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Abstract—Traceability information is important for software
maintenance, change impact analysis, software reusability, and
other software engineering tasks. However, manually generating
this information is costly. State-of-the-art automation approaches
suffer from their imprecision and domain dependence. I propose
INDIRECT, an intent-driven approach to automated requirements-
to-code traceability. It combines natural language understanding
and program analysis to generate intent models for both re-
quirements and source code. Then INDIRECT learns a mapping
between the two intent models. I expect that using the two intent
models as base for the mapping poses a more precise and general
approach. The intent models contain information such as the
semantics of the statements, underlying concepts, and relations
between them. The generation of the requirements intent model
is divided into smaller subtasks by using an iterative natural
language understanding. Likewise, the intent model for source code
is built iteratively by identifying and understanding semantically
related source code chunks.

Index Terms—Requirements Traceability, Traceability Link
Recovery, Natural Language Understanding, Program Analysis

I. INTRODUCTION

Despite broad agreement on its usefulness, traceability
information is still absent in most software projects. This is
mainly due to the high manual effort for generation. Trace-
ability information offers access to deeper analyses that need
information on the relations between requirements and source
code. Thus, being able to automatically link source code to
requirements and vice versa empowers tasks such as change
impact analysis, requirements validation, or software reusability
analysis [1].

For more than a decade approaches to automated trace-
ability link recovery made use of information retrieval (IR)
techniques [2]. Recent approaches apply deep learning [3], [4].
Despite great advances the approaches still lack the precision
necessary for use in practice. They struggle to link syntactically
unrelated artifacts. An example is depicted in Figure 1. The
requirement, “The system shall be able to combine cells
with elementary arithmetic.” is supposed to be linked to
the method apply(range:Cell[],op:Operator). To
identify the link between these two artifacts an approach needs
to understand that elementary arithmetic should be used for
an operation on cells. But neither the operation mentioned
(combine) nor the concept of elementary arithmetic is used in
the source code. A mapping between the two artifacts is only

matching

pattern

apply(range:Cell[],op:Operator)
enum Operator{add,subtract,

multiply,divide}

CodeThe system shall be able to combine 
cells with elementary arithmetic.

RQ

action

concept

combine

cells
elementary 
arithmetic

Cell

Addition Division

add divide

system

requirements intent model

Operator
*

apply

range op

Cell add divide

MathUtil

source code intent model

Goal

Fig. 1. Requirements-to-code trace with exemplary intent models and matching
components (similarly colored).

possible by understanding the intent of combine and apply
and map Operator to elementary arithmetic. Humans solve
this scenario by understanding that the meaning of applying an
arithmetic operator on several cells is similar to a combination
of cells with elementary arithmetic.

Research on programming in natural language faces similar
challenges. During the work on PARSE we proposed to
explicitly model the intent of natural language input by using
iterative natural language understanding (NLU) to gain insight
into the semantics [5]. By dissembling the generation of the
model into subtasks we reduced the extent of each task and
were able to generate intent models iteratively.

I propose INDIRECT, an INtent-DrIven REquirements-to-
Code Traceability approach. The idea is to model the intent of
both, natural language requirements and source code, to model
the stakeholders and the developers intents. To overcome the
limitations of present approaches for automated traceability link
recovery, INDIRECT uses the intent models as intermediate
representation instead of mapping between artifacts directly.
An intent model is a graph; it contains knowledge such as
underlying concepts and relations between them. By learning a
mapping between these two intent models I expect to achieve
a more precise and general approach. This approach leads to
the following research questions:
RQ1: Can the intent of natural language requirements be
captured just as well as the intent of spoken utterances by
generating an explicit intent model with iterative NLU?
RQ2: How can an intent model of source code be generated?
RQ3: Does utilizing requirements and source code intent
models for mapping achieve more precise automated traceability



link recovery?

II. INTENT-DRIVEN REQUIREMENTS-TO-CODE
TRACEABILITY

INDIRECT generates requirements and source code intent
models and establishes mappings between these models to
generate traceability links. It targets requirements written in
unrestricted natural language and object-oriented source code.

Requirements Intent Model (RQ1): The requirements
intent model is a graph that represents semantic relations
between elements in the requirements. The semantic relations
comprise information such as underlying concepts and the
connection between entities and statements. The relations
represent knowledge useful to interpret and link requirement
elements to each other. The model is generated by an iterative
natural language understanding inspired by the approach taken
in PARSE [5]. This enables the analysis to benefit from
information gained in previous iterations.

The analysis steps include syntactic analyses, knowledge
enhancement, and conceptualization. The first copes with the
grammatical structure of the requirements and connects the
entities and statements to each other. It generates information
such as that combine in Figure 1 is the action to perform
and its arguments are cells and elementary arithmetic. The
knowledge enhancement step extends the intent model with
knowledge gained from world and domain knowledge bases.
This knowledge comprises information such as that addition
and division are operations in elementary arithmetic. The
conceptualization enhances the intent model with information
on the underlying concepts; information such as that each
instance of a checkbox is part of a form.

Source Code Intent Model (RQ2): The source code intent
model resembles the structure of the requirements intent model
but represents relations between parts of the source code.
Those relations include structural information on the source
code and semantic information gained from analyzing attached
resources such as comments, documentation, and commits.
The building blocks of the source code intent model are
semantically related chunks of source code. Parts of a chunk
share a certain intent. As semantically related code can be
spread across source code parts (cross-cutting concerns), the
chunks can either consist of consecutive or spread parts of
code. For the task of generating the intent model I plan to
analyze the following resources: the structure of the source
code and its comments, available documentation, commits, and
test code. The structure of the source and test code as well as
files associated to certain commits provide insights into the
relations among source code parts. Those relations are used
to determine the extent of semantically related source code
chunks. The comments and documentation are analyzed by a
natural language understanding unit similar to the one used for
the requirements. The results are combined with the structural
and relational information to form the source code intent model.
The generation of the source code intent model is also iterative.
This approach is able to cope with different amounts of available
inputs (projects might offer no documentation or comments).

Traceability Link Recovery (RQ3): The two intent models
are used for automated traceability link recovery. The mod-
els serve as intermediate representations between which the
traceability links are identified. The identification process itself
is conducted by learning patterns that indicate a similarity in
the represented intents. As the intent models form an abstract
representation of the actual instances of requirements and source
code, I expect a learning approach to learn more general patterns.
An example for such a pattern is depicted in Figure 1. The
similarly colored parts of the intent models form a similar
structure with matching subgraphs.

Contributions and Validation: The contributions of this
research are: a method that generates explicit intent models
for natural language requirements, a method to identify seman-
tically related source code chunks and model their intents,
and a tool that utilizes the models to identify traceability
links between requirements and source code. To assess the
efficiency of the proposed approach a data set that includes
at least natural language requirements, source and test code,
and traceability links between these artifacts is necessary.
Developing or discovering such a data set will be part of
the proposed research. Based on the included gold standard
traceability links precision and recall of the approach will be
assessed.

III. CONCLUSION AND FUTURE WORK

To overcome the limitations of present approaches to
automated traceability link recovery I propose INDIRECT,
an approach that uses intent models for identifying traceability
links. It integrates both natural language understanding and
program analysis to explicitly model the intents of requirements
and source code. The two intent models are leveraged to map
between requirements and source code. Thereby, I expect to
learn a more domain-independent and precise traceability link
recovery approach.

The requirements are in the focus now and first steps towards
the generation of the source code intent model are taken. The
mapping between the two models will follow consecutively.
First results on interpreting requirements are promising but the
success of the approach has still to be quantified.
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