODUCTION & MOTIVATION

Mobile devices and apps have an important impact on the
everyday lives of people around the world. This impact stems
from the ability of these apps to enable a range of tasks,
from simple chores such as calculating a tip for a meal to
more complex activities. These tasks are enabled by the rich
ecosystem of “apps” available on mobile devices. However,
before developers publish their apps to a marketplace such as
Apple’s App Store [6] or Google Play [10]], they must endeavor
to build an app following best practices for mobile software
development. This process starts with the ideation and concep-
tualization of the requirements and user interface of the app.
The process then proceeds to the creation of a set of screen
mock-ups that delineate the graphical user interface (GUI).
User interface and user experience (UI/UX) designers typically
iterate these mock-ups until all the features are captured in the
GUI. Once the final design is ready, programmers translate the
mock-up (typically created in software like Sketch [3[]) and
resources provided by designers into a runnable app. After
validating that the app successfully passes a suite of tests, it
is published on a market.

One of the most difficult parts of this process is designing
an intuitive GUI and creating an effective mock-up to capture
all required functionality of an app. In this paper we focus on

improving this design task by facilitating the process of finding
example app screens that are relevant to a query formulated
according to app design requirements. To accomplish this we
have designed and implemented GUIGLE, a search engine that
assists users in finding relevant screenshots of apps to help
aid in GUI-design. GUIGLE indexes a large corpus of 5k
apps consisting of over 12k screens and enables advanced
searches using Natural Language (NL) queries and result
filtering according to metadata such as color palettes, screen
types (e.g., settings screen), and GUI-component types (e.g.,
returning screens that include progress bars or buttons).

GUIGLE represents a significant departure from and im-
provement over existing image search engines that help to
illustrate its novelty. Typically, search engines such as Google
Image Search [1] utilize computer vision techniques and
indexed metadata from the web in order to return relevant
images in relation to a user’s NL query. However, this is
a more general search tool that does not allow for detailed
searches of a large index of Android application screens and
lacks capabilities for filtering searches by screen or GUI-
component type. The most closely related approach to our
tool is a recently published framework called GUIFetch [7]]
that is capable of retrieving example code snippets from
relevant open-source applications using a design mock-up and
keywords as a query. While the GUIFetch approach represents
a promising technique for helping developers to translate
an existing mock-up into code by retrieving implementation
examples, it does little to support designers and developers
during the early stages of app GUI conceptualization as
it requires a mock-up as input. Conversely, GUIGLE is a
complementary approach implementing a lightweight way to
quickly search a large number of app GUIs and visually
inspect the results, facilitating the process of conceptualizing
a GUI based on the collective design patterns of retrieved
screens. Furthermore, GUIGLE supports a set of simple but
powerful search query formulations that allow users to quickly
discover app screens relevant to highly specific concepts (i.e.,
via screen and GUI-component type filtering), that GUIFetch
does not support. Finally, GUIGLE is able to index a large
number Google Play apps without the need for access to source
code, whereas GUIFetch needs access to source code and thus
is limited to a smaller set of open source apps.

GUIGLE’S contributions can be summarized as follows:

e A technique for indexing a large corpus of mobile app

https://youtu.be/hqUuuMMj2BU

@ Data Collection

@ Data Filtering @ Web Implementation

GUI-Metadata &
Screenshots

Market Place

<n

<nodel

e I ==—
= e e -} Layout Filtering | -}E guom
N ; Indexin » —
Y EOl® AutgrSIated | ——
o ‘ App Filtering | Query e
PROEE | \ E proratlon 7777777777777777777777777777777777777 Parsing Ey | .

ineden @
e pe, . v python

Image Filtering I 1‘ 7 Eoress
Metadata ——
Indexin ez

Fig. 1: The GUIGLE approach and components

screens combining image and metadata processing;

o A lightweight query language allowing for intuitive
search of relevant app screens;

o A set of user controls for filtering and refining queries
based upon component type, screen type, and color;

« A publicly available implementation of GUIGLE, em-
bodying the above techniques [2].

