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Abstract
We present a method to automatically extract

(“carve”) parameterized unit tests from system exe-
cutions. The unit tests execute the same functions as
the system tests they are carved from, but can do so
much faster as they call functions directly; furthermore,
being parameterized, they can execute the functions
with a large variety of randomly selected input values.
If a unit-level test fails, we lift it to the system level to
ensure the failure can be reproduced there. Our method
thus allows to focus testing efforts on selected modules
while still avoiding false alarms: In our experiments,
running parameterized unit tests for individual func-
tions was, on average, 30 times faster than running the
system tests they were carved from.

1 Introduction
Tools and methods for software test generation can be dis-
tinguished by the level at which they feed generated data
into a program. At the unit level, test generation operates
by invoking individual functions, allowing for effectively
narrowing down the scope of analysis and execution, while
at the same time making internals directly available for test-
ing. The downside, however, is that synthesized function
calls may violate implicit preconditions: If a test generator
finds that sqrt(-1) crashes, this does not help developers
who never intended sqrt() to work with negative num-
bers anyway. When generating tests at the system level,
this problem of false failures does not occur, as a system is
expected to reject all invalid inputs; and any failure caused
by third-party system input needs to be fixed. On the other
hand, system-level testing must read, decompose nad pro-
cess inputs, before the function of interest is finally reached.
This leads to overhead, as compared to a unit-level test. Fur-
thermore, effective system test generation is often hampered
by scale: symbolic analysis, for instance, hardly scales to
system sizes.

In this paper, we present a method that joins the benefits
of both system-level and unit-level test generation, while at
the same time avoiding their disadvantages. Our key idea
is based on the concept of carving unit tests [4], observing
system executions to extract unit tests that replay the pre-
viously observed function executions in context. However,
we extend the concept by extracting parameterized unit
tests, allowing to replay not only the original function invo-
cations, but also to synthesize several more. To this end, we
identify those function arguments that are directly derived
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Figure 1: Overview of our approach. Starting from a set of
(given or generated) system tests, our BASILISK prototype
extracts (“carve”) parameterized unit tests, each represent-
ing a function with symbolic parameters in the context
observed during system testing. The unit tests are then
exhaustively tested. Arguments found to cause failures at
the unit level are then lifted back to the system level, using
a previously established mapping between function argu-
ments and identical values occurring in the system input;
the new system test is re-run to ensure it reproduces the
failure. The carved parameterized unit tests can be obtained
from arbitrary system test generators, and be explored with
arbitrary unit test generators.

from system input. These arguments then become unit test
parameters, allowing for extensive fuzzing with random
values. We can thus random test individual functions with
hundreds of values, with all invocations in the context of the
original run, but without requiring the overhead of starting
the program anew for each system test run. Furthermore,
we can generate tests for any subset of unit tests as we like,
spending testing time on error-prone or recently changed
functions.

As an example of a carved parameterized unit test, con-
sider the function bc_add() from the bc calculator pro-
gram. bc_add() accepts two numbers, n1 and n2, en-
coded in bc’s internal representation for numbers with
arbitrary floating-point precision, and writes the sum of
those two numbers to the number pointed to by result.
scale_min gives the minimal number of floating-point
positions to be used by result.

1 vo id bc_add ( bc_num n1 , bc_num n2 , bc_num ∗
r e s u l t ,

2 i n t s c a l e _ m i n ) ;

From an execution of bc with a concrete input (say,
"1 + 2"), our BASILISK implementation observes the
call bc_add(1, 2, &result, 0). It identifies 1
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and 2 as coming from system input, and thus makes
them parameters of the carved parameterized unit test
test_bc_add():

1 vo id t e s t _ b c _ a d d ( i n t p1 , i n t p2 ) {
2 / / s e t up t h e c o n t e x t
3 bc_num n1 ;
4 bc_in t2num (&n1 , p1 ) ;
5 bc_num n2 ;
6 bc_in t2num (&n2 , p2 ) ;
7

8 / / c a l l t h e f u n c t i o n unde r t e s t
9 bc_num r e s u l t ;

10 bc_add ( n1 , n2 , &r e s u l t , 0 ) ;
11 }

We can now call test_bc_add() with random values
for p1 and p2, thus testing it quickly without having to
start the bc program again and again:

1 t e s t _ b c _ a d d (337747944 , 352295539) ;
2 t e s t _ b c _ a d d (535612873 , 790525737) ;
3 / / . . . and more

Feeding random values into a function call brings the
risk of violating implicit preconditions, even in the context
of a concrete run. In the case of a function failing, we thus
lift the failing unit test back to the system level; we can do
so because we know where the original function argument
came from in the system input. Only if the failure can also
be repeated at the system level do we report the failure.
Lifting is also useful if one is interested in coverage: If
a unit test achieves new coverage, we lift it to the system
level, and verify whether the new coverage also applies
there.

In our example, let us assume that test_bc_add(10,
20) fails. From the original run, we know that the argu-
ments p1 and p2 correspond to the values 1 and 2 in the
system input. In the input, we would thus replace the values
1 and 2 by the failure-inducing values of p1 and p2, result-
ing in the input 10 + 20. Only if bc fails on this input
would we report the failure. The lifting process thus gives
us (1) system inputs that fail (or obtain coverage), (2) the
same zero false positive rate as system tests, yet (3) the
speed and convenience of unit-level testing.

The overall interplay of carving, testing, and lifting is
sketched in Figure 1. As our approach is independent from
a specific system-level or unit-level test generator, it allows
to combine arbitrary system-level test generators (random,
mutation-based, grammar-based, . . . ) with arbitrary unit-
level generators (random, symbolic, concolic, . . . ). In this
paper, we explore one such combination, paving the way
for many more that bring the best of both worlds.

