
APIScanner - Towards Automated Detection of
Deprecated APIs in Python Libraries

Aparna Vadlamani, Rishitha Kalicheti, Sridhar Chimalakonda
Research in Intelligent Software & Human Analytics (RISHA) Lab

Dept. of Computer Science & Engineering
Indian Institute of Technology Tirupati

Tirupati, India
{cs17b005, cs17b014, ch}@iittp.ac.in

Abstract—Python libraries are widely used for machine learn-
ing and scientific computing tasks today. APIs in Python libraries
are deprecated due to feature enhancements and bug fixes in
the same way as in other languages. These deprecated APIs are
discouraged from being used in further software development.
Manually detecting and replacing deprecated APIs is a tedious
and time-consuming task due to the large number of API calls
used in the projects. Moreover, the lack of proper documentation
for these deprecated APIs makes the task challenging. To address
this challenge, we propose an algorithm and a tool APIScanner
that automatically detects deprecated APIs in Python libraries.
This algorithm parses the source code of the libraries using
abstract syntax tree (ASTs) and identifies the deprecated APIs
via decorator, hard-coded warning or comments. APIScanner is
a Visual Studio Code Extension that highlights and warns the
developer on the use of deprecated API elements while writing
the source code. The tool can help developers to avoid using
deprecated API elements without the execution of code. We tested
our algorithm and tool on six popular Python libraries, which de-
tected 838 of 871 deprecated API elements. Demo of APIScanner:
https://youtu.be/1hy ugf-iek. Documentation, tool, and source
code can be found here: https://rishitha957.github.io/APIScanner.

Index Terms—Deprecated APIs, Python Libraries, API Evolu-
tion, Visual Studio Code Extension

I. INTRODUCTION

Python is one of the popular dynamic programming lan-
guage that has gained immense popularity due to its extensive
collection of libraries, including popular modules for machine
learning and scientific computing 1. Due to reasons such
as feature improvements and bug repairs, python libraries
are frequently updated. Most API changes include moving
methods or fields around and renaming or changing method
signatures [1]. These changes may induce compatibility is-
sues in client projects [2]. It is recommended to follow the
deprecate-replace-remove cycle to enable developers to adapt
to these changes smoothly[3]. In this process, APIs that are no
longer supported are first labeled as deprecated, and then the
deprecated APIs are replaced with their substitution messages
to help developers transition from deprecated APIs to new
ones [4]. The deprecated APIs are gradually removed from
the library in future releases. Unfortunately, this process is
not always followed, as discovered by several studies [5], [6],

1https://www.tiobe.com/tiobe-index/

making it difficult for both library maintainers and developers.
Ko et al. have analyzed the quality of documentation for
resolving deprecated APIs [7]. Researchers have proposed
techniques to automatically update deprecated APIs [8], [9].
However, most of them are for static programming languages
such as Java, C# and Android SDKs. Python being a typical
dynamic programming language, exhibits different API evo-
lution patterns compared to Java [2]. Hence it motivates the
need for new techniques and tools to detect deprecated APIs.

Deprecated APIs in Python libraries are mainly declared by
decorator, hard-coded warning, and comments [10]. Never-
theless, it was discovered that library maintainers use varied
and multiple strategies for API deprecation, leading to incon-
sistency in the implementation of libraries as well as their
automated detection [10]. In addition, nearly one-third of the
deprecated APIs in Python is not included in the official library
documentation, making it hard for developers using libraries
to limit the use of deprecated APIs [10].

To avoid the usage of deprecated APIs during new software
development, developers should be aware of deprecating APIs
in the project, motivating the need for this research. Hence,
given the rise in popularity of Python and the number of
deprecated APIs used in Python projects, we propose a novel
algorithm that uses the source code of the Python libraries
to get a list of deprecated APIs. This list is further used
to detect deprecated APIs in Python projects. This paper
contributes (i) an algorithm for deprecated API detection
and (ii) a Visual Studio Code extension, APIScanner2. We
believe that APIScanner might assist developers to detect
deprecated APIs and help them avoid searching through API
documentation or on forums such as Stack Overflow. As a
preliminary evaluation, we tested our algorithm and tool on
six popular Python libraries [11] that are commonly used in
data analytics, machine learning, and scientific computing.
The initial results are promising with 90% API deprecation
detection, with potential for application beyond these libraries.

II. APPROACH

Wang et al. [10] investigated that inconsistency in the
adopted deprecation strategies makes it a harder task to use

2https://marketplace.visualstudio.com/items?itemName=Rishitha.
apiscanner

ar
X

iv
:2

10
2.