II. APPROACH

Fig. (1| provides an overview of GUIGLE and its three main
components. The first component is responsible for download-
ing Android APKs from Google Play, automatically executing
them via systematic exploration, and collecting screenshots
and the associated GUI-hierarchy metadata. Subsequently, a
data filtering step discards uninteresting GUIs (i.e., blank
screens or those with very few components). Finally, the GUI
metadata and color information is indexed using Lucene [4].
In this section, we describe Guigle’s components in detail.
A. Data Collection

The first major component of GUIGLE, collects Android
APKs and extracts the data that enables the creation of a
GUI screenshot search engine. To enable GUI-search across
a large number of screens, we utilized the dataset derived for
the REDRAW [13] approach for automated app prototyping,
with some additional post-processing to ensure a high-quality
index of screens. This dataset consists of 7,654 apps after the
removal of non-native apps. For the remainder of this section
& Sec. we briefly review the methodology used to collect
the ReDraw dataset, and detail the processing steps utilized to
derive GUIGLE. We refer the reader to [13]] for further details.

1) Execution Engine: In order to collect screenshots and
metadata of multiple activities from the downloaded apps,
each app was systematically explored in a Depth-First-Search
(DFES) fashion, using the systematic input generation approach
developed as part of our prior work on CRASHSCOPE and
MONKEYLAB [L1], [14]. During this exploration, each GUI
event generated (e.g., click of a button) produced a screenshot
and xml dump (via the uiautomator tool) that contains
information regarding the hierarchy of GUI-components on
the screen. Once the exploration of an app was completed,
only a set of unique screens were selected among the top-6
most frequently “visited” screens of the app. The rationale
behind this selection strategy is that frequent screens (i.e.,
appearing multiple times during the systematic exploration)
correspond to the most frequent activities used in an app,
and thus characterize the app’s functionality. Further details

regarding the automated app exploration can be found in the
paper describing the full ReDraw approach [13]].

B. Data Filtering

To ensure the quality of our extracted dataset we systemat-
ically removed low-quality screens and sampled a statistically
significant subset of screens for manual validation.

1) Image Filtering: One quality issue we identified in our
initial dataset was related to collected screenshots of the
Android home screen caused by apps failing to properly launch
or restarting during the automated execution. We discarded
the screenshots whose xml dump file contained com.an-
droid.launcher in the string representing the package
name, indicating a home screen. We also observed screens
that included an overlay, often meant to provide an overview
of the app functionality or to indicate how to exit from an app’s
“full screen” mode. To identify and remove these screens, we
applied color histogram analysis for distinguishing repetitious
color patterns focused upon screen borders, since these areas
were the most common ones to find the overlays.

2) Layout Filtering: Additionally, our initial dataset cov-
ered screens that only included GUI containers or GUI-
components meant to group other GUI-components only e.g.,
View, GridLayout among other containers. We parsed all
the xm1 dump files and discarded all the screens that contain
only these types of GUI-components, since they do not provide
relevant information in posterior steps.

3) Google Play Description Filtering: GUIGLE includes
information provided from Google Play to provide a better
user experience. However, after downloading and executing
app from the Google Play and and attempting to link app
descriptions at a later date, we discovered that some apps
were removed or inaccessible. This was likely due to apps not
satisfying Goole Play terms and conditions or being removed
by developers. Therefore, we discarded these applications from
our dataset as we considered this apps to not be relevant for
GUIGLE resulting on a total of 5,416 unique apps.

C. Web Implementation

We implemented GUIGLE as a web application in Python
using different tools to provide performant query responses.

1) Metadata Indexing: The first step involved the in-
dexing of data included in the xml dump files. We used
Apache Lucene [4] to index attributes such as the app name,
component type, and text of each GUI-component map-
ping them to a corresponding field of Lucene’s document.

This enabled multi-field search and allows for the creation of
complex queries to assist the user in obtaining relevant results.