The remainder of this paper is organized as follows. After
discussing the background (Section 2), this paper details its
individual contributions:

1. We present our approach for carving unit tests out of
C programs (Section 3).

2. We show how to identify parameters from system in-
put, thus carving parameterized unit tests (Section 4).

3. We demonstrate how to fuzz C programs with random
values in a carved context (Section 5).

4. We show how to lift failed unit tests to the system level
for validation (Section 6).

In Section 7, we evaluate BASILISK on a series of C pro-
grams. We find that carving parameterized unit tests can
yield more coverage in less time when compared against
system-level testing; these savings are multiplied when
focusing the testing effort on a subset of the program. Sec-
tion 8 closes with conclusion and future work.

2 Background
2.1 Carving Unit Tests

Carving unit tests was introduced by Elbaum et al. [4] as
a means to speed up repeated system tests, for instance in
the context of regression testing. Elbaum’s work used the
Java infrastructure, serializing and deserializing objects to
enable faithful reproduction of units in context.

In contrast to this, our implementation carves unit tests
from C programs. Instead of serialization, we use a heap
traversal to record heap structures, and generate code to
recreate a similar heap. To the best of our knowledge,
BASILISK is the first tool to implement any kind of unit test
carving for C.

Also we extended the carving mechanism to carve param-
eterized unit tests [17], where function parameters whose
values can be mapped to system input are left as parametric
and thus open for unit test generators to explore.

2.2 Extracting C Memory Snapshots

Interpreting and recovering C data structures at runtime is
notoriously difficult, since every programmer can imple-
ment not only her own data structures, but also her individ-
ual memory management. The work of Zimmermann and
Zeller [21] on extracting and visualizing C runtime data
structures (“memory graphs”) as well as their later appli-
cation in debugging [20, 3, 13] is related to ours in that all
these works attempt to obtain a reliable and reproducible
snapshot of C data structures. Yet, all these works use these
data structures for the purposes of debugging and program
understanding rather than carving.

2.3 Generating System Tests

The idea of generating software tests is an old one: To test
a program S, a producer P that will generate inputs for S
with the intent to cause it to fail. To find bugs, a producer
need not be very sophisticated; as shown in the famous
“fuzzing” paper of 1989, simple random strings can quickly
crash programs [11].

To get deeper than scanning and parsing routines, though,
one requires syntactically correct inputs. To this end, one
can use formal specifications of the input language to gener-
ate inputs—for instance, leveraging context-free grammars
as producers [14]. The LANGFUZZ test generator [9] uses
its grammar for parsing existing inputs as well and can thus
combine existing with newly generated input fragments.

Today’s most popular test generators take input sam-
ples which they mutate in various ways to generate further
inputs. American Fuzzy Lop, or AFLFuzz, combines mu-
tation with search-based testing and thus systematically

2



maximizes code coverage [19]. More sophisticated fuzzers
rely on symbolic analysis to automatically determine inputs
that maximize coverage of control or data paths [7]. The
KLEE tool [2] is a popular symbolic tester for C programs.

In our experiments, we use RADAMSA [8] which applies
a number of mutation patterns to systematically widen the
exploration space from a single input. Instead of RADAMSA,
any other system-level test generator could also do the job.

2.4 Generating Unit Tests

The second important class of testing techniques works at
the unit level, synthesizing calls of individual functions.
These techniques separate in two branches: random and
symbolic.

Random tools operate by generating random function
calls, which are then executed. A typical representative of
this class is the popular RANDOOP [12] tool. Random calls
can be systematically refined towards a given goal: Evo-
Suite [5] uses a search-based approach to evolve generated
call sequences towards maximizing code coverage.

Symbolic techniques symbolically solve path conditions
to generate inputs that reach as much code as possible.
PEX [16] fulfills a similar role for .NET programs, working
on parametrized unit tests in which individual function
parameters are treated symbolically.

Compared to the system level, test generation at the unit
level is very efficient, as a function call takes less time than
a system invocation or interaction; furthermore, exhaustive
and symbolic techniques are easier to deploy due to the
smaller scale. The downside is that generated function
calls may lack realistic context, which makes exploration
harder; and function failures may be false alarms because
of violated implicit preconditions. Our parameterized unit
tests supply a realistic context for unit-level testing; also,
validating all unit-level failures at the system level means
that we can recover from false alarms and any remaining
failures are true failures.

2.5 Generating Parameterized Unit Tests

A number of related works has focused on obtaining param-
eterized unit tests by starting from existing or generated unit
tests. Retrofitting of unit tests [15] is an approach where
existing unit tests are converted to parameterized unit tests,
by identifying inputs and converting them to parameters.
The technique of Fraser and Zeller [6] starts from concrete
inputs and results, using test generation and mutation to
systematically generalize the pre- and postconditions of ex-
isting unit tests. The recently presented AutoPUT tool [18]
generalizes over a set of related unit tests to extract common
procedures and unique parameters to obtain parametrized
unit tests. In contrast to all these works, our technique
carves parameterized unit tests directly out of a given run,
identifying those values as parameters that are present in
system input.

3 Carving Unit Tests
3.1 How it Works

The concept of carving was introduced by Elbaum et al. as
a general way to generate unit-tests out of system tests [4].
Conceptually, a system test can be represented as the execu-
tion path through the program under test that is taken when
the program processes the test inputs. In carving, we select
one function invocation, that is, a subpath which starts with
the invocation of a function f , and ends when f returns. We
call f the function (or unit) under test. We also record the
values of all global variables, as well as all parameters for
this invocation of f . We call the set C of recorded variable
and parameter values the context. For the context C, it is
necessary to record heap structures. Variables or function
parameters may be pointers into the heap; the heap itself
may again contain pointers, forming a (potentially large)
structure of heap objects.