09
25

1v
4 

 [
cs

.S
E

] 
 1

0 
M

ay
 2

02
1

https://youtu.be/1hy_ugf-iek
https://rishitha957.github.io/APIScanner
https://www.tiobe.com/tiobe-index/
https://marketplace.visualstudio.com/items?itemName=Rishitha.apiscanner
https://marketplace.visualstudio.com/items?itemName=Rishitha.apiscanner


Fig. 1. Approach for Detecting Deprecated API Elements in Python Libraries

automated approaches for managing deprecated APIs and their
documentation. In this paper, we propose an approach (as
shown in Fig. 1) to automatically detect deprecated APIs in
Python libraries and alert developers during API usage in
software development. Firstly, we identify the libraries used in
the client code from import statements. We build an abstract
syntax tree (AST) to parse the source code to detect the
patterns. The proposed Algorithm 1 is then applied on the
ASTs to retrieve a list of deprecated APIs in those libraries.
Based on this list, APIScanner parses each line of code in
the editor, highlights the deprecated elements in the editor.
On hovering, the tool also displays a message informing the
developer that some element(s) of this API call has been
deprecated (as shown in Fig. 2). We developed APIScanner
as a Visual Studio Code extension as it supports both Python
scripts and jupyter notebooks3.
(a) Using Decorator: in Matplotlib

@_api.deprecated("3.3", alternative="Glue(’fil’)")
class Fil(Glue):

def __init__(self):
super().__init__(’fil’)

(b) Using Comments: in Sklearn
class GradientBoostingClassifier(args):

"""
..criterion : {’friedman_mse’, ’mse’, ’mae’}..
.. deprecated:: 0.24 ‘criterion=’mae’‘ is deprecated and will be removed in
version 0.26. Use ‘criterion=’friedman_mse’‘ or ‘’mse’‘ instead, as trees
should use a least-square criterion in Gradient Boosting
"""

(c) Using Hardcoded Warnings: in Pandas
class Series(args):

def __init__(self,args):
if dtype is None:

warnings.warn("The default dtype for empty Series will be ’object’
instead of ’float64’ in a future version",DeprecationWarning,stacklevel=2)

Listing 1. Examples of methods of deprecation strategies adopted in Python
libraries which are deprecated through a) decorator, b) comments c) hard-
coded warning

A. Detecting Deprecated API Elements through Source Code

We parse the source code of the library to generate an AST
and denote it as PAST . Examples of Python APIs deprecated

3https://jupyter.org/

Fig. 2. Snapshot of APIScanner. The black boxes indicate deprecated APIs
highlighted by APIScanner. The red box indicates the message shown by
APIScanner on hovering over the highlighted deprecated APIs.

by decorator, hard-coded warnings, and comments are shown
in listing 1. Structure of AST helps to realize the relationship
between class declaration and function definition with decora-
tor, hard-coded warnings, and comments. We traverse through
each node NAST in the AST and generate PAST using Depth-
First Search (cf. Line-2). Whenever we encounter a class
definition node, we extract the doc-string of that particular
class. If the doc-string contains the deprecate keyword (such
as (b) in Listing 1), we generate the Fully Qualified API name
of the class by appending the class name to the directory path.
We also append the deprecation message to LD (cf. Line-13)
along with a list of decorators associated with the class. If
there is a deprecated decorator (such as (a) in Listing 1) in the
extracted list, we add the fully qualified name of the class and
any description provided to list LD (cf. Line-16). Similarly,
when we encounter the function definition node, we extract the
list of decorators associated with it. If there is a deprecated
decorator in the extracted list, we add a fully qualified name
of the function to list LD (cf. Line-6). For each function call
node in NAST (cf. Line-7), we verify if DeprecationWarning
or FutureWarning are passed as arguments (such as (c) in
Listing 1) and add its fully qualified name to list LD, which
is the final generated list of deprecated API elements.

III. EVALUATION

A. Libraries Selection

To evaluate our approach, we applied it on six popular third-
party Python libraries that were identified by Pimentel et al
[11]. However, this approach is not limited to the selected
libraries and could be applied to other Python libraries as well.
• NumPy: Array programming library [12].
• Matplotlib: A 2D graphics environment [13].
• Pandas: Data analysis and manipulation tool [14].
• Scikit-learn: Machine learning library for Python [15].
• Scipy: Library for scientific and technical computing [16].
• Seaborn: Data visualization based on matplotlib [17].