2) Color Indexing: In order to perform search by color, we
extracted the top-6 colors from each of the screenshots using
the colorgram [17] Python library. This library allowed us
to extract a simplified 6 color palette from the original image
and by extracting color groups, and averaging the color values
for similar groups. For each color extracted, we transformed
the RGB value into the Hue, Saturation, and Lightness (HSL)
color space. Moreover, we extracted the proportion in terms of
the percentage on each of the top-6 colors for each screenshot.

3) Query Parsing: We implemented a query parser to
provide a more user-friendly search experience. This parser
follows a four step process. The first step, applies preprocess-
ing to clean up the query, for instance by removing additional
spaces between words. The second step detects and classifies
tokens in the query into one of four categories using keywords.
If the tokens correspond to any value in the suggestions’ list
then the corresponding category is used in the final query. The
keywords are (i) color, which uses a standard list of colors
widely used in web browsers as suggestions, or additionally,
the user can use any hex value to be more specific; (ii) ui,
which uses the type of GUI-components as suggestions (i.e.,
components’ class names); (iii) appname and (iv) fext, which
are used for strings not classified as either color or ui and are
used to search the application names and text displayed on
components respectively.

The third step handles logical operators between tokens.
Therefore, if the user does not specify either AND or OR,
by default the AND logical operator is applied between the
pair <keyword:value>. Conversely, if users specify the logical
operator then the parser keeps it. To avoid ambiguous queries
the user has to add parentheses in the cases in which the oper-
ators AND and OR are used in the same query. To provide an
example of how our query parser operates, consider the follow-
ing query red edittext pizza, for which the parser would
output color:red AND ui:edittext AND
OR appname: pizza). In this case red is categorized as
color, edittext is identified as ui, and since pizza is not
identified as either color nor ui it assigns appname and text
keywords with the OR connector on the final query.

The last step uses a predefined query filters for types of
GUI-components and activities to speed up the search on
simple queries. Additionally, users can use a color picker to
filter screens for any query according to manually specified
screen colors. Moreover, we provide a slide bar that can be
used to specify the maximum difference that can be considered
for a color to be close to another one. This range is used for
each of the color components of the HSL color space.

4) Guigle User Experience (UX): GUIGLE provides dy-
namic search suggestions when the user enters keywords in
order to speed up the process of formulating queries. Once
results are returned, users can use GUIGLE to get detailed
information for each screenshot by clicking on it. This detailed
result view provides information such as name of the app, top-
6 colors sorted by proportion, list of GUI-components, link to

(text:pizza

Google Play, similar screens based on the GUI-components,
and all other screens of the same app. Additionally, users can
favorite screenshots and access them later for quick inspection.

To facilitate the implementation of our search engine, we
relied upon Apache Solr [S]] that helps to expose Lucene’s
functionality with RESTful web services. This allows for
seamless integration with web frameworks such as Node Js,
Express Js, and Vue Js. The combination of these frameworks
enables capabilities that facilitate Guigle’s user experience
and allows for a responsive web application that can scale
to different screen sizes or browser viewport widths.

III. EVALUATION
A. Study Design

The goal of our study is to evaluate the usefulness of
GUIGLE in terms of (i) its effectiveness in retrieving relevant
screenshots and (ii) the usability of exercising search features.

Concerning the study methodology, we created a survey
structured in four sections: (i) demographic questions; (ii) a set
of tasks which simulate the scenarios where a developer/de-
signer is seeking inspiration from other app’s screenshots; (iii)
quantitative questions about the usability of GUIGLE; and (iv)
qualitative questions related to the UX of GUIGLE.

The first section of the survey aims to help understand the
demographic makeup of our participants, whereas the second
section aims to evaluate whether each of the screens, yielded
by a GUIGLE search, is relevant to the task the user is supposed
to complete. To quantify this, we based our survey on common
procedures used to evaluate search engines [12]]. The main
measure we used to evaluate the effectiveness of GUIGLE
is the precision defined as P=relevant/retrieved, where
relevant constitutes the screenshots considered pertinent in
the search while retrieved represents the number of total
results returned by the search. Furthermore, we asked the users
to evaluate the relevancy of the top-10 screenshots of each
query created by the participants based on the task, leading
to our retrieved variable being fixed at 10. The third survey
section evaluates usability based on six questions where the
user can express her usability assessment on a 5 point likert-
scale. This allowed us to evaluate GUIGLE’s effectiveness in
the context of each task. We derived the questions of our
study based on SUS usability scale by Brooke [8]. Finally,
the fourth section collects qualitative feedback using four open
questions that helped us to gather additional information on
GUIGLE’S UX. These questions were derived according to
the user experience honeycomb by Morville [15].