Just like regular unit tests, carved unit tests consists of
three parts:

• Setup. The setup code populates all variables with
the values we recorded in C. It reconstructs all heap
structures recorded in C.

• Test. The test part invokes the function f , using the
values that were constructed in the previous step as
parameters.

• Tear down. The tear down step releases all resources
that were acquired by the setup.

If the function f uses global variables and parameters only,
the test is deterministic.

3.2 Example

Let us again take a look at the bc calculator. When bc
parses the input "1 + 2", each number is then stored in
bc’s internal representation, as a bc_num structure. Then,
bc_add() is invoked with two bc_num’s, one represent-
ing 1, and the other representing 2. This leads to the carved
(non-parameterized) unit test as follows:

1 vo id t e s t _ b c _ a d d ( ) {
2 / / s e t up t h e c o n t e x t
3 bc_num n1 ;
4 bc_in t2num (&n1 , 1 ) ;
5 bc_num n2 ;
6 bc_in t2num (&n2 , 2 ) ;
7

8 / / c a l l t h e f u n c t i o n unde r t e s t
9 bc_num r e s u l t ;

10 bc_add ( n1 , n2 , &r e s u l t , 0 ) ;
11 }

3.3 Implementation

In theory, building a carving tool is easy. Just take all
variables and their values and write them out. The prac-
tice of carving, and especially the practice of carving for
C programs is a challenge.

Our BASILISK prototype implements carving based on
the low-level virtual machine (LLVM)[10]. LLVM pro-
vides a compiler, clang, which compiles C code to an inter-
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mediate representation (LLVM IR). Clang also compiles
LLVM IR to machine-code.

The LLVM IR intermediate representation is designed to
be used by compiler optimizations, that is, static analysis of
the code. It removes all the syntactic sugar that was added
to C for the sake of human developers, so it is hard to read
for humans, but better suited for automatic analysis. At the
same time, it pertains type information, which makes an
analysis simpler than analyzing machine code directly.

BASILISK works in two phases. It statically instruments
the LLVM IR code, inserting probes which report all
method invocations including the parameters, as well as all
writes to global variables. During execution, those probes
write the observed values at those points to a trace file.

For primitive types, like ints or floats, observed values
can be written directly. However, there are more challeng-
ing situations for other data types, as listed below.

3.3.1 Pointers

In LLVM IR, as in C, a pointer is no more than a memory
address. There is no information about the length of the
memory segment that a pointer points to. But then, what
should we dump out?

Dumping only the byte that the pointer points to would
mean we do not see the remainder of the memory area.
Keep in mind that pointers are often used as arrays, e.g.
a i8* pointer, LLVM IR for a char * pointer, is often
used to point to a string, an array of characters in memory.
In this case, dumping just one byte would give only the first
character of the string.

At the same time, we can not just dump arbitrary amounts
of data. We would dump data that does not belong to this
variable, and in some cases, accessing memory past the
end of an allocated memory segment could even trigger a
segmentation fault, and thereby crash the program under
test.

To solve this problem, we maintain a map that records,
for each pointer, the length of the memory segment it points
to. Keep in mind that pointers can be calculated from other
pointers. If a pointer a points to a memory segment of
length 10, b = a + 5 gives a pointer b which points to a
memory segment of length 5, the second half of the segment
pointed to by a. The map needs to be able to identify b as
pointing into the memory segment at a, and calculating the
remaining length 1. This allows us to find out how much
memory should be dumped for a pointer.

In the following, we explain how to populate the map.
There are two kinds of pointers:

Stack pointers point to local variables or function argu-
ments. The memory areas for those objects are part
of the stack, they are allocated (and deallocated) by
the runtime when a function is called (or returns). As
the compiler needs to be able to generate code to al-
locate a new stack frame, the compiler is capable of
calculating the size of those memory areas. Our in-
strumentation gets the size at instrumentation time, the

1Just in case you thought you could use an associative map for this
lookup

concrete pointer is captured at runtime, and written to
the map.

Heap pointers point to memory on the program heap. In
C (and in LLVM IR, if the C standard library is used),
memory is allocated with the malloc() function.
malloc() receives the required length for a memory
segment, and returns a memory segment of this length.
Tracking all calls to malloc(), we can update the
map on each call to malloc.

3.3.2 Strings

For strings, one might assume that we can rely on the fact
that they are zero-terminated, that is, the last character will
be zero. Unfortunately we can not. Zero-termination is a
convention, not a rule. Programmers may also decide to
accompany their char* variables with an integer variable,
holding the length of the string. Also, we encountered
several cases where a bitset was stored in a char *. In a
bitset, there may be relevant data behind a zero byte. So
assuming zero-termination in those cases means that we
would loose data.

We thereby decided to handle char * in the same way
as any other pointer type.

We saw that strings have uninitialized data at the end
quite often, so if a char * was dumped, we would, in
constructing the context, also try to construct the context
with the assumption that the string was zero-terminated. In
many cases, this removed uninitialized segments at the end
of the string.

3.3.3 Structs and Unions

Struct types and union types are derived types. For a struct,
that means that the struct consists of several values of dif-
ferent types, written to memory one after another. A union
describes several options on how to interpret the same mem-
ory segment, e.g. 4-bytes of data may either be a single
int32 value, or a four-letter string.

We dump structs by handling each field recursively.
Unions are compiled to structs and bitcasts (reinterpret-
ing bytes in memory as some other type) in LLVM, so
we don’t need to think about how to handle them, LLVM
already did.

3.3.4 Extensive lengths

For some subjects, we encountered large heap structures.
Those might be large arrays, either as a LLVM array type
or with a pointer that points to a lot of memory, or large
connected structures, e.g. hash tables with lots of entries
and long bucket lists. This is a problem, because the runtime
overhead of dumping such large structures is extreme and a
unit test which has to reconstruct such a structure will be
large and slow. As our evaluation will show, slow unit tests
are a problem for our approach.