Algorithm 1: Detecting Deprecated API Elements in
Python Libraries

Input: P , Python Library Code
Output: LD , List of Deprecated API Elements

1 Function Detect_Deprecated_API():
2 LD ← {}

/* parseCode returns Abstract syntax tree of
given code input */

3 PAST ← parseCode(P )
/* Traverse each node in PAST using BFS */

4 for NAST ∈ PAST do
5 if isFunctionDefNode(NAST ) then
6 D = NAST .Decorators
7 if isDeprecatedDecorator(D) then
8 LD .add(getFullyQualifiedName(NAST .Name))

/* Traverse each Node in NAST */
9 for Node ∈ NAST do

10 if isFunctionCallNode(Node) and
isDeprecationWarning(Node) then

11 LD .add(getFullyQualifiedName(NAST .Name))

12 else if isClassDefNode(NAST ) then
13 docstr = NAST .Docstring
14 if docstr .hasDeprecationKeyword() then
15 LD .add(getFullyQualifiedName(NAST .Name))

16 D = NAST .Decorators
17 if isDeprecatedDecorator(D) then
18 LD .add(getFullyQualifiedName(NAST .Name))

19 return LD

B. Results

Table I summarizes the total number of deprecated API
elements detected by the Algorithm 1 and the total number
of deprecated API elements found in the source code of
the Python libraries. We manually counted the number of
deprecated API elements present in the source code of the
libraries. From Table I, we can observe that the algorithm has
detected more than 90% of the deprecated APIs. In the case of
Matplotlib, only 65% of the deprecated APIs could be detected
since Matplotlib deprecates many of its parameters using a
custom warning function which does not have any parameters
indicating if it is a DeprecationWarning or not. In such cases,
the proposed algorithm could not detect the deprecated API
elements.

In the case of Scikit-learn, Numpy and Pandas, some of the
functions that are used to deprecate parameters or parameter
values or deprecation warnings induced by other libraries are
also captured. Hence, the number of deprecated API elements
detected by the algorithm is higher than the actual number of
deprecated APIs. Whereas in the case of Scipy and Seaborn,
some of the parameters are deprecated without using any of the
three deprecation strategies, which could not be detected by
the algorithm. Hence, the number of deprecated API elements
detected by the algorithm for Scipy and Seaborn are lower
than the actual number of deprecated APIs.

IV. LIMITATIONS AND THREATS TO VALIDITY

APIScanner detects deprecated APIs through decorator,
warning or comments. Any other deprecated APIs that are
not implemented through the above three strategies cannot

Library
Name

LOC Total No. of Dep-
recated API el-
ements identified
using Algorithm 1

Total No. of Dep-
recated API ele-
ments in source
code

Scikit-learn 388.1k 487 438
Matplotlib 982.5k 169 254
Numpy 145.6k 39 36
Pandas 668.9k 66 59
Scipy 725.62k 46 49
Seaborn 83.7k 31 35

TABLE I
EVALUATION OF RESULTS OBTAINED USING OUR ALGORITHM

be detected by the algorithm. Moreover, the algorithm finds
the function or class in which a parameter is deprecated but
the exact parameter deprecated may not be mentioned in
the deprecation message displayed by the extension due to
the inconsistent deprecation strategies adopted by the library
maintainers. APIs deprecated without using the Deprecation-
Warning and FutureWarning as parameters in the warning
function cannot be detected by the algorithm. APIs deprecated
using single-line comments and not using the doc-strings also
cannot be detected by the algorithm. Further, a major pre-
requisite for our approach is the availability of source code
of libraries. We can mitigate the threat due to inconsistent
deprecation strategies if we can ensure that the documentation
is structured and well maintained for Python libraries.

Finally, since the results are evaluated manually, there may
be human errors. Hence, we have carefully reviewed and
validated some of the results using release notes to mitigate
this potential threat. We plan to extend the evaluation of the
tool using release notes and API documentation.

V. RELATED WORK

In the literature, several studies on deprecated APIs for
different environments have been done to analyze and tackle
the challenges posed by the deprecation of APIs in libraries.

Robbes et al. [5], [6] studied the reactions of developers
to the deprecation and the impact of API deprecation on the
Smalltalk and Pharo ecosystem. Ko et al. [7] examined 260
deprecated APIs from eight Java libraries and their documen-
tation and observed that 61% of deprecated APIs are offered
with replacements. Similarly, Brito et al. [18] conducted a
large-scale study on 661 real-world Java systems and found
that replacements are provided for 64% of the deprecated
APIs. In another study [4] conducted on Java and C# projects,
they have observed that an average of 66.7% of APIs in
Java projects and 77.8% in C# projects were deprecated
with replacement messages. In 26 open-source Java systems
over 690 versions, Zhou et al. [19] analysed the history of
deprecated APIs and observed that deprecated API messages
are not well managed by library contributors with very few
deprecated APIs being listed with replacements. Li et al. [3]
characterized the deprecated APIs in Android Apps parsing
the code of 10000 Android applications. Zhang et al. [2]
have observed a significant difference in evolution patterns
of Python and Java APIs and also identified 14 patterns in



which Python APIs evolve. Wang et al. [10] observed that
library contributors do not properly handle API deprecation in
Python libraries. To this end, there is a need for approaches
and tools to automatically detect deprecated API elements in
Python projects.