The context of our study comprises 13 developers who
completed our survey. Moreover, we indexed a total of 12,051
documents with Lucene which includes ~12k screenshots
from a total of 5,416 unique apps.

B. Results

We surveyed 13 developers with an average of about 4
years of experience in software development and 10 months
in mobile development. Our participants came from a variety
of backgrounds, as indicated by their highest obtained degree

ATRERN =" enA"

2
T2 T3 T4 T2 T3 T4 T5 Al
Tasks Tasks

Score

(a) Score confidence (b) Precision
Fig. 2: Score confidence and Precision per task across partic-

ipants of the survey

I thought there was too much inconsistency in Guigle's results - 4{:*:’7
| found Guigle very cumbersome to use- \:I * o o
| found Guigle unnecessarily complex- 4‘2’7

| found the various functions in Guigle were well integrated- Eﬁ

| would imagine that most people would learn to use Guigle very _ A e | 4
quickly

I think that I would like to use Guigle for identifying potential GUI _ ﬂ
screenshots as a guide for a mobile application design

sb o N A SA

Score

Fig. 3: Survey section 3 - quantitative analysis

including: 23% with high school, 62% with bachelors, 7.5%
with masters, and 7.5% with PhD degree completed.

1) Precision Analysis: In terms of the effectivness, the
average precision regarding the relevance of returned screens
is 68.8%, as shown in Fig. [2b] where the x axis presents all the
tasks and the y axis shows the percentage in terms of precision.
The results suggest that GUIGLE is able to find relevant
screenshots for a given query with an average confidence score
of 3 (i.e., mostly relevant). Additionally, this may indicate that
the attributes such as app name, GUI component type, text, and
color are useful for searching screenshots.

2) Quantitative Analysis: The results of the survey for the
usability section are presented in Fig. 3] where the x axis
reports the score for the likert-scale whereas y axis shows the
set of questions. It is worth noting that the survey included
three negative questions (i.e., the lower the better) and 3
positive questions (i.e., the higher the better) to avoid bias
in the responses. As a result, we found that users agree
with positive questions suggesting that GUIGLE exhibits in-
tuitive usability. On the other hand, people disagreed with
the negative questions reinforcing this observation. However,
study participants reported a neutral sentiment concerning
the consistency of GUIGLE’S returned results, indicating the
possibility of occasional irrelevant screens in a result set.

3) Qualitative Analysis: The qualitative section of the sur-
vey focused on open questions related to the usability. Due
to space limitations, in Fig.] we present a cloud word from
answers to the question: What information did you find useful
from these screenshots?. This suggests that similar screens
from the same app are relevant for the user. GUIGLE’s ca-
pability of search-by-color also appears to be considered very
useful by the participants, which allow them to search apps
with a given color theme/palette. However, some participants
mentioned that some of the searches did not rank higher
screens having larger areas of the selected color. This might
be due to the fact that, currently, GUIGLE does not rely on the
proportion of the color to rank the resulting screens.

IV. DEMO REMARKS & FUTURE WORK

In this demo, we presented GUIGLE, a GUI search en-
gine for Android app screenshots which supports queries for

teehack
WSUrbUon gey appiication

10N yised List-ideas activity

design d
c

g a e c 0 I o rs - e
s oo s v
e
different oled

Fig. 4: Survey section 4 - qualitative analysis

create apveared

searching according to (i) the app name, (ii) GUI-component
text, (iii) GUI-component type, and (iv) screen color. Users
can inspect each of the retrieved screens and obtain detailed
information such as the list of GUI-components, the name and
link to the Google Play store of the belonging app, additional
screens of the same app, top-6 colors sorted by the proportion
of the color in the screen, and other similar screens. GUIGLE
was evaluated by 13 developers on an online survey. The
results suggest that GUIGLE is effective in retrieving relevant
screens while providing an intuitive user experience through
its web interface.