We solved the problem by introducing a size limit for the
heap structures we dump. If a structures is too large, we
simply abort dumping it. This means that the carver has to
deal with incomplete structures, and some unit test may not

4



build a complete context. However, as the lifting step filters
false alarms, this does not pose a big problem.

3.3.5 External Resources

If the program under test had a file open when f was in-
voked, reconstructing variable values and heap structures
will not be sufficient. Calls to read() or write() on
the file will fail. Similar situations may occur with other
resources, such as locked mutexes or open network connec-
tions.

A perfect solution would have to deeply interact with the
operating system (and the system environment) to perfectly
preserve and reconstruct states, which is out of our scope.
We thereby just ignored the issue. It may lead to false
alarms in the unit tests, but our lifting step will filter those.

3.3.6 Writing to Global Variables

We also want to dump the values of global variables. How-
ever, when a function is called we can not know which
global variables it uses. Thereby we need to dump new
values for global variables whenever a global variable is
written to.

This is rather easy. LLVM IR uses the store instruc-
tion to write to memory. If store writes to a global vari-
able, we dump the new value for this variable.

Unfortunately, this is not enough. If the global variable
is a struct or array, individual members may be written. In
this case, LLVM IR uses the getelementptr instruc-
tion to calculate the address of this member first. For an
array of structs, or struct members in a struct, the result of
getelementptr may be used in an address calculation
again. If the global variable is a pointer to a pointer, the
load instruction may be used to retrieve the underlying
pointer.

We solved this as follows: When our instrumenta-
tion encounters a store instruction, it traces back the
pointer operand, until it hits a value which is not a
getelementptr and not a load. If this value is a global
variable v, the store is considered to be a write to v and
the value is dumped.

3.3.7 Program-Specific Extensions

Even with all the above heuristics, programmers may still
choose internal data representations that make it hard for
BASILISK to recognize data. As an example, bc uses char
arrays (strings) to represent numbers as a string of digits;
However, they do not use ASCII-encoded digits, which our
heuristics for strings could handle, but the integer values of
the characters directly.

To address this issue, we implemented special handling
for the arbitrary-precision numeric types in bc. This special
handling is just 76 lines of kotlin code. More careful engi-
neering of our prototype could make this even easier. This
special handling allowed us to use the bc_int2num()
function from the subject to set up the environment.

Other than that, BASILISK was able to precisely identify,
extract and reproduce almost all data structures for all of
our subjects. Still, depending on how creative programmers

are as it comes to their own memory management, similar
extensions may be required.

4 Parameterizing Carved Unit Tests
4.1 How it Works

We want to use our extracted unit tests for test generation.
Therefore, they need to be parameterized—that is, there
need to be parameters whose values can be set by the fuzzer.

In principle, the fuzzer may change any value in C. How-
ever, this bears the problem of generating false positives. A
failure of a function under test is only relevant if it can be
triggered with system-level inputs. A failure due to invalid
unit-level inputs is irrelevant if those inputs will never be
provided to the unit in a system-level invocation. We there-
fore restrict ourselves to values that are derived directly
from system-level input.

System-level input consist of command-line arguments,
input files, and other inputs. For ease of presentation, we
will assume that all inputs are just one string S. In order to
identify parameters that would be directly derived from S,
we need the data flow from the system-level input S to the
unit-level input C, such that we can identify the origin of
each and every variable in C. To establish such a data flow,
we could use dynamic tainting, tracking all input characters
throughout the execution as well as their derived values, and
eventually checking which of these reach the variables in C.
However, we are interested only in direct flows that can be
easily inverted—that is after a change in C, we want to be
able to easily generate a system input that represents the
change as well. Furthermore, dynamic tainting can be very
slow, in particular considering that one may be interested
only in a small set of functions and their arguments.

To match variables and their origins in the system input,
we thus use a simple, yet efficient approximation. We
traverse the variable values and heap structures in C. For
each v ∈ C, we check whether v occurs in S:

• If v is a string, we check whether it is a substring of S.

• If v is numeric, an integer or a floating-point num-
ber, we check whether the decimal representation is a
substring of S.

If we find a match, we mark v as a parameter. Instead of
using the recorded value v, we now allow the fuzzer to
insert a new value v′ into the unit test, as a replacement
for v.

4.2 Example

In our running example, BASILISK identifies the value 1
of the first method parameter as being related to characters
0 to 1 of the system-level input "1 + 2". The second
argument 2 is related to characters 4 to 5 of the same input.
Thereby it turns those two values into parameters. The
fuzzer may now choose new values for those parameters.

4.3 Implementation

As described before, we check whether a method parameter
or the value of a global variable is a substring of one of
the system-level inputs. We handle S as a set of values per

5



input source, and we do the string comparisons for each
input source individually.

For char * variables, we interpret them as strings and
check them for substrings. This may not always be the
correct approach, because as described above, char *
variables are not always strings; yet, this brought sufficient
results.

For integer variables and variables with a floating-point
type, we used the usual decimal encoding to convert them to
strings and again applied a substring comparison. This may
limit the applicability to other subjects. If a subject accepts
numeric input in, e.g. hexadecimal encoding, our prototype
would not detect that and thereby miss opportunities to
symbolize parameters.

Global variables frequently contain some system input.
However, if this global variable is not used in the function
under test, the unit test does not need to be parameterized.
The values from the fuzzer would never be used. Thereby,
we only consider reachable globals for parameterization.

We consider a global variable as reachable if there is a
load from or a store to this variable in a reachable function.
We consider a function as reachable if it is the function
under test, called in a reachable function, if a function
pointer to this function is created somewhere in a reachable
function, or if a function pointer to the function exists in C.

We generate LLVM IR code which sets all global and
local variables as recorded in C, and calls the function f .