Several approaches have been proposed in the literature for
other ecosystems to migrate from deprecated APIs [20], [9],
[8]. Yaoguo Xi et al. [20] proposed an approach and built a
tool DAAMT to migrate from deprecated APIs in Java to their
replacements if recorded in the documentation. Fazzini et al.
[9] developed a technique AppEvolve to update API changes in
Android Apps by automatically learning from examples before
and after-updates. Haryono et al. [8] proposed an approach
named CocciEvolve that updates using only a single after-
update example. However, tools that handle deprecated APIs
in Python projects have not been developed, which motivated
us towards the development of APIScanner.

VI. CONCLUSION AND FUTURE WORK

Considering the extensive use of deprecated APIs during
software development and lack of proper documentation for
deprecated APIs, we proposed an approach to automatically
detect deprecated APIs in Python libraries during the devel-
opment phase of the project. In this paper, we presented a
novel algorithm and a tool called APIScanner that detects
deprecated APIs. The algorithm identifies the APIs deprecated
via decorator, hard-coded warning or comments by parsing the
source code of the libraries and generated a list of deprecated
APIs. APIScanner used this list and searched for the use of
deprecated APIs in the current active editor. The tool high-
lights deprecated APIs in the source code along with further
deprecation details. APIScanner thus aims to help developers
detect deprecated APIs during the development stage and avoid
searching through API documentation or forums such as Stack
Overflow. Highlighting the use of deprecated APIs in the
editor might help developers to address and replace them. The
proposed algorithm identified 838 out of 871 API elements
across six different Python libraries.

As future work, our goal is to strengthen the tool with
release-specific information and develop a better user interface
(such as different colors) to indicate the severity of the
deprecation. We also plan to improve the documentation of
deprecated APIs through the information obtained from the
algorithm. We plan to extend the tool to provide a feature
to migrate from the deprecated API to its replacement. We
aim to improve the tool’s accuracy by extracting APIs that are
deprecated using the custom deprecation strategies. Finally, we
plan to conduct extensive developer studies on the usage of
the approach and the tool with more libraries.

REFERENCES

[1] D. Dig and R. Johnson, “The role of refactorings in api evolu-
tion,” in 21st IEEE International Conference on Software Maintenance
(ICSM’05), 2005, pp. 389–398.

[2] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong, “How do
python framework apis evolve? an exploratory study,” in 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2020, pp. 81–92.

[3] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Character-
ising deprecated android apis,” in Proceedings of the 15th International
Conference on Mining Software Repositories, ser. MSR ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 254–264.

[4] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in api deprecation: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 306 – 321, 2018.

[5] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to api deprecation? the case of a smalltalk ecosystem,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, ser. FSE ’12. New York, NY, USA: Association
for Computing Machinery, 2012.

[6] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How do developers react to api evolution? the pharo ecosystem
case,” in Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), ser. ICSME ’15. USA:
IEEE Computer Society, 2015, p. 251–260.

[7] D. Ko, K. Ma, S. Park, S. Kim, D. Kim, and Y. L. Traon, “Api document
quality for resolving deprecated apis,” in Proceedings of the 2014 21st
Asia-Pacific Software Engineering Conference - Volume 02, ser. APSEC
’14. USA: IEEE Computer Society, 2014, p. 27–30.

[8] S. A. Haryono, F. Thung, H. J. Kang, L. Serrano, G. Muller, J. Lawall,
D. Lo, and L. Jiang, “Automatic android deprecated-api usage update
by learning from single updated example,” 2020.

[9] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update for
android apps,” in Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
204–215.

[10] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated python
library apis are (not) handled,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 233–244.

[11] J. a. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-
scale study about quality and reproducibility of jupyter notebooks,” in
Proceedings of the 16th International Conference on Mining Software
Repositories, ser. MSR ’19. IEEE Press, 2019, p. 507–517.

[12] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–
362, Sep. 2020.

[13] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[14] W. McKinney, “Data structures for statistical computing in python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt
and J. Millman, Eds., 2010, pp. 51 – 56.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[16] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“Scipy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[17] M. Waskom and the seaborn development team, “mwaskom/seaborn,”
Sep. 2020.

[18] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate apis with replacement messages? a large-scale analysis on
java systems,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 360–
369.

[19] J. Zhou and R. J. Walker, “Api deprecation: A retrospective analysis and
detection method for code examples on the web,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 266–277.

[20] Y. Xi, L. Shen, Y. Gui, and W. Zhao, “Migrating deprecated api to
documented replacement: Patterns and tool,” in Proceedings of the 11th
Asia-Pacific Symposium on Internetware, ser. Internetware ’19. New
York, NY, USA: Association for Computing Machinery, 2019.


	I Introduction
	II Approach
	II-A Detecting Deprecated API Elements through Source Code

	III Evaluation
	III-A Libraries Selection
	III-B Results

	IV Limitations and Threats to Validity
	V Related Work
	VI Conclusion and Future Work
	References