In the future, we plan to add support for more complex
queries to enable more robust searches. This includes the
possibility of creating queries that consider the hierarchy of
components and consider proportion of colors to better rank
the screenshots. Furthermore, GUIGLE can be envisioned as
a starting point for providing developers with app skeletons
for closed source apps. This could be done by leveraging
approaches that generate GUI code based on screenshots such
as REMAUI [16], REDRAW [13]], and Chen et al. [9].

REFERENCES

[1] Google images https://images.google.com/.

[2] Guigle http://www.guigle.com/.

[3] The sketch design tool https://www.sketchapp.com.

[4] Apache lucene https://lucene.apache.org/, 2018.

[5] Apache solr http://lucene.apache.org/solr/, 2018.

[6] Apple. App store. https://itunes.apple.com/us/genre/ios/id367mt=8,
2017.

[7]1 F. Behrang, S. Reiss, and A. Orso. GUIFetch: Supporting app design
and development through GUI search. MOBILESoft’ 18, page to appear,
2018.

[8] J. Brooke. SUS: A quick and dirty usability scale. In P. W. Jordan,
B. Weerdmeester, A. Thomas, and I. L. Mclelland, editors, Usability
evaluation in industry. Taylor and Francis, London, 1996.

[9] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu. From ui design image
to gui skeleton: a neural machine translator to bootstrap mobile gui
implementation. ICSE’18, pages 665-676. ACM, 2018.

[10] Google. Google play. https://play.google.com/store, 2017.

[11] M. Linares-Véasquez, M. White, C. Bernal-Cardenas, K. Moran, and
D. Poshyvanyk. Mining android app usages for generating actionable
gui-based execution scenarios. MSR’15, pages 111-122, 2015.

[12] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie.
Exemplar: A source code search engine for finding highly relevant
applications. 38(5):1069-1087, Sept. 2012.

[13] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D. Poshy-
vanyk. Machine learning-based prototyping of graphical user interfaces
for mobile apps. page accepted, 2018.

[14] K. Moran, M. L. Viasquez, C. Bernal-Cardenas, C. Vendome, and
D. Poshyvanyk. Automatically discovering, reporting and reproducing
android application crashes. ICST’16, pages 33—44, 2016.

[15] P. Morville. User experience design. http://semanticstudios.com/user_|
experience_design/.

[16] T. A. Nguyen and C. Csallner. Reverse engineering mobile application
user interfaces with REMAUI. ASE’15, pages 248-259, Washington,
DC, USA, 2015. IEEE Computer Society.

[17] obskyr. Colorgram https://github.com/obskyr/colorgram.py.

https://images.google.com/
http://www.guigle.com/
https://www.sketchapp.com
https://lucene.apache.org/
http://lucene.apache.org/solr/
https://itunes.apple.com/us/genre/ios/id36?mt=8
https://play.google.com/store
http://semanticstudios.com/user_experience_design/
http://semanticstudios.com/user_experience_design/
https://github.com/obskyr/colorgram.py

	I Introduction & Motivation
	II Approach
	II-A Data Collection
	II-A1 Execution Engine

	II-B Data Filtering
	II-B1 Image Filtering
	II-B2 Layout Filtering
	II-B3 Google Play Description Filtering

	II-C Web Implementation
	II-C1 Metadata Indexing
	II-C2 Color Indexing
	II-C3 Query Parsing
	II-C4 Guigle User Experience (UX)

	III Evaluation
	III-A Study Design
	III-B Results
	III-B1 Precision Analysis
	III-B2 Quantitative Analysis
	III-B3 Qualitative Analysis

	IV Demo Remarks & Future Work
	References