5 Fuzzing Function Calls
5.1 How it Works

Once we have a parameterized unit test, we can use a fuzzer
to choose new values for those parameters. A fuzzer basi-
cally provides random values.

Instead of simple random fuzzing, we could also use
more sophisticated test generators; A tool like PEX [16],
for instance (if it were available for C), could apply sym-
bolic constraint solving to systematically explore paths in
the carved parameterized unit test. Since the scope of the
symbolic analysis would be constrained to only the carved
parameterized test and the function under test, it would not
suffer from the problems of scaling one would have when
applying it at the system level. Hence, our approach effec-
tively enables a fusion of system-level and unit-level test
generation.

5.2 Example

For the running example, the fuzzer generates invocations
such as:

1 t e s t _ b c _ a d d (337747944 , 352295539) ;
2 t e s t _ b c _ a d d (535612873 , 790525737) ;
3 / / . . . and more

5.3 Implementation

We wrote a simple unit-level fuzzer to generate new values
for all parameters. We execute the unit tests with those new
parameters and report all cases where the unit test fails or
covers previously uncovered code.

For integer and double types, our fuzzer uses bitflips, ran-
dom values and the values 0, INT_MAX and INT_MIN. For
strings, our fuzzer uses bitflips, sequences of random bytes,
sequences of random ASCII characters, all 0 strings and
all 0xFF strings. Also, we implemented a mutator which
takes the original string and repeats sequences thereof.

Carving from a program run generates one (parameter-
ized) unit test for each function that was called in the exe-
cution. The system maintains a list of all unit tests. When
it is time to execute the fuzzer on a unit test, it orders the
unit tests by the number of inputs that were already given
to the function under test in other unit tests, and by the
coverage all system tests known so far achieved on the
function under test. The function with the lowest number
of invocations, and among those with the same number of
invocations the function with the lowest coverage so far will
be parameterized and fuzzed first.

6 Lifting Failure-Inducing Values
6.1 How it Works

As stated in the introduction, invoking functions with gen-
erated values runs the risk of false alarms, with the values
violating implicit preconditions for the usage of the func-
tions. Typical examples include numerical values that are
out of range, strings with invalid contents, and more. From
the perspective of the function alone, one cannot distinguish
whether the function failed because of a bug, or whether
it failed because of an invalid input. Only in the context
of the whole system can one decide whether a failure is a
true failure, because a system is not supposed to fail with
an internal error in the presence of invalid input.

A similar problem occurs with coverage. If we are in-
terested in maximizing coverage, and we can generate a
unit-level test that covers a new program structure, we want
to validate this at the system level—because, again, the
coverage achieved locally may not be easily feasible at the
system level.

To address these problems, we thus lift input values from
the function level back to the system level. Unit-level input
values are selected for lifting, if they trigger a failure on
unit-level, or reach new coverage on unit-level.

For each parameterized unit test, the fuzzer generates
new values v′ for all parameters v. Now, each v was a
substring of the system-level input S. We recorded which
interval in S v corresponds to. Thereby, we can derive a
new system-level input S′ by replacing v with v′ in S.

BASILISK then invokes the program under test with the
input S and observes the outcome of the execution. Ideally,
the system test executes the same execution path as the unit
test did. However, there are three possible outcomes

• If the invocation of the program under test produces
the same failure as the unit test, we have a true pos-
itive, and generated a new, valid, and bug-revealing
system test. We also provide the information which
unit test and which unit-level input triggered the prob-
lem, which tells the developer where she should start
debugging.
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• If the invocation of the program under test covers the
same code as the unit test, we have a true positive.
We generated a new, valid system test which achieves
additional coverage.

• If the system test does not fail and does not achieve the
new coverage, as predicted by the unit test, we have
a false positive. False positives occur because in the
system context, the unit-level values do not reach the
function unchanged, or not at all. Also, the failure may
not occur because the context C is not completely re-
constructed, or because the substring relation between
v and S was circumstantial. Whatever the reason,
there is no need for the human software developer to
look into the failure, as it cannot be reproduced at the
system level.

For all reported failures, the developer gets a system
test as well as a unit test that both faithfully reproduce the
failure (or achieve the new coverage). In case of failure, the
developer can use the system test to assess which external
circumstances lead to the error, and also to demonstrate that
the failure is real; and she can use the unit test to debug
the program in context, without having to step through the
entire system test.

6.2 Example

In our running example, the first parameter was related
to characters 0 to 1 of "1 + 2", and the second param-
eter was related to characters 4 to 5. Assuming that the
invocation

1 t e s t _ b c _ a d d (337747944 , 352295539) ;

reveals a bug or at least provides additional cover-
age, we generate the system-level input 337747944 +
352295539.

7 Evaluation
In our evaluation, we attempt to answer the following re-
search questions:

1. How do the unit tests generated by BASILISK compare
against system tests from RADAMSA?

2. How do the system tests generated by BASILISK com-
pare against system tests from RADAMSA?

3. Which time savings are possible if one wants to focus
on a subset of functions?

7.1 Subjects

We applied our prototype implementation on seven subjects.
Four of the subjects are part of GNU coreutils, a collec-

tion of standard command line tools which is used, e.g. on
Linux. The cut program reads text from a file and outputs
substrings, as specified by the user. The paste program, also
part of GNU coreutils, can be used to merge lines from dif-
ferent text files. The tac command reads a file and outputs
it in reversed order. b2sum computes a message digest,
some kind of checksum, from an input file.

Table 1: Evaluation subjects

Subject LoC Functions
b2sum 1228 115 checksum calcula-

tion
paste 662 79 text processor
tac 987 111 text processor
bc 3456 151 arbitrary-

precision cal-
culator

dc 1997 136 arbitrary-
precision cal-
culator

cut 1346 127 text processor
sed 2715 215 text processor

sed is a stream editor that applies a list of user-specified
commands on its input and outputs the resulting text.

The remaining two subjects are the bc and dc programs.
Both of them are programming languages with arbitrary-
precision floating-point arithmetic. bc uses a C-like syntax,
meaning that the input "1 + 2" prints 3, as one would
expect. bc also allows for variables and functions. dc
uses reverse polish notation, where the operator follows its
operands: "1 2 +" yields the output 3. dc has registers,
which can be used as variables. bc and dc share their
arithmetic code.

The subjects are listed in Table 1. We also report the lines
of code for each subject. Especially for the programs from
GNU coreutils, the source code repositories do contain more
code. We counted only lines of code that are in functions
that are reachable from the main method of the respective
program. We used the reachability analysis we described in
Section 4.3.

7.2 Running BASILISK and RADAMSA

Our BASILISK prototype starts with a set of seed tests. First
of all, it uses RADAMSA to generate 10 additional system
tests per seed test. Then, it carves unit tests from all system
tests. Afterwards a unit test is selected as described in
Section 5.3, and the process of parameterizing, unit-level
fuzzing and lifting is applied to this test. Once this is done,
the next unit test will be selected and processed. Generated
system tests are executed immediately, and the coverage
they generate may already be used in the next selection step.

In our experiments, we used a time limit. Our proto-
type runs each system test directly after creating it, so the
output is coverage information. RADAMSA only generates
test inputs. That means that comparing directly is not fair.
While, for our tool, the time limit includes test executions,
RADAMSA needs additional time to execute the generated
system tests.

In order to mitigate this difference, we had RADAMSA
generate system tests in batches of 10 tests each and exe-
cuted each batch before generating the next one, until the
time limit was exceeded. This means that for RADAMSA,
as for BASILISK, system test execution time is included in
the time limit.
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Table 2: Execution times for system tests vs. unit tests

Subject Unit Tests System Tests Speed up
b2sum 22.77ms 1172.94ms 51.50×
paste 33.74ms 1836.20ms 54.42×
tac 19.29ms 3520.12ms 182.44×
bc 87.37ms 1023.46ms 11.71×
dc 122.95ms 1708.41ms 13.90×
cut 41.38ms 264.85ms 6.40×
sed 6.82ms 729.00ms 106.85×
total 47.76ms 1465.00ms 30.76×

7.3 Unit Tests vs. System Tests

In our first experiment, we compared the unit tests generated
by BASILISK with system tests produced by RADAMSA.
Experiments were ran on an Intel i7-2600 processor at
3.40GHz with 16 GB RAM on Linux. We measured real
time elapsed for the programs instrumented to obtain cover-
age information; this instrumentation is responsible for the
relatively long executions.2 The time limit was 15 minutes
for both tools.

We used one hand-written seed test, which was identical
for both tools. In designing the seed tests, we used input
examples that we found in online tutorials or the bug tracker
of the respective programs. We ran each experiment 5 times
with different seeds; the results are means over all five runs.

Table 2 lists the mean execution time for the BASILISK
unit tests as well as the RADAMSA system tests. We see that,
as expected, a single execution of a carved parameterized
unit test with arguments runs much faster than a system test,
up to a factor of 180 and with a mean factor of 30.

Carved unit tests execute much faster than system tests.

The finding that unit tests execute much faster confirms
the experiments of Elbaum et al., who reported that their
carved tests “reduce average test suite execution time to a
tenth of our best system selection technique” [4]. In contrast
to Elbaum et al., though, we are not limited to invocations
seen during system testing, but can (and do!) generate
additional ones.

7.4 Overall Coverage

Let us now see whether the unit test speedup brings benefits
during testing. To this end, we identify those unit tests
that result in an increase in branch coverage. We lift those
tests to become system tests. Table 3 shows that although
BASILISK runs hundreds of thousands of unit tests, only a
small fraction of these results in new branch coverage and
yields new system tests. While some of the unit tests fail,

2We implemented our own coverage tool, as for our experiments, we
would require the ability (a) to fully trace executions and (b) to maintain
that trace (and the coverage) even in the presence of failures; the tool
is thus optimized for reliability rather than performance. An industrial
strength implementation for coverage only would require only an over-
head proportional to the code size, as it would replace instrumented with
uninstrumented blocks once covered.

Table 3: Lifted unit tests

Subject #Unit Tests #Lifted Tests % lifted
b2sum 545110.4 329.8 0.06%
paste 219379.6 273.0 0.12%
tac 872961.2 79.2 0.01%
bc 8181.4 159.1 1.94%
dc 396664.8 125.6 0.03%
cut 909140.4 383.0 0.04%
sed 25095.8 167.7 0.67%
total 2976533.6 1517.4 0.05%

none of these failures still occur after lifting the generated
arguments back to system tests.

Lifting unit test failures to system tests is effective in
preventing false alarms.

If we measure the branch coverage of the system tests
thus lifted, we can directly compare the coverage of
BASILISK and RADAMSA. (At this point, both tools
have spent the same test budget of 15 minutes, which for
BASILISK includes carving, parameterization, and lifting.)
Table 4 contrasts the number of tests produced and branch
coverage achieved.

It is worthwhile to note that BASILISK achieves its cov-
erage through fewer tests than RADAMSA. Such a lower
number of system tests is helpful, as it (re-)executes faster.
This is because BASILISK only generates system tests where
the originating unit tests have achieved new coverage (and
where the coverage gain is confirmed for the system test
after lifting), while RADAMSA uses no such feedback from
the program.

Comparing the first column in Table 4 and the second col-
umn in Table 3, it can be seen that the number of tests that
were generated in BASILISK’s fuzzing stage, the difference
between the columns, is small. So BASILISK mostly relies
on lifting. cut is an exception here. For cut, many unit
tests were selected for lifting (thus counted in table 3), but
could not be lifted (the coverage gain was not confirmed),
so the number of system tests is lower than the number of
lifting attempts.

We see that on five out of seven subjects, BASILISK
reaches a higher coverage than RADAMSA. The two sub-
jects where BASILISK does not reach a higher coverage are
bc and dc; for cut, the gain is small as well. Looking at
the rightmost column of Table 2, these subjects have the
smallest speed ups of unit tests in comparison to system
tests. The performance gained by executing a unit rather
than the entire program is offset by the analysis time of
carving and parameterization. On the other hand, the sub-
jects with a high speedup of unit tests vs. system tests can
very much profit from the carved parameterized unit tests.
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Table 4: Branch coverage achieved by BASILISK and RADAMSA

#System Tests Coverage
Subject BASILISK RADAMSA BASILISK RADAMSA
b2sum 358.0 629.0 37.93% 19.49%
paste 280.0 346.3 33.33% 31.08%
tac 89.6 212.6 34.66% 30.71%
bc 169.0 577.2 26.47% 28.46%
dc 135.4 434.6 18.39% 41.06%
cut 339.2 3117.1 21.00% 20.50%
sed 175.7 1058.3 21.19% 15.73%

Table 5: Number of functions reached by BASILISK and
RADAMSA

Subject BASILISK RADAMSA
b2sum 42 21
paste 21 22
tac 23 24
bc 69 71
dc 49 73
cut 50 49
sed 81 69

If the unit tests are sufficiently faster than the system
tests, parameterized carved unit tests yield a higher

coverage.

To paint a complete picture, let us also take a look at
the functions invoked. Table 5 compares BASILISK and
RADAMSA in terms of covered functions.

The biggest difference between BASILISK and
RADAMSA is in the dc subject. Investigation of the
generated tests shows that RADAMSA manages to generate
new operators, e.g. "1 2 + p" may be mutated to "1 2

* p". BASILISK only mutated the numbers themselves.
Thereby RADAMSA discovered more functions, namely
those for multiplication and other operators, while
BASILISK found more paths in the already discovered
functions. Of course, whether one or another strategy
is more effective depends on the (typically unknown)
distribution of bugs in practice.

7.5 Focusing on Single Functions

While our previous experiment focused on running all func-
tions, in practice, we typically want to focus on specific
functions. For instance, one may wish to focus testing on
recently changed functions, functions that have a history
of failures, functions that are critical, or other reasons that
demand extensive testing.

System test generators like RADAMSA give the tester no
means to focus test generation on specific functions. With
parameterized unit tests, as carved by BASILISK, this is
easy: We just execute those unit tests that test the function
of interest.

If we want to test a single function, Table 2 already gives

us an indication of the speedup we can expect. By executing
only those unit tests related to a single function, we can
expect a significant speed-up; in our experiments, this is
the factor 30 already mentioned. While this speedup occurs
only after carving and parameterization, a high number of
tests will amortize the effort for these steps.

In our experiments, after carving a parameterized unit
test for a function, one can test the function on average

30 times faster than with the original system test.

This factor 30 we found in our experiments has to be
taken with a grain of salt, as it will very much depend on
the speed differences of individual functions vs. system ex-
ecution as a whole. If the function to be tested encompasses
most of the functionality of the program (e.g., the main()
function in C), carving a parameterized unit test will not
yield significant time advantages. On the other hand, if a
program takes multiple seconds to start up or to process
inputs before it can call a function (think of starting a Web
browser or an office program), the time savings factor can
easily reach several orders of magnitude. Such savings
accumulate as the carved parameterized unit tests can be
reused again and again.

7.6 Focusing on Sets of Functions

Let us now assume we have not one, but a set of “focus
functions” we are especially interested in—a set that may
also be reached by chance through unfocused testing. Ta-
ble 6 shows the focus functions we randomly chose per
subject.

Again, we ran BASILISK for 15 minutes per subject.3 In
the first “unfocused” setting, we ran BASILISK as described
above, executing all unit tests without further discrimination.
In the second “focused” setting, we had BASILISK carve and
explore parameterized unit tests only for the focus functions.
Table 7 shows the time spent in the focus functions in both
settings.

We see that having BASILISK focus on a small set of
functions executes these focus functions much more often
than the unfocused version. The time BASILISK spends on
these functions increases by a factor of at least six. In other
words, we can test a function six times as much than with
an unfocused setting, or we can test six times as quickly.

3All reported values are means over 5 runs.
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Table 6: Focus functions for each subject

Subject Functions
b2sum blake2b_init(), blake2b_init_param(),

blake2b_update(), blake2b_final()
paste xstrdup(), xmemdup(),

quotearg_n_style_colon()
tac quotearg_style()
bc lookup(), bc_sub(), bc_multiply(),

bc_out_num(), bc_add()
dc bc_out_num(), dc_add(), dc_mul(),

dc_multiply(), dc_binop(), bc_add()
cut xstrdup(), hash_initialize(), xstrndup(),

quote(), quote_n(), c_tolower()
sed compile_string(), normalize_text(), com-

pile_regex()

Table 7: Time in milliseconds spent in focus functions

Subject Unfocused Focused
b2sum 128.76 661.00
paste 131.26 785.50
tac 11.75 640.16
bc 112.41 647.34
dc 151.33 771.94
cut 96.28 820.48
sed 98.26 842.20

With carved parameterized unit tests,
one can focus on a subset of functions to be tested,

yielding significant time savings.

The differences are even more dramatic when comparing
the number of invocations. In Table 8, we see the number of
invocations for the focus functions per configuration, now
also including RADAMSA. We see that focusing on a subset
of functions can yield savings of up to a factor of 18,000
(cut). Again, this factor depends on the average running
time of a unit; for dc, our focus functions do not yield
savings over system testing, as they take too long to carve
and run.

With carved parameterized unit tests,

Table 8: Number of invocations of focus functions

Subject Unfocused Focused RADAMSA
b2sum 140468 2167102 1114
paste 24723 248898 1039
tac 60 1938 172
bc 498 96041 11131
dc 19551 19388 259167
cut 270514 2973383 163
sed 562 69327 1119

focus functions can be executed much more often.

7.7 Discussion Summary

In the end, speed gains through carved parameterized unit
tests will depend on multiple factors: Even if we have no
focus set at all and include the effort for carving, we may
still see gains in coverage over time (and conversely, less
time for the same coverage), as discussed in Section 7.4.
On the other hand, the smaller the focus set, and the quicker
the functions execute, the higher the gains will be—up
to the dramatic speedups shown in Table 2, discussed in
Section 7.5.

7.8 Limitations and Threats to Validity

Like any empirical study, our evaluation is subject to threats
to validity, many of which are induced by limitations of our
approach. The most important threats and limitations are
listed below.

• Threats to external validity concern our ability to gen-
eralize the results of our study. We cannot claim that
the results of our experimental evaluation are general-
izable. A huge concern is that we establish mappings
from inputs to unit-level values via (sub-)string equal-
ity. This approach will, most likely, fail for programs
that do not process text, e.g. image analysis software.
Another concern is that, if individual units need a long
time to execute, the gains through carved parameter-
ized unit tests will be small compared to system test-
ing; if individual units are too large, the overhead of
analysis, carving, and parameterization may not be off-
set through faster unit test execution. We counter the
threat in making our research infrastructure available,
allowing for replication and extension.

As we detail in Section 3.3, carving is inherently lim-
ited in its ability to reconstruct a given context, espe-
cially when including external resources. A carved
parameterized unit test involving external resources
runs the risk of not being able to execute a function at
all, and such failures will not be reported as they will
not be reproducible in the lifted system test. This can
be partially amended through deeper interaction with
runtime and operating system; but such extension is
out of scope for the present paper.

• Threats to internal validity concern our ability to
draw conclusions about the connections between our
independent and dependent variables. RADAMSA is a
random-driven test generator, yielding different results
each time. Since in our evaluation, BASILISK starts
with the tests coming from RADAMSA, and as it choses
random values when fuzzing individual functions, we
have a second influence of randomness. Furthermore,
the choice of the seed test(s) has a huge influence on
the achieved coverage. A good seed test leads to more
initial coverage, and thereby more carving opportu-
nities, which benefits BASILISK. On the other hand,
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a good seed test also gives RADAMSA more oppor-
tunities to mutate system-level inputs; these effects
may level each other out. We counter both threats by
running the experiments multiple times with different
seeds, reporting mean times across all runs.

• Threats to construct validity concern the adequacy
of our measures for capturing dependent variables.
To evaluate the quality of our tests, we use standard
measures such as code coverage and execution time,
which are well established in the literature.

8 Conclusion and Future Work
Carved parameterized unit tests bring together the best of
system-level and unit-level testing. Like unit tests, they can
be quickly executed and focused on a small set of locations;
from system tests, they obtain valid and realistic contexts
in which test generation takes place; and when a unit fails,
the failure can be lifted to the system level and validated
there, either suppressing a false alarm or yielding a failing
system test. As our evaluation shows, the greatest potential
of carved parameterized tests is in the speedup they provide:
Focusing on a small set of functions of interest allows to
speed up testing by orders of magnitude when compared to
system-level test generation. On a more conceptual level,
carved parameterized unit tests create a bridge between
system-level test generators and unit-level test generators,
which can be arbitrarily combined; it thus paves the way
towards new and exciting combinations of the best of two
worlds.

Although our present approach came to be by exploring
and refining several alternatives, it is by no means perfect or
complete. Our task list for the future includes the following
extensions:

• Dynamic tainting. Our method for associating unit-
level values with system inputs works well for all our
subjects; however, we would like to have a method
that also works when the input undergoes a number
of computation steps. To this end, we want to apply
dynamic tainting to follow individual characters of a
system input through an execution, along with their
derived values; this would effectively allow to asso-
ciate any function argument with the input subset that
influenced it. The downside is that dynamic tainting in-
duces a massive overhead (which may be better spent
on test generation), and that the transformation steps
from system input to function argument may not be
easily reversible, preventing the final lifting step.

• Advanced unit testing. Rather than simply feeding
random values into functions, we would like to apply
symbolic or search-based test generators at the unit
level such that we can cover functions in a guided
fashion. We are currently experimenting with the
KLEE tool [2] for this very purpose; first results show
that its generated inputs provide higher coverage than
our randomly produced inputs, but this advantage is
offset by the time it takes for analysis. Another tool on

our list is libfuzzer [1]; this tool provides a sequence
of random bytes, which it evolves according to the
coverage achieved.

• Advanced system testing. Instead of RADAMSA, we
plan to experiment with alternate system-level test
generation tools to obtain a wider range of function
calls and arguments. Grammar-based testing, as in the
LANGFUZZ test generator [9], would allow to quickly
cover input features and thus functions and values;
furthermore, we could directly associate grammar ele-
ments such as strings and numbers with function argu-
ments.

• Better carving. Carving is a bag of hurt, plain and
simple. We are happy we made it far enough to get the
experiments running, and we think we do have a nice
and clean carving infrastructure at this point. There is
definitely room for improvement, and we may work on
this at some point; but if, in the meantime, you plan to
implement a carving technique for C, please contact us:
We are happy to share our carving infrastructure such
that you can save a year or so of coding and another
year of debugging.

To allow easy reproduction and validation of our work,
we have created a replication package for download. The
package includes all raw experimental data, as well as
BASILISK itself:

https://tinyurl.com/basilisk-icse19
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